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Abstract 3D urban maps with semantic labels and metric

information are not only essential for the next generation

robots such autonomous vehicles and city drones, but also

help to visualize and augment local environment in mobile

user applications. The machine vision challenge is to gen-

erate accurate urban maps from existing data with minimal

manual annotation. In this work, we propose a novel method-

ology that takes GPS registered LiDAR (Light Detection

And Ranging) point clouds and street view images as inputs

and creates semantic labels for the 3D points clouds using

a hybrid of rule-based parsing and learning-based labelling

that combine point cloud and photometric features. The

rule-based parsing boosts segmentation of simple and large

structures such as street surfaces and building facades that

span almost 75% of the point cloud data. For more com-

plex structures, such as cars, trees and pedestrians, we adopt

boosted decision trees that exploit both structure (LiDAR)

and photometric (street view) features. We provide qualita-

tive examples of our methodology in 3D visualization where

we construct parametric graphical models from labelled data

and in 2D image segmentation where 3D labels are back

projected to the street view images. In quantitative evalua-

tion we report classification accuracy and computing times
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and compare results to competing methods with three popu-

lar databases: NAVTEQ True, Paris-Rue-Madame and TLS

(terrestrial laser scanned) Velodyne.

Keywords Urban 3D · Point cloud · LiDAR · Street view ·

Semantic segmentation · Robotics

1 Introduction

3D urban map model is a digital representation of the earths

surface at city locations consisting of terrestrial objects such

as buildings, trees, vegetation and manmade objects belong-

ing to the city area. 3D maps are useful in different applica-

tions such as architecture and civil engineering, virtual and

augmented reality, and modern robotics (autonomous cars

and city drones). Creating photorealistic and accurate 3D

urban maps requires high volume and expensive data col-

lection. For example, Google and Nokia HERE have cars

mounted with cameras and Light Detection And Ranging

(LiDAR) scanners to capture 3D point cloud and street view

data along streets throughout the world. While laser scanning

or LiDAR systems provide a readily available solution for

capturing spatial data in a fast, efficient and highly accurate

way, the semantic labelling of data would require enormous

man power if done manually. Therefore, the problem of

automatic labelling (parsing) of 3D urban data to associate

each 3D point with a semantic class label (such as “car”,

“tree”) has gained momentum in the computer vision com-

munity [11,17,24,42].

Automatic segmentation and labelling of urban point

cloud data is challenging due to a number of data specific

challenges. First, high-end laser scanning devices output mil-

lions of data points per second, and therefore the methods

need to be efficient to cope with the sheer volume of the
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urban scene datasets. Second, point cloud sub-regions corre-

sponding to individual objects are imbalanced, varying from

sparse representations of distant objects to dense clouds of

nearby objects, and incomplete (only one side of objects is

scanned by LiDAR). Third, for accurate object recognition

a sufficiently large labelled training data (ground truth) are

needed to train the best supervised methods.

In this work, we tackle the efficiency issue by propos-

ing a hybrid method which consists of following three steps:

First, certain simple but frequently occurring structures, such

as building facades and ground surface, are quickly seg-

mented by rule-based methods. The rule-based method can

typically label 70–80% of the point cloud data and rule-

based methods are more than 6× faster than the otherwise

efficient boosted decision trees [17]. Second, the remain-

ing points are processed with our fast supervised classifier.

To construct high-quality features for our classifier, we first

over-segment the points to 3D voxels which are further joined

into super-voxels from which structure features are extracted.

Moreover, as the 3D points are aligned with street view

images we also extract photometric features. Our classifier

of choice is a boosted decision tree classifier which is trained

to label the remaining points using the super-voxel features.

Third, We solve the problem of incomplete data by utilizing

parametric 3D templates of certain classes (cars, trees and

pedestrians) and fit them to the boosted decision tree labelled

super-voxel point clouds. The final step also improves the

visual quality of the semantic 3D models output from our

processing pipeline, especially for those sparse and incom-

plete point clouds corresponding to small objects. Another

application of our method is semantic segmentation of street

view images which is achieved by backprojecting the seman-

tic labels of the point cloud points to the corresponding street

view images. Figure 1 depicts the overall workflow of our

method. We provide qualitative examples of 3D visualiza-

tion and 2D segmentation and in quantitative experiments

we report and compare our segmentation accuracy and com-

puting time to previous works. This work is based on the

preliminary results in [2,3], but provides a significant exten-

sion since it contains experimental results on three publicly

available datasets, comparison to other recent works, refined

processing steps and an extensive ablation study over the

method parameters.

Contributions Preliminary results on components of our pro-

cessing pipeline have been reported in [2,3], and in this work

we make the following novel contributions:

– We have demonstrated a complete urban map data pro-

cessing pipeline, which annotate all 3D LiDAR points

with semantic labels. Our method is made efficient by

combining fast rule-based processing for building and

street surface segmentation and super-voxel-based fea-

ture extraction and classification for remaining map

elements (cars, pedestrians, trees and traffic signs).

– We propose two back ends for semantically labelled

urban 3D map data that exemplify two important appli-

cations: (i) 3D urban map visualization and (ii) semantic

segmentation of 2D street view images by backprojection

of the 3D labels.

– Parameters of the different processing stages have clear

physical and intuitive meaning, and therefore they are

easy to set for novel data or optimize by cross-validation

over certain ranges. We have made extensive experiments

on larger datasets, and moreover, optimal parameter

settings are cross-validated against labelled datasets.

Experimental results verify superior accuracy and effi-

ciency of our method as compared to the existing works

on three difficult datasets.

As such we provide full processing pipeline from 3D

LiDAR point cloud and street view image data (cf. Google

Maps and Nokia HERE) to urban 3D map data visualiza-

tion and to 2D semantic segmentation. All parameters have

physical meaning, and the system automatically adapts to the

dataset size.

2 Related work

3D segmentation and labelling (classification) using image

and point cloud data of urban environments have many

potential applications in augmented reality and robotics and

therefore research on these topics has gained momentum dur-

ing the last few years. In the following, we briefly mention

the most important 2D approaches, but focus on 3D point

cloud methods and methods particularly tailored for urban

3D processing. Several important surveys have been recently

published where more details of specific approaches can be

found [26,27,37].

Image-based methods Due to the lack of affordable and high-

quality 3D sensors until the introduction of Kinect in 2010 the

vast majority of the works is still based on 2D (RGB) image

processing. Progress in 2D over the years has been remark-

able and for 2D object classification and detection there have

been several breakthrough methodologies [23,45], in partic-

ular, the visual Bag-of-Words (BoW) [6,35], Scale Invariant

Feature Transform (SIFT) [46] and the Deformable Part

Model (DPM) [9]. Recently, these methods have been super-

seded by methods using deep convolutional neural networks,

e.g. AlexNet [19] and R-CNN [10]. Direct applicability of

these methods is unclear since the datasets used in training

contain objects in various non-urban environments (Ima-

geNet, Pascal VOC) and sources of detection failures may

therefore be different. The deep neural network methods also

require large annotated datasets. Moreover, mapping the 2D
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Fig. 1 The overall workflow of

the proposed methodology

bounding boxes to 3D point cloud object boundaries is not

trivial. To summarize, state-of-the-art 2D methods provide a

potential research direction as combined with state-of-the-art

3D methods, but in this work we focus on methods particu-

larly developed for urban 3D map data segmentation.

Point cloud-based methods The success of local descriptors

in 2D has inspired to develop 3D local descriptors for point

cloud data, e.g. 3D SURF (speeded up robust features) [18]

and 3D HOG (histogram of oriented gradients) and DoG

(difference of Gaussians) [43], and their comparison can be

found from the two recent surveys [13,14]. These meth-

ods and also many direct point cloud-based methods, e.g.

[4,15,28], are designed to recognize a specific object stored

as a point cloud model, and therefore practical use of these

methods for urban 3D often requires various geometric fea-

tures to robustify matching [38].

Urban 3D segmentation Most of the existing city modelling

approaches directly or indirectly tackle the problem through

3D point cloud analysis. Lafarge and Mallet [20] applied a

Markov Random Field (MRF) -based on optimization tech-

nique, using the graph-cut framework for object detection

using airborne laser scanner (ALS) data. In this work, we omit

3D data generated by airborne devices (see, e.g. [12,20]) and

assume that the 3D map data have been collected via terres-

trial and mobile laser scanning—this kind of data is available,

for example, in Google Maps and Nokia HERE maps where

the 3D data are mobile laser scanner (MLS) LiDAR generated

point cloud. It is noteworthy that urban 3D segmentation has

also been investigated for stereo-generated point clouds [32],

but there noise level is orders of magnitude higher and there-

fore we focus on high-quality LiDAR data. Douillard et al. [8]

compared various segmentation approaches for dense and

sparse LiDAR data and found simple clustering methods

the best and noted that street pre-segmentation improves the

results. These findings were verified in the survey by Nguyen

and Le [27] who also pointed that learning-based methods are

needed for more complex objects due to noise, uneven density

and occlusions. Inspired by these two important findings, we

adopt a fast rule-based approach for simple and frequently

appearing structures (streets and building facades) and the

learning-based approach for more complex structures. The

combination of clustering, extracting geometric features and

using a supervised classifier to recognize objects was pro-

posed in [11], but in our approach we accelerate computation

by the rule-based pre-processing and by adopting the efficient

super-voxel clustering that has been used in video process-

123



682 P. Babahajiani et al.

Fig. 2 Example of rule-based

segmentation of road surfaces. a

3D LiDAR point cloud

segmented to road surface

points (red) and other points

(black); b a sketch illustrating

our plane fitting to one tile

ing [41]. Fast 3D-only methods exist [24], but it has also

been argued that joint 2D image cues (e.g. colour, texture,

shape) and 3D information (point cloud) provide higher accu-

racy [40,42,44] and therefore we collect features from 3D

and 2D for our classifier.

3 Proposed methodology

The overall processing steps of our approach are illustrated in

Fig. 1. The input to our processing algorithm is 3D LiDAR

point cloud P =
{

pi

}

( p ∈ R
3) and street view images

I = {I i } (I ∈ R
W×H×3). The camera and LiDAR sensors

are calibrated with respect to each other. The first process-

ing step of our methodology is the rule-based segmentation

of the ground surface (Sect. 3.1.1) and building facades

(Sect. 3.1.2). The points labelled by the rule-based process-

ing cover approximately 75% of the urban city data, and

the remaining points proceed to the next step. The next step

is super-voxel clustering (Sect. 3.2.1) and feature extraction

from each super-voxel after which the super-voxels are clas-

sified using the boosted decision tree classifier (Sect. 3.2.2).

The output of the method is a fully labelled 3D point

cloud where each point is labelled to belong to one of the

pre-defined semantic classes (Fig. 1). We also present two

different applications of our system: (i) 3D urban map visual-

ization (Sect. 4.1) by using parametric models generated from

the labelled super-voxels and (ii) 2D segmentation (Sect. 4.2)

by mapping the 3D labels to the RGB images.

3.1 Rule-based segmentation of simple structures

Our empirical findings are in align with [8,27] which pointed

clear computational advances for using pre-processing to

segment geometrically simple and dominating structures.

Therefore, we devise simple rule-based detectors for road

surfaces and building facades that span majority of urban

scene point clouds (75% on average in the datasets used in

the experiments). Both road surfaces and building facades

form large and dense horizontal and vertical planar regions,

and therefore it is easy to devise geometric rules constrain-

ing them and providing fast segmentation as compared to

the learning-based approaches. The rule-based steps detect

and label the road surface points Proad, and building points

Pbuilding which are removed from the original point cloud

P ′ = P\
(

Proad ∪ Pbuilding

)

and then passed to the next pro-

cessing step (learning-based segmentation).

3.1.1 Road surfaces

The goal of the first step is to detect road surface points

including the car path and side-walk, and as a result, the

original point cloud is divided into road surface (Proad) and

other (Pother = P\Proad) points (Fig. 2). Starting from the

road surfaces is also beneficial for the later steps that are

based on point cloud connectivity as the road and ground

surfaces connect almost all points together. We apply the

fast and robust Random sample consensus (RANSAC)-based

plane fitting similar to Lai and Fox [21] who used it to remove

planar regions from Google 3D Warehouse point clouds.

To adapt the Lai and Fox algorithm for our case of large

urban city maps we need to do two additional steps: (i) local

fitting and (ii) windowed candidate surface point selection.

The first step is needed to allow varying street slope (cf. “San

Francisco” landscape). The second step is needed to decrease

the total number of points for plane fitting to make it faster.

Therefore, our adapted algorithm consists of following

three steps: First, the original point cloud is divided into

smaller point clouds {P10 m×10 m}k which span 10 × 10 m

square areas. Secondly, each {P10 m×10 m}k point cloud is

further divided into 0.25 m × 0.25 m cells, and for each

cell the Minimal-Z-Value (MZV) is computed by averaging

10 lowest z-value points.1 Thirdly, for each cell, all points

lying within ±τMZV distance from MZV are selected for

plane fitting (Fig. 2). The selection process reduces the num-

ber of points to around 0.1% from the original, and in all

experiments we fixed the threshold to τMZV = 0.02 m. For

each local point cloud the points that are within the distance

τroad = ±0.08 m from the fitted plane are added to Proad.

The average processing time of a single 10 m × 10 m region

is about 15 ms. This approach is not sensitive to the selec-

1 Using 10 lowest z-value points is to make the MZV estimation insen-

sitive to outliers.
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tion of the two thresholds and efficiently segments the road

surface points.

3.1.2 Building facades

The workflow of our rule-based building facade segmentation

is shown in Fig. 3. At first, we form a GPS-defined x-y plane

similar to the road surface detection and divide the plane to

0.25 m × 0.25 m cells. Our detection rules are derived from

the dominant characteristics of building facades in LiDAR

point clouds: LiDAR provides high (z dimension) and dense

regions. Since the x-y plane is now divided to the discrete

cells, ∆x ,∆y , we can compute height and density features.

We use proportional measures that make them invariant to

the average height of a city (e.g. Paris vs. New York City).

As a height feature we use

Ph(∆x ,∆y) =

argmax
z

P(∆x ,∆y, z)

argmax
z

p(:, :, z)
, (1)

and as a density feature

Pd(∆x ,∆y) =
|P(∆x ,∆y, z)|

max
∆x ,∆y

|P(∆x ,∆y, z)|
. (2)

Equations. (1) and (2) are combined to the final “building

score”:

Pbuilding(∆x ,∆y) = Ph(∆x ,∆y) + λd Pd(∆x ,∆y). (3)

In our experiments we used simple maximum heights, but

more robust score can be constructed by adopting robust

statistics (rank-order statistics) where the maximum value

is replaced, e.g. by the value that is higher than 95% of all

points. The maximum value performed well in our experi-

ments and we fixed the balancing factor λd = 1.0 for equal

weighting for the height and density scores. Moreover, this

approach is insensitive to the number of points to compute

the score number. In our experiments a notable speed up

is attained without significant loss in accuracy, in the case

that up to 30% of input points have been randomly removed

from computation. The rule-based segmentation of buildings

is achieved by computing the building score in (3) to the cells

of size 0.25 m × 0.25 m (the same as before) and threshold-

ing each cell by τbuilding = 1.80. This generates a binary

x-y map (Fig. 3) for which we compute the standard shape

compactness features for each connected shape Si [22]:

P(Si ) =
π · diameter2(Si )

4 · area(Si )
. (4)

Again P(Si ) score is thresholded by τP(Si ) = 15 and

the binary label as {building,¬building} is backprojected

to each 3D point within each cell. Note that this process

is executed for a point set from which the street surface

points have already been removed Pother and this rule-

based step creates another set P ′other = Pother\Pbuilding =

P\
(

Proad ∪ Pbuilding

)

.

3.2 Boosted decision tree detector for super-voxel

features

In our case, the number of 3D points is still large after the rule-

based segmentation of roads and buildings and therefore we

must consider both performance and efficiency issues for the

supervised detection stage. In Fig. 4 is depicted the workflow

of our supervised detection that processes the point cloud

P ′other. Our approach is inspired by the super-voxel-based

processing successfully used in video analysis [41].

3.2.1 Super voxels

The first step is 3D point-wise agglomerative clustering that

over-segments the input point cloud to voxels (Fig. 4b).

The clustering algorithm incrementally picks a random seed

points, adds points to the seed cluster to construct a voxel

until no more points pass a distance-based merging rule and

then pick a new seed point until all points have been pro-

cessed. For the random seed point Pi new points p j are

added Pi = Pi ∪ p j if they pass the distance rule,

Fig. 3 Example of rule-based segmentation of building facades. a original 3D point cloud and GPS-define x-y plane for projection; b x-y projected

points; c binary x-y map; d points that pass the building facade detection step; e backprojection of the detected points to 3D
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Fig. 4 The workflow of our supervised detection. a Input P′other point cloud where road surface and building facade 3D points have been removed;

b point cloud over-segmentation to 3D voxels by agglomerative clustering; c super-voxelization by voxel-level agglomerative clustering

min
i

dist(P i , p j ) ≤ τvoxel, (5)

where dist(·, ·) is the minimal distance between a set and a

point, and the distance threshold is set to τvoxel = 0.005 m.

After the first step, all points have been assigned to a single

voxel. The distance threshold avoids setting the number of

clusters which highly depends on the size of the point cloud

and therefore metric threshold is more intuitive. We refer

acute readers to Sect. 5.2 for ablation study concerning the

setting of this crucial distance threshold.

The procedure of super-voxelization is to merge those vox-

els that are close to each other and share similar orientation.

Formally, the proximity between two voxels Pi and P j is

defined as

min
i, j

dist(Pi ,P j ) ≤ τsv_prox (6)

which is equivalent to the minimum-link distance rule in

agglomerative clustering. The surface orientation is com-

puted using the PCA method in [39] for each voxel and two

voxels are combined if their normals are similar

arccos
(

normPC A(Pi ), normPC A(P j )
)

≤ τsv_orient. (7)

We set the super-voxelization thresholds to τsvoxel1 = 0.01 m

and τsvoxel2 = 15 which produce high-quality super-voxels

on all our datasets (see Fig. 4). The two thresholds with intu-

itive physical interpretation again avoid setting the number

of clusters that would depend on the size of the point cloud.

3.2.2 Super-voxel classification

The automatically generated super-voxels can be classified

by computing the popular 3D shape descriptors as fea-

tures [13,14], but we found these slow to compute and due

to variance in point density their robust usage would require

re-sampling which is a slow procedure as well. Instead, moti-

vated by success of features with true physical meaning in

voxelization and super-voxelization, we adopt several fast-to-

compute physical measures as features. The selected features

are listed in Table 1.

The features are fed to the boosted decision tree clas-

sifier [5] which is extremely efficient and produces high

accuracy for multi-class classification tasks. The boosting

is based on minimizing the exponential loss:

M
∑

i=1

exp(−yi fλ(xi )) (8)

where xi are the input features and yi the ground-truth class

labels and fλ(·) is the estimated label constructed from

fλ(x) =

N
∑

j=1

λ j h j (x) (9)

where h j (·) is a weak learner and λ j its corresponding

weight parameter. Selection of the weak learners and opti-

mization of the weights to minimize the loss function can be

done efficiently by parallel updating which is faster than the
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Table 1 Simple geometric and photometric primitives used to classify

super-voxels into pre-defined categories

Feature Motivation

Geometric features

Area Small versus large objects

Edge ratio Maximum and minimum edges

Max edge Longest dimension

Covariance overall shape

Location and orientation features

Height above road

Distance to street Horizontal distance to the car GPS

Normal angle With respect to the surface orientation

3D and photometric texture features

Mean intensity Overall reflection property of the voxel

Density Density of the points

Planarity Average distance to the best fitted plane

sequential-update algorithm [5], but we adopted the sequen-

tial version due to its simplicity and widespread availability.

In the experiments, we used a forest of ten decision trees with

each of them having six leaf nodes and this classifier leads to

satisfactory classification results for the benchmark datasets

used in our work.

4 Applications

The outputs of the two rule-based steps and the supervised

detector based step are two large point clouds Proad and

Pbuilding and a number of smaller point clouds Pi with

assigned labels

lroad, lbuilding, li ∈ {road, building, tree, car, pedestrian, . . .} .

Using the point clouds, street view images and the labels

we introduce two important applications: (1) enhanced

3D visualization using model-based rendering and (2) 2D

semantic segmentation. In the first application we replace

the annotated point clouds with 3D graphical models whose

parameters are derived from the point cloud properties which

provides visually more plausible view to the 3D map data. In

the second application we back project the point cloud labels

to 2D street view images and demonstrate their usage in 2D

semantic segmentation.

4.1 Visualization of 3D urban maps

Our LiDAR point cloud and street view images are regis-

tered, i.e. the 3D projective transformations from the street

view images to the point clouds are available, due to the

common data acquisition by a data collection vehicle. A tex-

tured 3D model is typically generated by directly using image

values or using parametric models [26]. Image RGB map-

ping is a fast procedure, but requires mesh generation as the

pre-processing step which is time-consuming for large point

clouds and is error-prone for noisy datasets. In this section,

we introduce our fast rendering-friendly approach that recon-

structs 3D urban map model in two stages (Fig. 5). Firstly we

use the enhanced ShadVis algorithm [36] to fast render the

building facades with high-quality details. The algorithm cal-

culates the illumination of a point cloud with the light coming

from a theoretical hemisphere or sphere around the object.

In the second step we apply methods to fit pre-designed tem-

plate models to non-building labelled point clouds.

4.1.1 Building facade rendering

For fast rendering with a high level of details we apply the

ShadVis technique in [36]. ShadVis estimates model illumi-

nants as if the light was coming from a theoretical hemisphere

or sphere around the object. The graphics hardware render-

ing pipelines have been designed for polygons, but in our

case it is computationally more attractive to render only the

points. Therefore, we adopt the simple but effective algorithm

in [25]. The accuracy of the result depends on the resolution

of the 3D point cloud dataset (see Fig. 6 for a typical case).

4.1.2 Rendering object models

Buildings are large objects with sufficient number of 3D

points for high-quality point-wise rendering, but this is not

the case for small objects such as cars, trees and pedestri-

ans. However, there are available numerous high-quality 3D

models of many visual classes (e.g. 3D Warehouse http://

3dwarehouse.sketchup.com) and these can be used to con-

struct more plausible map view. The main problem in using

Fig. 5 Example urban 3D map

with rendered object models
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Fig. 6 Example of 3D points in

Pbuilding (approx. 15 m

distance, top) and results of our

point rendering algorithm

(bottom)

3D models is fitting model to a 3D point cloud. The fitting

method is categorized into two types, depending on whether

orientation of an object in question plays an important role in

rendering (which is critical in our system where better visu-

alization is the goal). The first type of fittings is related to the

object classes which their pre-designed mesh structure orien-

tation is not important and their object models will be based

on their position and dimension only. The first object type

fitting includes trees, pedestrians and sign symbols. Unlike

a lot of work which calculate the distance of a given points

to the closest surface and use time-consuming iterative pro-

cedure to fit the pre-designed model into the point cloud or

reconstructed surface [7], we propose a novel approach to

solve this problem in a straightforward and computationally

lightweight manner. For each separated point cloud Pi , the

centre and its boundaries (3D bounding box) will be calcu-

lated. Based on the size of the existing pre-designed library

meshes, we localize the best isodiametric meshes to the point

cloud. Then, as the object orientation is not important we fit

the mesh by stretching it to get an appropriate size. This is a

similarity transformation of estimated isotropic scale s and

transformation t = (tx , ty, tz)
T . It is also possible to esti-

mate a similarity transformation where scale is applied to

each dimension s = (sx , sy, sz)
T .

The second type object requires also x-y orientation angle

θ and is needed for different types of vehicles in our data (car,

bus, bike). First, the centre of pre-designed mesh is computed

and point cloud will be matched and then the corresponding

model will be chosen from library based on the dimension

of the vehicle 3D bounding box. Then Iterative Closet Point

(ICP) algorithm [30] is applied to automatically refine the

registration of point clouds with desired mesh. The scene

prior knowledge reduces the number of possible vehicle ori-

entations as the road surface is determined (sect. 3.1.1) and

only rotations around the z-axis of the road are considered.

The ICP algorithm that we apply optimizes the RMS (Root

mean Square) distance between closest point pairs of the

models vertices to the point cloud [30]

errRMS(Pmodel,Pi )=

√

√

√

√

1

N

N
∑

n=1

|| pn,model − pn,Pi
||2 (10)

In Fig. 7 is illustrated model fitting to a point cloud. Notice

that even with a different target model of the car (sedan vs.

hatchback) correct pose is readily estimated.

4.2 Semantic segmentation in 2D

Thanks to the Global Positioning System (GPS) and Iner-

tial Measurement Unit (IMU) measurements in the mobile

LiDAR and RGB data acquisition system there is accurate

information to register the 3D point cloud and street view

(RGB) data (Fig. 8). Therefore, it is straightforward to map

the semantic labels of 3D point cloud points to the street

view images. For computational efficiency, input images

123



Urban 3D segmentation and modelling from street view images and LiDAR point clouds 687

Fig. 7 Example of a 3D car model fitted and rendered to a point cloud

Fig. 8 Mapping between the

3D LiDAR points and 2D street

view images

are over-segmented into super-pixels and each image plane

super-pixel is associated with a collection of labelled 3D

points (Fig. 8). For projection 3D points to image plane we

use the generic camera model (images are already rectified

to remove the optical distortions) [16]:

pimg = K [R|t] p3d (11)

where t is a 3 × 1 translation vector, R is a 3 × 3 rota-

tion matrix and K is a 3 × 3 camera matrix. The input and

output data are given in the homogeneous coordinate sys-

tem. All LiDAR points are transformed to each street view

image and mapped to the closest super-pixel. The mapping

uses z-buffering (within the same pixel only the closest 3D

is selected), and majority vote label of 3D points projected

to the same super-pixel is selected. The image super-pixels

without any label are labelled as “sky”.

5 Experiments

In this section, we provide qualitative and quantitative results

for the applications of visualization of urban 3D map data and

semantic 2D segmentation. We compute the point-wise and

pixel-wise classification accuracies and compare our method

to various recently proposed methods.

5.1 Datasets

NAVTEQ True the dataset used in this work is described in

our previous work [2] and is composed of 500 high-quality

street view images of 1032 × 1032 resolution and corre-

sponding LiDAR point clouds collected from three cities:

Chicago, Paris and Helsinki. The data were collected using

the NAVTEQ True systems of high-density 360◦ rotating

LiDAR system, 360◦ panoramic camera and an inertial nav-

igation system (IMU/GPS) for precise position, orientation

and attitude tracking of the sensors. Information from all

these sensors is synchronized to create an accurate and com-

prehensive dataset. The LiDAR system has 64 lasers and

rotates at 600 rpm covering a full 360◦ field of view around

the car. The LiDAR system scans 3D points at the rate of

around 1.2 million points per second. NAVTEQ dataset is

acquired in various weather conditions and urban landscapes

and represents the most challenging data available at the

moment. Seven semantic object classes are defined to label

the LiDAR dataset and its corresponding street view images:

building, tree, car, traffic sign, pedestrian, road, water (and
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sky for unlabelled super-pixels in 2D images). Since the

two other datasets do not contain street view images cor-

responding to LiDAR point clouds we use only this dataset

to experiment 2D semantic segmentation.

Paris-Rue-Madame dataset presented in [34] is used to com-

pare our method with other recent works on 3D segmentation

and labelling. This dataset is used for urban detection-

segmentation-classification methods, consists of accurate

annotated 3D point clouds acquired by MLS system on

Madame Street in Paris. The division of data to the train-

ing and test sets is described in [33,34] and we compare our

results to their reported accuracies.

TLS (terrestrial laser scanning) Velodyne dataset [21] includes

ten high-quality 3D point cloud scenes collected by a Velo-

dyne LiDAR mounted on a car navigating through the Boston

streets. Due to the specific nature of this dataset, we evalu-

ate our method using each LiDAR rotation as a single scene

(approximately 70,000 points).

Performance measure Both 3D LiDAR point segmentation

and 2D street view segmentation are evaluated point/pixel-

wise. We report accuracies for each label and compute other

metrics, such as average precision, to compare to the existing

works.

5.2 Urban 3D segmentation and classification

Paris-Rue-Madame

The point-wise classification results for our method and for

the two recently proposed methods by Aijazi et al. [1] and

Serna and Marcotegui [33] are shown in Table 2. Our method

achieved an average accuracy of 94.1% with notable mar-

gin of 8.5 and 22.2% with respect to existing methods [1]

and [33], respectively. Note that even for this relatively easy

dataset, the traffic sign class turned out to be particularly chal-

lenging due to lack of sufficient training samples. Significant

performance deteriorations were observed for all methods:

the drop in our method was about 10% while for existing

methods 15 and 71%, respectively.

TLS Velodyne

It is notable that our algorithm was initially designed to anal-

yse MLS LiDAR point clouds. One of the main advantages

of our method is that it easily adapts to other types of LiDAR

datasets such as terrestrial laser scanning (TLS) and airborne

laser scanning (ALS) point clouds without major modifica-

tion as long as the point units are in metric system (thresholds

are set in metres). To exemplify this we evaluated our method

with the same fixed parameters on the TLS Velodyne LiDAR

dataset which contains 3D point clouds in local coordinate

system of the LiDAR. The total number of points in each ten

scene is nearly 70,000 and the average point density is about

12 points/m2. We compare our method to Lai and Fox [21].

We selected seven scenes for training and the three remaining

scenes for testing similar to them and report per class average

precision and F-score computed as

2 × recall × precision

recall + precision
.

The results in Table 3 show that for 5 out of 6 classes our

method is clearly better and our F-score for each class is

better than the average F-score of Lai and Fox.

NAVTEQ True

The NAVTEQ True dataset is our main target - high-quality

large-scale ground acquired dataset. NAVTEQ True col-

lected from Boston, Paris and Chicago contains more than 80

million points and covers approximately 2.4 km of road alto-

gether. Seven semantic object classes are defined to label the

scenes: building, road, river, car, tree, traffic sign and pedes-

trian. The point clouds from the three cities are divided into

two portions: the training set, and the testing set. The 70%

of the total street length is selected for training and 30% for

Table 2 Comparison of our

method to other reported results

on 3D point cloud classification

with the Paris-Rue-Madame

dataset

Method Building Road Tr. sign Car Class AVE ACCY

Aijazi et al. [1] 0.914 0.901 0.710 0.900 0.856

Serna et al. [33] 0.986 0.940 0.000 0.950 0.719

Our 0.991 0.950 0.841 0.982 0.941

The bold numbers are related to best results comparing different methods

Table 3 Comparison of our method to other reported results on 3D point cloud classification with the TLS Velodyne dataset

Measure Method Tree Car Tr. sign Pedestrian Fence Building Class AVE ACCY

Precision Lai and Fox [21] 0.83 0.91 0.80 0.41 0.61 0.86 0.73

Our 0.89 0.95 0.72 0.88 0.85 0.95 0.87

F-score Lai and Fox [21] 0.76 0.79 0.69 0.47 0.42 0.91 0.67

Our 0.85 0.93 0.69 0.88 0.80 0.95 0.85

The bold numbers are related to best results comparing different methods
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Fig. 9 Segmented and

classified 3D LiDAR points of

the NAVTEQ True dataset from

Helsinki (colours encode the

different labels)

Table 4 Confusion matrix of

our method for classification of

the the NAVTEQ True dataset

Building Road River Car Tree Tr. sign Pedestrian

Building 0.885 0.083 0.000 0.000 0.115 0.000 0.000

Road 0.041 0.958 0.000 0.003 0.015 0.001 0.000

River 0.000 0.249 0.733 0.000 0.000 0.000 0.000

Car 0.000 0.018 0.000 0.847 0.000 0.007 0.000

Tree 0.004 0.001 0.000 0.000 0.897 0.007 0.000

Tr. sign 0.000 0.002 0.000 0.000 0.113 0.735 0.002

Pedestrian 0.000 0.049 0.000 0.000 0.008 0.000 0.782

Table 5 Computing times of our method with and without the rule-

based steps quick for road surface and building detection. Without

the rule-based step all points are classified using the super-voxel and

boosted decision tree method

Our method # of voxels Comp. time (mins) Overall accuracy

w rule-based 32,891 46 86%

w/o rule-based 246,548 291 75%

testing. Some typical results are illustrated in Fig. 9. Confu-

sion matrix in Table 4 shows that the average accuracy (over

all classes) is about 83%, with rule-based classification accu-

racies above 88%. Relatively low accuracies were reported

for certain classes, e.g. pedestrian (78%), traffic sign (73%)

and river (73%). These challenging cases are ascribed to the

lack of sufficient training samples for each class.

Computing time

The proposed method has various advantages. The main

contribution of this work is about achieving high accu-

racy within reasonable computing time. Considering the

large-scale LiDAR datasets, we believe that fully supervised

classification methods are computationally too expensive.

In this experiment, we switched off the rule-based pro-

cessing stage, but performed super-voxel-based supervised

training and classification in Sect. 3.2. The results are col-

lected to Table 5, and the computing time is wall time on

Intel (R) Core(TM) i7-4710MQ 2.5 GHz CPU with 32 GB

RAM. The results show that without the rule-based seg-

mentation step the supervised classifier must construct and

classify 7.5× more voxels and thus the computation time

is 6.3× longer and requires much more memory usage.

Moreover, without rule-based processing, the classification

accuracy degraded significantly, partially due to the con-

nectedness problem, i.e. roads surfaces and buildings are

mis-segmented with other objects. In contrast, the removal

of road surfaces and building facades created better isolated

point clouds and hence improved classification accuracy

from 75 to 86%.
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Fig. 10 Super-voxel classification accuracy on NAVTEQ True dataset (left) and computing time (right) with respect to the distance threshold

τvoxel in (5)

Table 6 Confusion matrix of

pixel-wise accuracies of our

method for 2D semantic

classification of the NAVTEQ

True street view images

Sky Building Road Tree Car Tr. sign Pedestrian River

Sky 0.960 0.020 0.000 0.020 0.000 0.000 0.000 0.000

Building 0.030 0.870 0.024 0.075 0.000 0.000 0.000 0.000

Road 0.000 0.015 0.920 0.000 0.065 0.000 0.000 0.000

Tree 0.000 0.280 0.080 0.640 0.000 0.000 0.000 0.000

Car 0.050 0.000 0.250 0.020 0.680 0.000 0.000 0.000

Tr. sign 0.010 0.280 0.090 0.000 0.000 0.370 0.250 0.000

Pedestrian 0.010 0.340 0.020 0.020 0.000 0.330 0.280 0.000

River 0.000 0.050 0.250 0.050 0.000 0.000 0.000 0.650

Parameter settings

An important parameter controlling our method’s accuracy

and computing time is the threshold used to generate super-

voxels (Sect. 3.2.1). In our experiments this was set to

τvoxel = 0.005 m, but to further study the effect of this param-

eter we conducted an ablation study with the NAVTEQ True

dataset by varying the threshold value. The results of this

experiment are shown in Fig. 10 (displayed in black curves)

where the setting 5 mm clearly provides high accuracy with

reasonable computation time.

The performance is evaluated in both robustness and accu-

racy terms with four sub-sampled of original point clouds.

The testing point clouds are down-sampled uniformly to 75,

80, 85, 95% of the original point cloud density [31]. Refer

Fig. 10 (colourful curves) for a summary of the algorithm per-

formance results. Note that the dataset was down-sampled in

multiple runs and the average accuracies as well as devi-

ations were plotted in Fig. 10. The results show that the

optimal threshold is consistent (around 5 mm) in despite that

the average accuracy decreases with the percentage of down-

sampling.

5.3 Semantic 2D segmentation

Dense scene labelling/segmentation is an important prob-

lem in robot and computer vision [24,29,44] and in our

case this can be achieved by backprojecting the labelled

3D points to 2D camera view plane (Sect. 4.2). For eval-

uation of 2D semantic segmentation we generated 2D

ground truth by backprojecting the ground-truth 3D labels

to the corresponding street view images in 500 randomly

selected images in the NAVTEQ True test set. The back-

projection results were manually verified and corrected.

Pixel-wise classification accuracies are in Table 6. The

sky, building and road regions were accurately labelled in

(≥85% accuracy). The traffic signs and pedestrians were

more poorly segmented, and this can be explained by

the fact that there are not many examples for our classi-

fier and therefore it makes misclassifications to the more

frequent classes. However, the pixel-wise accuracies may

give wrong interpretation of the results which qualita-

tively looked good as shown in the illustrative examples in

Fig. 11.

6 Discussion

Firstly, rule-based classification is dedicated to the dominant

objects, i.e. roads and buildings presented in LiDAR datasets,

whereas rules are designed based on prior knowledge of these

objects in terms of their sizes, relative positions, etc. A sys-

tematic approach to fine-tuning rules is to cross-validate rule

parameters with respect to a separate dataset accompanied
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Fig. 11 2D street view image

segmentation using 3D label

back projection. Left test image;

middle ground truth; right our

results

with ground-truth labels. Adding new rules can be treated

in the similar manner. Nevertheless, a great deal of ground-

truth labels is required to pursue this approach, making it

only suitable for applications with ample ground-truth data

available. Secondly, the street view 3D modelling application

is restricted to the diversity and number of the pre-designed

mesh templates in library. This problem can be solved by

creating a big library of street view objects such as trees and

cars to generate more real 3D models.

7 Conclusions

We have proposed an efficient and accurate two-stage method

to segment and semantically label urban 3D city maps of reg-
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istered LiDAR point clouds and RGB street view images. Our

method can process 80 million 3D points (2.4 km street dis-

tance) in less than an hour on commodity desktop hardware.

The first processing stage uses rule-based detectors for road

surfaces and building facades that span more than 75% of

city point clouds. The rules are based on robust and adaptive

processing (e.g. to the average building height of a spe-

cific city) with thresholds that have clear physical meaning

and setting them is therefore intuitive. The remaining point

cloud is processed by methodology that first constructs vox-

els (point clusters), and the super-voxels are then classified

by an ensemble of boosted decision trees. Voxel construction,

super-voxel construction and the extracted features are also

based on thresholds and measures with clear physical mean-

ing which allows their intuitive setting for other types of 3D

map data. The rule-based stage makes computing 6× faster

as compared to classifier-only and improves the segmenta-

tion accuracy. Moreover, we proposed two applications of

our method: 1) model-based 3D visualization for better user

experience and 2) 2D semantic segmentation for 2D applica-

tions. Both applications were also experimentally validated

and our method performs favourably as compared to other

existing methods. Our future work will address adaptation of

the method for other 3D map data than urban city centres.
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