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Abstract 

Reaction of the uranium(III) tris(anilide) complex (THF)U(N[t-Bu]Ar)3 (1, THF = tetrahydrofuran; Ar = 3,5-

Me2C6H3) with MN3 (M = Na, [N(n-Bu)4]) results in the formation of the bimetallic diuranium(IV/IV) 

complexes M[(μ-N)(U(N[t-Bu]Ar)3)2] (M[3]), which feature a single nitride ligand engaged as a linear, 

symmetric bridge between two uranium centers. The stability of the U═N═U core across multiple charge 

states is illustrated by stepwise chemical oxidation of Na[3] to the diuranium(IV/V) complex (μ-N)(U(N[t-

Bu]Ar)3)2 (3) and the diuranium(V/V) complex [(μ-N)(U(N[t-Bu]Ar)3)2][B(Ar
F
)4] {[3][B(Ar

F
)4]; Ar

F
 = 3,5-

(CF3)2C6H3}. M[3], 3, and [3][B(Ar
F
)4] were characterized by NMR spectroscopy, single-crystal X-ray 

diffraction, and elemental analysis. The cyclic voltammogram of 3 reveals two clean, reversible one-electron 

electrochemical events at E1/2 = −1.69 and −0.67 V, assigned to the [3]
−
/3 and 3/[3]

+
 redox couples, 

respectively. The X-ray crystal structures of [N(n-Bu)4][3],3, and [3][B(Ar
F
)4] reveal a linear U═N═U core 

that contracts by only 0.03 Å across the [3]
n
(n = −1, 0, +1) series, an effect that is rationalized as being 

primarily electrostatic in origin. [3][B(Ar
F
)4] reacts with NaCN, eliminating Na[B(Ar

F
)4] and forming the 

known diuranium(IV/IV) cyanoimide complex (μ-NCN)(U(N[t-Bu]Ar)3)2, suggesting that the U═N═U core 

has metallonitrene-like character. 

 

Introduction 

Uranium nitrides have been identified as worthy candidates for N-atom transfer reactions and aziridination of 

small molecules, and their potential use in catalytic cycles and as advanced nuclear fuels has been noted.
1
 To 

date, only a handful of uranium nitride complexes have been reported, most of which are polymetallic nitride 

clusters derived from dinitrogen or azide activation
2
 and binary and ternary nitrides generated and observed 

under matrix-isolation conditions.
3
 Beyond uranium nitrides, assessing the degree of covalency and mixing of 

5f and 6d orbitals in actinide−ligand bonding continues to be an active area of research
4
 and has been recently 

extended to multiply bonded uranium imido complexes shown to accommodate multiple formal oxidation 

states at uranium.
5
 

We recently reported on the reaction of (THF)U(N[t-Bu]Ar)3 (1, THF = tetrahydrofuran; Ar = 3,5-Me2C6H3) 

with [N(n-Bu)4][B(N3)(C6F5)3], which directly furnishes the monometallic uranium(V) nitridoborate complex 

[N(n-Bu)4][(C6F5)3B−N≡U(N[t-Bu]Ar)3] ([N(n-Bu)4][2]) and provides access to the neutral uranium(VI) 

nitridoborate derivative (C6F5)3B−N≡U(N[t-Bu]Ar)3 (2) by one-electron oxidation of [N(n-Bu)4][2].
6
 In the 

synthesis of [N(n-Bu)4][2], the tris(pentafluorophenyl)boron fragment serves the role of protecting group by 

preventing the formation of polymetallic μ-nitrido products, thus facilitating isolation of the first examples of 

molecular monometallic uranium nitrides. Herein, we report on complexes derived from the action of 

unprotected azide ion on 1, a series of bimetallic uranium nitride complexes possessing a linear U═N═U core 

that is stable across several charge states. 
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Treatment of a purple-black solution of 1 in THF with NaN3 (0.5 equiv) resulted in a gradual color change to 

red-brown over 12 h. A rust-brown powder was isolated in 70% yield following workup. The 

paramagnetically broadened 
1
H NMR spectrum, solution magnetic susceptibility (μeff = 3.23 μB, 20 °C, THF-

d8), and combustion analysis of the isolated material were consistent with the formation of the bimetallic 

diuranium(IV/IV) complex Na[(μ-N)(U(N[t-Bu]Ar)3)2] (Na[3]). Similarly, treatment of 1 with [N(n-Bu)4][N3] 

(0.5 equiv) in thawing THF provided [N(n-Bu)4][3] (μeff = 3.22 μB, 20 °C, THF-d8) in 79% yield. 

With a formal 5f
2
 electron count for each uranium(IV) center in the bimetallic [3]

−
 ion, the possibility for rich 

redox chemistry was realized (Scheme 1). Indeed, addition of AgOTf (1 equiv) to a solution of Na[3] in THF 

resulted in formation of the neutral diuranium(IV/V) complex (μ-N)[U(N[t-Bu]Ar)3]2 (3; μeff = 3.85 μB, 20 °C, 

chloroform-d), which was isolated as a brown powder in 70% yield by precipitating and filtering off the 

product following removal of precipitated Ag
0
and separation from NaOTf. Furthermore, 3 reacted with 

[Cp2Fe][B(Ar
F
)4] [Ar

F
 = 3,5-(CF3)2C6H3] in Et2O to form the cationic diuranium(V/V) complex [(μ-N)(U(N[t-

Bu]Ar)3)2][B(Ar
F
)4] ([3][B(Ar

F
)4]; μeff = 2.86 μB, 20 °C, chloroform-d), which was separated from the 

ferrocene coproduct by precipitation and isolated in 93% yield by filtration. The electrochemical potentials 

relating [3]
−
, 3, and [3]

+
 were measured via cyclic voltammetry using a solution of 3in THF. Two reversible 

electrochemical events at E1/2 = −1.69 and −0.64 V (vs [Cp2Fe]
0/+

) were observed and assigned to the [3]
−
/3 

and 3/[3]
+
 couples, respectively (Figure 1). The large separation between the [3]

−
/3 and 3/[3]

+
 couples (|ΔE1/2| 

= 1.05 V) corresponds to an equilibrium constant Kc ≈ 5.6 × 10
17

 for the comproportionation of [3]
−
 and [3]

+
, 

suggesting strong electronic communication between the uranium centers.
7
 A third electrochemical event 

observed at potentials above 0 V was not fully reversible at sweep rates as fast as 1000 mV s
−1

 and may be 

due to formation of an unstable [3]
2+

 species. 

 

 

Figure 1. Cyclic voltammogram of 3 in THF (200 mV s
−1

 sweep rate, 0.1 M [N(n-Bu)4][B(C6F5)4] 

supporting electrolyte) showing the two one-electron redox couples that interconvert [3]
n
 (n = −1, 0, +1). 
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Scheme 1. 

 

The solid-state structures of [N(n-Bu)4][3], 3 (Figure 2), and [3][B(Ar
F
)4] were determined by single-crystal 

X-ray diffraction, providing a rare opportunity to compare structural parameters of a U−N multiple bond over 

three charge states. Key metrical parameters describing the structures of [3]
n
 (n = −1, 0, +1) are summarized in 

Table 1. In all cases, each uranium center is coordinated in a trigonal pseudo-C3 fashion by three anilide 

ligands and occupies a terminus of a linear U═N═U bridge. Successive one-electron oxidation of the U═N═U 

core results in a decrease of the U−Nnitride distance across a range of 0.03 Å, while the average U−N[t-Bu]Ar 

distance decreases across a comparably larger range of 0.12 Å. The observed contraction of the U═N═U 

core upon oxidation is likely primarily electrostatic in origin, where the removal of metal-based nonbonding 

electrons results in an increasingly electron-deficient U═N═U core. This structural dependence on charge is 

reminiscent of that displayed by penta- and hexavalent uranyl complexes, where the very covalent multiple 

bonds along the O═U═O axis are less responsive to the charge state than are the more ionic bonds in the 

molecular equator.
8
 The U−Nnitride distances of the [3]

n
 series fall in a range that is 0.1 Å longer than typical 

U−N distances observed in uranium imido complexes and are similar to those found in the octanuclear mixed 
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azide/nitride clusters [(C5Me4R)2U(μ-N)(C5Me4R)U(μ-N3)]4 (R = H, Me) reported by Evans and co-workers2c 

(see Table S.2 in the Supporting Information for a more detailed comparison of relevant bond metrics). 

 

 

Figure 2. ORTEP rendering of 3 with ellipsoids displayed at 50% probability; hydrogen atoms and one 

molecule of cocrystallized Et2O have been omitted for clarity. 

 

Table 1. Internuclear Distances (Å) and Angles (deg) for [(μ-N)(U(N[t-Bu]Ar)3)2]
n
 (n = −1, 0, +1) 

  [N(n-Bu)4][3] 3 [3][B(Ar
F
)4] 

U−N 2.080(4) 2.0625(2) 2.0470(3) 

  2.077(4)   2.0511(3) 

U−N[t-Bu]Ar (avg) 2.323 2.243 2.191 

U−N−U 175.1(2) 180 180 

 

Treatment of [3][B(Ar
F
)4] in THF with NaCN results in elimination of Na[B(Ar

F
)4] and formation of the 

known diuranium(IV/IV) cyanoimide complex (μ-NCN)(U(N[t-Bu]Ar)3)2 (4), which by this new reaction was 

isolated in 60% yield (Scheme 2). Prior to its synthesis from NaCN and [3][B(Ar
F

4)], 4 had been prepared 

from 1 and a cyanonitrene (N≡C−N) group transfer reagent.
9
 Here, cyanide serves as a two-electron reducing 

agent, converting two uranium(V) centers to uranium(IV) while inserting into the nitride bridge. This is 

similar to a reaction reported by Meyer and co-workers
10

 wherein a monometallic uranium(V) imido complex 

[(L)U(NSiMe3)] reacts with methyl isocyanide to form Si2Me6 and the uranium(IV) carbodiimide derivative 

[(L)U(NCNMe)]. More generally, Scheme 2 relates to the known reactivity of certain electrophilic metal 

nitride complexes toward reducing Lewis bases such as phosphines or carbon monoxide, yielding 



Page 5 of 7 

phosphiniminato or isocyanate derivatives, respectively,
11

 and shows as well that the U═N═U core of [3]
+
 

behaves as a masked metallonitrene.
12

 

 

 

Scheme 2. 

 

The complexes reported here provide insight into the structural and electrochemical characteristics of uranium 

nitrides. Insertion of cyanide into the U═N═U core of [3][B(Ar
F
)4] shows that the reaction chemistry of 

uranium nitrides extends beyond simple outer-sphere redox processes. This, along with the high polarity 

expected of a terminal uranium−nitride bond (U
δ+

−N
δ−

) and the oxidizing nature of uranium in its higher 

oxidation states, intimates that a high-valent terminal uranium nitride would have the capacity to engage in 

bond-forming reactions at the nitride ligand via multiple mechanistic pathways. Further developments 

stemming from this system of uranium nitrides may be anticipated, especially regarding reactions that result in 

heterolytic fragmentation of the U═N═U core. 
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