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Summary. The formalism of Backus & Gilbert is applied to the problems of 
upward and downward continuation of harmonic functions. We first treat 
downward continuation of a two-dimensional field to a level surface every- 
where below the observation locations; the calculation of resolving widths 
and solution estimates is a straightforward application of Backus-Gilbert 
theory. The extension to the downward continuation of a three-dimensional 
field uses a delta criterion giving resolving areas rather than widths. A feature 
not encountered in conventional Backus-Gilbert problems is the requirement 
of an additional constraint to guarantee the existence of the resolution 
integrals. Finally, we consider upward continuation of a two-dimensional 
field to  a level above all observations. We find that solution estimates must 
be weighted averages of the field not only on this level, but also on a line 
passing between the observations and sources. Weighting on the lower line 
may be traded off against resolution on the upper level. 

Introduction 

Gravity and magnetic data measured above the Earth’s surface contain information about 
the inaccessible structure within the Earth. Such observations, however, are often not made 
at a constant level; the geologic and topographic signals are then contaminated by the 
artificial effect of variable path height. This effect can be removed by continuation of the 
data to a level surface. Continuation is also done to amplify or attenuate certain wavelengths 
relative to others. 

A number of methods have been proposed for continuation from an irregular surface. I f  
the potential field shows a strong lineation, it can usually be assumed to obey the two- 
dimensional Laplace’s equation. For such cases, Parker & Klitgord (1972) demonstrate the 
use of the Schwarz-Christoffel transformation for continuation to a level line. Although it 
has seen successful application (e.g. Klitgord e l  al. 1975), the technique suffers from a 
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formal shortcoming, the evaluation of the Dirichlet integral. This requires continuous data 
on an infinitely long track; actual data, of course, can at best only approximate these 
conditions. Also, the use of the Schwarz-Christoffel mapping has no extension to the three- 
dimensional problem of continuing data from an irregular surface to  a level plane. Several 
other techniques have been suggested (Strakhov & Devitsyn 1965; Tsirul’skiy 1968; 
Dampney 1969; Henderson & Cordell 1971); all result in the construction of one potential 
function on a plane, compatible with the data. 

If a harmonic function is known everywhere on a regular surface, there is indeed a unique 
solution to the continuation problem (Kellogg 1953, p. 262); this is the fundamental result 
upon which all the usual methods are founded. In practice, a finite collection of approxi- 
mate numbers must serve as the data. Therefore, to apply the standard methods, the actual 
observations must be ‘completed’, that is, values must be supplied in the gaps either by 
explicit interpolation or implicitly in the numerical schemes (for example, if trapezium-rule 
integration is used, piece-wise linear interpolation is implied). There are of course infinitely 
many different ways of doing this, so that there are infinitely many different solutions. 
When the solution to the analytic problem (i.e. the one with complete data) is stable in the 
sense of Hadamard (Parker 1977a), the non-uniqueness is not very important because all 
these functions will be similar: their differences are bounded by an amount that depends 
only on the error in the interpolation. This result does not hold for unstable problems; 
wildly different solutions can then be associated with almost identical data. Downward 
continuation is well known to be unstable; in an appendix we show that even upward 
continuation is unstable if data are available only on a finite part of the surface. Therefore 
it is important to discover continuation methods that do not rely openly or in a hidden way 
upon data completion. 

For this purpose we turn to linear inverse theory, where stability is gained by choosing 
to  extract certain unique properties that all the solutions share. In particular, we apply the 
theory of Backus & Gilbert (1968), who construct smoothed versions of the solution. An 
earlier application to the continuation problem is given by Courtillot, Ducruix & Le Mouel 
(1973) for two-dimensional fields and by Ducruix, Le Mouel & Courtillot (1974) for three- 
dimensional ones. These authors find the smallest rms solution compatible with the data 
in the class of band-limited harmonic functions. While based upon some of the ideas of 
Backus & Gilbert, their treatment does not take full advantage of the concept of resolution 
and the way that this describes the degree of non-uniqueness. Furthermore, the assumption 
of band-limitedness of the solution is not only unnecessary, but also actually incorrect. 

In this paper we give a treatment that adheres more closely to the theory of Backus & 
Gilbert. We need no assumptions about the harmonic field beyond those made in the 
corresponding treatment for exact data. We construct fields that are smoothed versions of 
the true solution and the smoothing is prescribed in such a way that the field obtained is 
compatible with every one of the infinite number of possible solutions, including of course 
the true one. It is assumed the reader is familiar with the Backus-Gilbert method; in 
addition to the original paper, the discussions of Oldenburg (1976) and Parker (1977a) 
may be useful. 

First, the very straightforward problem of downward continuation in two dimensions 
is studied. Then the treatment is extended to three-dimensional fields, where a certain 
amount of ingenuity is required in the construction cf a suitable quantitative measure of 
delta-function quality. Finally we treat upward continuation but in detail only for two- 
dimensional fields. Somewhat surprisingly (to us anyway) upward continuation is in 
principle much harder to treat as a linear inverse problem. This is becahse the relationship 
between the observations and the model (the field above the observation stations) is not 
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Upward and downward continuation as inverse problems 173 

readily described as a continuous linear functional. Our efforts on this problem not only 
make it accessible to Backus-Gilbert theory, but to more recent sophisticated treatments 
(Backus 1970a, b;  Sabarier 1977a, b; Parker 1977b). 

In this paper we have only treated the case of exact data. The formalism for inaccurate 
data, however, is a straightforward extension (Backus & Gilbert 1970). 

Downward continuation: two-dimensional fields 

The downward continuation problem, viewed as a linear inverse problem, is a very simple 
example of Backus-Gilbert theory. We go through the application mainly to remind the 
reader of that theory. Also, as in the later cases, which are not so easy, the matrix elements 
arising in the theory can be found analytically. This is very important because, if they could 
be evaluated only by numerical quadrature, the numerical labour would become very great 
even with modest numbers of data. There is a certain degree of flexibility in the Backus- 
Gilbert theory in regard to a choice of criterion measuring the quality of a delta-function 
approximation; in the later examples we need to invent new criteria, and then a key factor in 
their formulation is the analytic evaluation of the matrix elements, which in this first 
problem seems so natural. 

Suppose a two-dimensional harmonic function u(x ,  z) is known everywhere on the line 
z = 0. If the sources of the field lie in the half space z G 0, then at a point (xi, zi) with 
zi > 0 

Z i  
u(x,  0)  dx 

m 71 [(x - X i ) *  + z ; ]  
K ( X i ,  Z i )  = 

.m 

= J Gj(x )u(x ,O)dx .  
- m  

To apply the Backus-Gilbert theory we take (1) to define a series of observations, 

K ( X ~ , Z ~ ) ,  i =  1 , 2 , .  ..,n, 

with K ( X ,  0) as an unknown function, the downward continued field at z = 0. We construct 
u“(xo), an estimate of the field at a fixed point (xo, 0), but this function is a smooth version 
of K ,  and the same 6 is obtained from every one of the possible solutions to (1). This is 
achieved by demanding that 

.m 

= 1 s”(x,xo)u(x,O)dx 
. - m  

where 

i =  1 

is the function that smooths u and which, by an appropriate choice of ai, approximates a 
true delta function 6 (x - x o ) .  The criterion we apply for optimization of is the quadratic 
criterion (Backus & Gilbert 1968; Parker 1977a); the solution at a fxed point xois given by 
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minimizing 
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.m 

S(x0) = 12 I [(x - xo)8(x, xo)]’ dx . - m  

1 
by varying {%I and A. The first term on the right is a quantitative measure of the resolution 
of the smoothing function 8 and gives the approximate width of the peak (if any) at xo; 
the second term is to ensure that 

.OD 

1 8(x, xo) dx = 1, 
- m  

a reasonable (and, for this criterion, essential) demand for an approximate delta function. 
At the minimum of S, 

as as 
aai ah 
-_-- - -0.  

Differentiating ( 2 )  with respect t o  ai and h gives 

~ ~ ) ~ d x t h = O ,  i =  1,2, ... 

These are n + 1 linear equations in the n t 1 unknowns {a i l ,  A. The analytic evaluation of 
the integrals in (3) is straightforward; in particular an application of Parseval’s theorem 
readily yields 

m 1- Gi(x)Gj(x)  (x - xo)2 dx 

- (zj + z i )  [(xi - x O )  (xi - x O )  +zjz j ]  +(xi  -xi) [z j (xo-xj )  -zj(xO-xj)l  - 
n [ ( Z j  t Z $ +  (Xj  -xi)’]  

Thus the matrix elements are quickly computable and coefficients ai are easily found by 
solution of the linear system. 

Numerical example of downward continuation 

As a simple example of downward continuation of a two-dimensional field we consider 
the gravity anomaly from a uniform, semi-infinite slab of material density p in the region 
0 Q x, --h G z Q 0 with h > 0. The gravitational field at (x, z )  with z 2 0 is 

z t h  
(4) 

This field was sampled on a constant level at eight points ( [ n  t M] h ,  3h) ,  n = -4 ,  -3,. . . , 
2 ,  3 (see Fig. 1) .  These data were then used to compute estimates of the field at several 
different levels below z = 3 h ,  and resolving widths were found for the estimates. Fig. 2 
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Upward and downward continuation as inverse problems 175 

x x x x  

Figure 1.  Geometry of example illustrating two-dimensional downward continuation. The crosses mark 
the observation points above the slab (shown shaded). The gravity anomaly is the continuous curve above 
the crosses. 

shows the true field values and the downward-continued approximations for xo>  0 (the 
curves are symmetric about xo= 0). As we expect, the downward-continued fields become 
more and more inaccurate as i, the distance below the observations, grows. 

Somewhat more interesting is the behaviour of the resolution functions (Fig. 3). We see 
the expected general deterioration of resolution as the attempted depth of continuation 
increases, and the rapid failure to give narrow functions outside the horizontal range of the 

..- 

i = 2.0h 

TRUE FIELO 
SOLUTION ESTIMATE 

- 
-___ 2 .o 

x,/h 
Figure 2. True field values and downward continued estimates at levels I. below the observation level 
shown in Fig. 1 .  
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I I I I 
1 2 3 4 

x,/h 
Figure 3. Resolution widths given by quadratic criterion for solution estimates at levels Z below the 
observation level. 

data. Less predictable is the very large oscillation in resolution at a level very close to that of 
the original observations; unless the estimate is made nearly directly below a data sample, 
the resolution may be very poor. We find that the continuation depth at w h c h  the 
resolution function is uniformly smallest (for x o  in the horizontal range of the data) is about 
0.5 h .  This result does not depend on the measured values of Ag at all and is unlikely to be 
much affected by the number of data, provided they are equally spaced h apart. 

Note that the true field (4) is not square-integrable, as apparently required in the 
Backus-Gilbert formulation. Nonetheless our results remain valid because the data kernels 
are all 0 ( x - ~ )  as Ix I -+ =. Therefore (1) is a bounded linear functional even for solutions that 
grow with x, provided the growth is 0 ( I x I ) .  

Three-dimensional downward continuation 

The continuation of three-dimensional potential field data down to a horizontal plane can 
also be treated as a Backus-Gilbert problem. This extension is not at all straightforward, 
and must be considered in detail. 

In place of (l),  the forward problem is now 
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Upward and downward continuation as inverse problems 177 

For convenience we will assume (xo, yo)  = (0, 0). There is no loss of generality, since a 
change of variables can always make this the case. We seek a criterion for choosing aj, which 
not only produces a good approximation to a two-dimensional delta function centred at 
(0, 0), but also gives an estimate of the resolving area associated with g. The use of the 
quadratic criterion above, suggests the criterion 

T =  3 n 2 J m  - m  J : m ( x 2 t y 2 ) 2 8 2 d x d y  

with 
m O  

s _ m J - m g ( x J ) d x d Y =  1. 

This measure has the dimensions of area; the normalizing factor of 3n2 is chosen to give a 
resolving area of nu2, when the measure is applied to a circular pillbox of radius a and unit 
volume, centred at (0,O). From ( 5 )  and ( 6 )  

Normally, we would expect to evaluate T by interchanging the order of integration and 
summation. The individual integrals that would result within the double sum, however, are 
divergent; the interchange is invalid without a further constraint in the aj, to ensure the 
existence of (7). 

Assume there is a set of aj, such that (7) exists. We may then apply the two-dimensional 
power theorem to (7) followed by conversion to polar coordinates: 

where 

R j  = xi2 + y/ - z j2 ,  Oj = x i  cos 8 + y j  sin 8.  

Let us temporarily consider a similar integral: 

T' = 3n2 1:" ( f aj [(R~ - 2iz j0 j )  exp [- 2nr(zj + ioj)l 

[exp [- 2nr(zj + ioj)] - exp ( -2nrz")~ 

0 j = 1  

I) Z .  
t 

2nr 

(Yk (Rk t 2iZkok) exp [-2nr(zk - i o k ) ]  xEl [ 
z k  t - [exp [- 2nr(zk - i o k ) ]  - exp 

2 nr 
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with 2 any positive number. For T' ,  we may interchange the order of integration and 
summation; with this operation safely performed, we force T'  to equal T by imposing the 
auxiliary condition 

S.  P. Huestis and R.  L. Parker 

f ajzj = 0. 
j =  1 

The delta approximation is determined by minimizing 

where h and /J are Lagrange multipliers; the resolving area is given by the value of T'. 
Minimization yields 

which forms a system of n + 2 linear equation in the n + 2 unknowns {ail, A, /J. The Ijk are 
the individual integrals resulting from the interchange of the order of summation and 
integration. Each can be evaluated analytically; since the algebra is tedious, we only give the 
results in Appendix A. 

The value of ? must be positive but is otherwise arbitrary. Numerical experiments 
indicate, however, that its choice affects the stability of the matrix inversion. The condition 
number appears to be a minimum when? is near the average value of z j .  

Finally, this delta criterion places a demand on the data not encountered during two- 
dimensional continuation: the method fails if all the zi are equal. In this case (9b) and (9c) 
are incompatible and the matrix becomes singular. If such a situation arose, we would be 
forced 'to choose a different criterion, sacrificing the convenient measure of resolving area 
and, perhaps, computational ease. 

We have applied the formalism to an example of map joining for overlapping aero- 
magnetic surveys run at two different altitudes. For the sake of brevity we do  not present 
results here, since the main features of the results are present in the two-dimensional 
problem. 

Two-dimensional upward continuation 

We now consider the problem of determining solution estimates on a level surface every- 
where above a finite number of observations of a two-dimensional potential field; again, 
the sources are assumed to lie below the measurements. To apply the Backus-Gilbert 
formulation, we might seek an expression similar to (1) for the forward problem. Unfortu- 
nately the relation between each datum and the model is now an unbounded linear 
functional, the downward continuation operator; this cannot be expressed as an ordinary 
integral. One way to avoid the difficulty is to invoke a quelling (Backus 1970b), which 
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SOURCE REGION 

Figure 4. Geometry for two-dimensional upward continuation. Note in this case distances have been 
scaled to make the separation of the two enclosing levels equal t o  n. 

simultaneously reduces the unbounded data functional and the desired delta-function kernel 
to more tractable, bounded forms. This is achieved most readily by convolution with a 
sufficiently smooth function: for example a Gaussian filter or perhaps a band-limited 
function. The key criterion is super-exponential decay in the wavenumber domain. Gaussian 
smoothing is presaged remarkably in the early work of Bullard & Cooper (1948); band- 
limited functions arose in the study of Courtillot et al. (1 973), but not quite in the role they 
have here. 

We put forward a different approach, in which use is made of the commonly valid 
condition that the points where data are available lie entirely in a source-free region. This 
enables us to apply stronger constraints than those available with quelling, because more 
information about the system has been used. Also, in the simple geometry we have studied, 
close-form expressions could be obtained for the matrix elements. It is probable, however, 
that in three-dimensional systems the quelling approach may provide a numerically more 
attractive procedure; this has not yet been assessed. 

We proceed with an example, shown in Fig. 4. Here, the measurements of a potential 
field, U(X, z), are made between the source region and the level on which we will construct 
solution estimates. Assume a horizontal line, z = 0, can be passed between the sources and 
the lowest observation. For convenience, we normalize all lengths so that the upper level is 
z = n .  Between these levels, the field is harmonic; the data are solutions of Dirichlet 
boundary value problems if the field is known everywhere on z = 0 and z = IT. 

That is 

where c consists of z = 0 traversed from -00 to 00, and z = IT traversed from 00 to -00.  The 
value of the potential on c is u(c); v is the unit outward normal to c; and ri is the jth Green's 
function for the interior of c,  given by 

ch (X - ~ j )  - cos (Z  - ~ j )  
q (x ,  z )  = -In 

ch (X - ~ j )  - cos ( Z  + zj) 

where ch is the hyperbolic cosine. Equation (10) is similar to ( l ) ,  where u(c) is the unknown 
solution, except that the simple interval is replaced by an integration around c. We can 
apply the Backus-Gilbert method to this problem, but now the delta approximations are 
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functions defined on c; the solution estimates will be weighted averages not only of the field 
on the upper level, but also of that on the lower level. 

S. P. Huestis and R.  L. Parker 

We write (10) as 
m 

u(xj,zj)= f u(x, . - m  

sin zi 

m 

m 

dx 
2n[ch(x - Xj) - cos Zj] 

sin zi rm 

= J u(x, n) dx. 
-00 2n [ch(x - xj) + cos zj] 

The data kernels are functions defined on c :  

q x ,  z) = 

sin zj 
; z = o  

2n ch(x - xj) - cos zj  

sin zj 
; z = n .  

2n ch(x - xj) + cos zj 

We have not yet made a statement that we are performing upward continuation, (that is, 
continuation away from the sources). Without further restriction, our formalism allows 
sources not only below z = 0, but also above z = n. We impose this restriction by defining 
a new set of data kernels on c, corresponding to upward continuation from the lower level. 

. z = o  zj 

n (x - Xj)2 + z; ' 
G(x) = 

I O ;  z = IT. 

Then, 

u(x,, zj) = ~ ( c ) G j  dc f 
4;, 

and 

U(Xj, Z j )  = u ( c ) G  dc, j = 1 , 2  ,..., n. 

Each observation, u(xj, zj), corresponds to two data, associated with kernels Gj and c j .  The 
addition of data kernels which are zero on the upper level helps us suppress the averaging of 
the field on z = 0. In effect, we will construct better delta approximations because we have 
restricted the class of admissible solutions to those harmonic everywhere above z = 0, a 
restriction not implied in (1 2). 

u"(xo, n) = J 
where 

The solution estimate at (xo, n) is 

8(x, n)u(x, n)dx + 
.m .m 

F(x, O)u(x, 0) dx 
_ m  - m  

n 

j =  I 
q x ,  n) = 1 aj(xo)Gj(x; n) 
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and 
n n 

j =  1 i= 1 
q x ,  0) = 1 aj(xo)Gj(x; 0) + 1 cTj(X0)qx; 0). 

The delta approximation should be peaked at x o  on the upper level, with as little energy 

For notationalconvenience,let ~ i i G i + . , ~ i i , a j + . , X i ~ ~ i + ~ , a n d z j ~ Z i + ~ .  
We then minimize 

as possible on the lower level. 

m 2n 2 

~ ( x o ) =  12 I _ m ( x - x o ) 2 [  i= 1 1 aj (xo)c / (x;n) ]  dx 

we take our resolving width estimate to be the first term on the right. 
The free constant K weights the contribution to R from the power in 8 on the lower 

level. We may choose any K 2 0. For K = 0, however, the minimum value of R is zero, 
with ai = 0 , j  = 1 , 2 , .  . . , n .  That is, 

2n 
F = x aj (xo)Gi(x;z )  

j G  1 

and hence is non-zero only on z = 0 :  we are then back to the problem of downward 
continuation. As K increases, we discriminate more strongly against any averaging on the 
lower level; the energy of the delta approximation becomes more concentrated on z = n, 
but only at the expense of a growing value of R .  Generally, K should be chosen as large as 
possible, while retaining acceptable resolution on z = n. As the minimum of R ,  

aR 2n 

aaj k = l  

- _  (x  - x d 2 [  1 ak(xo)Gk(x;n)]  . Gi(x; n) dx 

aR 2n 
- = 1 CYj(X0) - 1 = 0, ax i = l  

giving 2n t 1 linear equations to be solved for {ail, A .  All the integrals which will appear in 
(13 )  can be performed analytically (Appendix B). 

In the principle, to obtain the best possible resolution on the upper level, the lower level 
of c should drape the top of the source region. We are then being as restrictive as possible 
about the class of admissible solutions; in the geometry of Fig. 4, we would rule out 
functions harmonic between z = 0 and z = n, but possessing singularities above the sources. 
This improved resolution, however, is gained by sacrificing the simplicity of the Green's 
function ( 1  1) and the ease of performing the necessary integrations. In certain circumstances 
this is inevitable, as when some observations occur in valleys. 

The problem of three-dimensional upward continuation can be approached in a similar 
fashion. The added complication of dealing with divergent integrals will again arise; little 
would be gained by carrying out the unwieldy formalism here. 
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Numerical example of upward continuation 

The data used in the first example were continued to  several lines above the observations; 
we now denote by Z the height of such a line above the data level. The lower boundary of c 
naturally coincides with the top of the slab. In this example we have taken h = 1. Fig. 5 
shows the effect of varying K in (1 3), for an arbitrarily chosen point, with Z = 0.5: xo= 0.5, 
zo = 3.5. For very small K ,  the resolving width apparently approaches zero, but this is due to 
6 having little energy on z = 3.5. The solution estimates are then effectively averages of the 
field on z = 0 only. As K increases, there is more discrimination against energy on z = 0; the 
power in 6 on this level then decreases. This is done with a sacrifice in resolution on z = 3.5, 
but the solution estimates more closely agree with the true values. Because similar behaviour 
was seen at other points, a value of K = 10 would appear to be a good compromise between 
resolution and the amount of averaging on z = 0. 

Results for values of Z ranging from 0.1 to  2.0 showed trends in keeping with those for 
downward continuation of the same data. Resolution deteriorates as Z increases, but is also 
poor for small Z ,  except near sample points. Again, the height at which resolution is 
uniformly best is about Z = 0.5. In general, for values of x o  within the horizontal range of 
the samples, the accuracy of solution estimates tends to improve as 2 increases from 0.1 to 
2.0; for x sufficiently close to the horizontal position of a sample, however, there is an initial 
degradation of accuracy as Z increases. i f  Z has been increased beyond 2.0, we would expect 

1 0 0 , o  lo-‘ 

-power on Lower Boundary 

- -Resolving Width 

-.-Solution Eatimote Error 

10- lo” I\ - 

_ _ _ - - - -  I \  

Parameter K 

Figure 5. Effect of varying the free parameter K on various measures of solution quality at the point 
(0.5. 3.5). The power on the lower boundary gives the integral of the square of 6 over the entire lower 
line, and should of course be as small as possible. Solution estimate error is the difference between the 
true field at the point and that estimated by linear combinations of thedata; like the resolving width this 
too should be made small. 
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Upward and downward continuation as inverse problems 183 

the accuracy of our predictions eventually to begin to suffer again, as the width of data 
kernels becomes much larger than the horizontal extent of the samples. 

Conclusions 

We have shown that upward and downward continuation of harmonic functions can be 
treated as inverse problems. While it is well known that downward continuation is unstable 
and must be regularized in some way, we have shown that upward continuation from data 
on a finite surface is also poorly posed. Therefore it is important in both cases to develop 
methods that allow one to assess uncertainties. In this paper we have used the Backus- 
Gilbert concept of resolution to provide the measure of ambiguity. Within the great 
flexibility of the Backus-Gilbert formalism, we have found procedures that permit the 
matrix elements to be expressed in closed form so that the very great cost of numerical 
evaluation of each element is circumvented. This makes the proposed methods practicable 
for data sets of moderate size, say several hundreds of data. 
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Appendix A: analytic expression for J k  (equation (9a)) 

We express each Ijk in (9a) as 

S. P. Huestis and R. L. Parker 

Jk=Ajk+Bjk+qk+Djk  

and evaluate each term separately. 
Define 

R = X j - X k  

y =)) -yk 

2 = zi + z k  

r .  = (x? + y?)”? 
1 1 1  

f = (%2 +. j j 2  + 22)1/2  

Then 

where 

P - z  
P = -  

y t iR 

and 

where 

- ( z j + , ? )  tdr; t ( z j  t2)’  
yj  t ixj 

and 4 i s  given b y  ( A l ) ,  with p = pi. 

P j  = 
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For xi = yi = 0, 

185 

zfzk 
Cik = 2n(q t z") . 
Similarly, when xk # 0 or yk # 0 

Further algebraic reduction would demonstrate that all of these terms are, in fact, real. 

Appendix B: analytic expressions for the integrals of equation (13) 

To evaluate (13), we must perfom several types of integrals; all  can be expressed in closed 
form. 

The second term on the right side of (13) factors into three types of integrals, which we 
consider in turn. 

Case 1 : k G n; j 4 n: 
sin zi sin zk JW - m  477' [ch(x - Xi) - COS Zi] [ch(x - Xk) - COS zk] ' 

Letting y = ex, this becomes 
sin zi sin zk y dy 

IT' [e-"iy' - 2y cos zi + ex/] [e-xky2 - 2y cos zk t exk] 

t (xk - xi) sin zi sin zk] t 2(exi cos zi - exk cos zk) [(n - zi) sin zk exi 

- (n - zk) sin zi exk]} 
where 

D = 4 exi + X k  [exk cos zk - exi cos zi] [exi cos zk - exk cos zi] t (eZXk - eZXi). 

When j = k, (Bl) reduces to 
1 
- [ l  -(n-zj)cotzj] .  
2n2 

Case 2: k G n; j > n: 

zi sin zk dx m 

1 - w  2n' [ c ~ ( x  - Xk) - COS Zk] [(X - Xi)' t Zf] ' 
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of a form given by ErdClyi (1954, p. 15, transform 9). 

S. P. Huestis and R. L. Parker 
With an application of Parseval’s theorem, this integral can be reduced to two integrals 

The result is 

where ri, is the digamma function (Abramowitz & Stegun 1965, Ch. 6 ) .  I f j  = k ,  this reduces 
to  

where y is Euler’s constant. 
For k > n ;  j G n the same integral occurs with the subscripts reversed. 

Case 3: k > n ;  j > n :  
ZjZk dx 1- - 00 n2 [(x - xi)’ + zf] [(x - Xk)’ + z i ]  

which is evaluated by residues to give 

zj + zk 

n [(xk - + (zj + Zk)’] ’ 

The first term on the right of (13) is 

(x - dx 1- -- [ch(x - X j )  + COS Zj] [ch(x - Xk)  + COS Zk] ’ 

Lettingy = e.y-xo we get 

4Y (In Y )2 dY 
- 6 .  2 

[e ~y + 2y cos zj + e’i] [e-6k y2 + 2y cos zk + e6k] 

where 6j  = xj - xo. This is evaluated by residues using standard techniques for powers of 
logarithms. If i # j ,  the result is 

Y dY 
+ 2y cos zj e6i + 2 e6i] [y2  + 2y cos zk e6k + eZ6k] 

where 

(cot zj  + i) [ ( & j  + izj + in)2(6j + izj - 2in)] 
R1= 3 [edk+bk _,6j+i~j][~6k-iZk - e6 j + izj] 
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Upward and downward continuation as inverse problems 
and 

R 4  = 

The integral in the above expression is evaluated as (Bl ) .  I f j =  k ,  the result is 

- (cot z k  - i) [ ( 6 k  - izk t in)’(6k - i zk  - 2in)] 
3 [c6j+ izj - e6 k - izk e6j - izj - e6 k - izk 

’ 

I [  1 
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(277 t zj t is j )  

Appendix C: stability of upward continuation 

Assume a two-dimensional harmonic function is known everywhere on a line y = f ( x ) ,  
where f is continuous on the interval -00  < x < 00; the sources lie below y .  The upward 
continuation of this data to a point on a line above f ( x )  is equivalent to solving a Dirichlet 
boundary value problem, an integral over y = f ( x ) .  Integration, and hence this upward 
continuation, are mathematically stable processes: the solution depends continuously on the 
data (Parker 1977a). 

As soon as we relax the condition that the field is known everywhere on y = f ( x ) ,  we lose 
this stability. Assume now we only know the field over a finite segment of y .  This in- 
formation still defines the field at the upper level uniquely, but no longer as the solution of a 
boundary value problem. Instead, we now must perform analytic continuation, an unstable 
process. 

As an example, consider the case where we know the value of a harmonic function 
@(x, z )  everywhere on a line segment (Ix I < a; z = 0). We analytically continue this function 
to the entire z = 0 line, then continue up to a level z = h with the Dirichlet integral: 

Now consider a slightly different data set: let 

Here y > 0, b > a and A is arbitrary. This function is also analytically continued to the 
entire z = 0 line, then upward continued to z = h .  Hence, 
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and 

S. P. Huestis and R.  L. Parker 

A@(x, 0) = &x9 0) - $(x, 0) 

Under the uniform norm, 

lim Il A@(x, 0) II = 0 
Y - r O  

while 

lim II A$(x, h )  II = A/h .  
y - 0  

Thus, the solution @(x, h )  does not depend continuously on the data; arbitrarily small 
perturbations to the data can give rise to arbitrarily large perturbations in the solution. 

Mathematical instability is normally dealt with by applying some type of smoothness 
criterion to the solution (for example, the filtering used during conventional downward 
continuation). Indeed, our use of the boundary C in the upward continuation problem is 
such a criterion, since it forces all sources to be below a specified level. In the example 
above, the limiting process of letting y approach zero would violate this demand. 
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