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Abstract—Very high resolution satellite images provide valuable
information to researchers. Among these, urban-area boundaries
and building locations play crucial roles. For a human expert,
manually extracting this valuable information is tedious. One
possible solution to extract this information is using automated
techniques. Unfortunately, the solution is not straightforward if
standard image processing and pattern recognition techniques are
used. Therefore, to detect the urban area and buildings in satellite
images, we propose the use of scale invariant feature transform
(SIFT) and graph theoretical tools. SIFT keypoints are powerful
in detecting objects under various imaging conditions. However,
SIFT is not sufficient for detecting urban areas and buildings
alone. Therefore, we formalize the problem in terms of graph
theory. In forming the graph, we represent each keypoint as a
vertex of the graph. The unary and binary relationships between
these vertices (such as spatial distance and intensity values) lead
to the edges of the graph. Based on this formalism, we extract
the urban area using a novel multiple subgraph matching method.
Then, we extract separate buildings in the urban area using a novel
graph cut method. We form a diverse and representative test set
using panchromatic 1-m-resolution Ikonos imagery. By extensive
testings, we report very promising results on automatically detect-
ing urban areas and buildings.

Index Terms—Building detection, graph cut, multiple subgraph
matching, scale invariant feature transform (SIFT), urban-area
detection.

I. INTRODUCTION

SATELLITE images offer valuable information to re-
searchers. The resolution of earlier satellite imagery (such

as Landsat) would not allow detecting separate man-made or
natural objects. Therefore, researchers mostly focused on ex-
tracting the region properties from these imagery. As the advent
of very high resolution (VHR) satellite imagery (such as Ikonos
and Quickbird), it became possible to observe these objects.
Aside from region properties, extracting man-made objects in
VHR satellite images may help researchers in various ways,
such as automated map making.

Among different man-made objects, buildings play an im-
portant role. Therefore, the robust detection of buildings in
VHR satellite images requires a specific consideration. Unfor-
tunately, it is still tedious for a human expert to manually label
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buildings in a given satellite image. One main reason is the
total number of objects in the scene. The other reason is the
resolution of the satellite image. Although the resolution of
the satellite imagery has reached an acceptable level, it is still
not possible for a human expert to extract information from it in
a robust manner. To solve this problem, researchers introduced
automated urban-area- and building-detection methods using
VHR satellite and aerial images.

Zerubia et al. [18] used texture information to detect ur-
ban areas in both optical and radar images. They extracted
texture parameters using chain-based Gaussian models. Then,
they used clustering with a Markovian segmentation step.
Their system is robust to sensor changes, but not very ro-
bust to resolution changes in images. Rokos et al. [12] used
building density information to classify residential regions.
Benediktsson et al. [1] used mathematical morphological op-
erations to extract structural information to detect the urban
area in satellite images. Ünsalan and Boyer [30], [32] extracted
linear features from satellite images to detect residential re-
gions. They benefit from spatial coherence and graph theory
for labeling urban or residential regions. Ünsalan [29], in a
related study, used graph theory to grade changes in urban
regions. Fonte et al. [7] considered corner detectors to obtain
the type of structure in a satellite image. They concluded that
corner detectors may give distinctive information on the type
of structure in an image. Bhagavathy and Manjunath [2] used
texture motifs for modeling and detecting regions (such as golf
parks and harbors) in satellite images. Bruzzone and Carlin [3]
proposed a pixel-based system to classify VHR satellite images.
They used support vector machines fed with a novel feature
extractor. Zhong and Wang [35] introduced conditional random
fields to learn dependencies in the image. They fuse the mul-
tilevel structural information to obtain urban areas in satellite
images. A related problem in the literature is the satellite image
classification. The literature is vast on this topic. Some re-
lated papers can be counted as [4], [6], [10], [15]–[17], and [20].

Kim and Muller [14] used graph theory to detect buildings in
aerial images. They extracted linear features in the given image
and used them as vertices of a graph. Then, they extracted
buildings by applying subgraph matching with their model
building graph. Finally, they used intensity and shadow infor-
mation to verify the building appearance. This study follows a
similar strategy as we did. Different from us, they used colored
aerial images and linear features. Segl and Kaufmann [26]
combined supervised shape classification with unsupervised
image segmentation in an iterative way. Their method allows
searching objects (like buildings) in high-resolution satellite
images. Ünsalan and Boyer [31] studied multispectral satellite
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images to detect buildings and street networks in residential re-
gions. Their method depends on vegetation indexes, clustering,
decomposing binary images, and graph theory. They also offer
a nice review on building-detection algorithms in the literature.
Mayunga et al. [21] used polygons, formed by edge informa-
tion, to detect buildings. They proposed a novel snake algorithm
starting from an approximate polygon center. The snake grows
radially until it fits a closed polygon shape. Then, they used
linear features to verify the building appearance. Peng et al. [25]
also proposed an improved snake model to detect buildings in
colored aerial images. They report good detection results with
their system. Huang et al. [11] considered fusion of multispec-
tral Ikonos imagery to classify objects (including buildings) in
urban regions. Molinier et al. [23] considered detecting man-
made structures in satellite images using PicSOM. Gamba et al.

[8] used boundary information to extract the map of an urban
area. They fed the boundary and nonboundary data to two
different classifiers. Then, they combined the results of the two
classifiers. They obtained satisfactory results to detect urban-
area buildings on VHR imagery. Wei and Xin [33] introduced a
method based on level sets to segment out man-made objects in
aerial images. Katartzis and Sahli [13] used a hierarchical sto-
chastic model based on perceptual organization to detect build-
ing rooftops in colored satellite images. Zhang et al. [34] used
airborne light detection and ranging data to detect buildings.

Detecting buildings in satellite images is a difficult task
for several reasons. Buildings may be imaged from different
viewpoints. The illumination and contrast in the image may not
be sufficient for detecting buildings. There may be several other
structures, such as nearby trees and street segments, making
the building-detection problem harder. In addition to these
difficulties, buildings do not have a standard size and shape.
All these issues make building detection a hard problem.

Scale invariant feature transform (SIFT) is a good candidate
for urban-area and building detection in satellite images. SIFT
is a local descriptor extraction method having valuable prop-
erties such as invariance to illumination and viewpoint [19]. In
the literature, it is extensively used to match objects represented
by template images in a given image. Unfortunately, the stan-
dard SIFT implementation is not sufficient for urban-area and
building detection from satellite images alone. There are many
similar and nearby buildings in the satellite image. Therefore,
standard feature matching does not work properly.

In this study, we propose novel methods to detect the urban
areas and buildings from panchromatic VHR Ikonos images.
Our detection methods are based on SIFT keypoints and graph
theoretical tools. We first upsample the image by six to help
SIFT keypoint extraction. Then, we apply a nonlinear bilateral
filtering (BF) operation to smooth out unwanted noise terms in
the image [28]. Afterwards, we extract local SIFT keypoints
(and associated features) from the processed satellite image.
Different from the original SIFT, we cast the urban-region-
detection problem as one of multiple subgraph matching. In
forming the graph, each SIFT keypoint is taken as a vertex.
The neighborhood between different vertices is summarized as
edges of the graph. In the same way, we formulate the building-
detection problem in terms of graph cut. Gautama et al. [9],
in a related study, used error-tolerant graph matching to find

correspondences between the detected image features and the
geospatial vector data.

We test our urban-area- and building-detection methods on
a fairly diverse and representative image set formed from
panchromatic Ikonos images of 28 different urban sites in
Adana, Ankara, and Istanbul, Turkey. They contain various
building types, as well as various urban-area characteristics.
Tests indicate the potential of our urban-area- and building-
detection methods. To explain our novel detection methods in
detail, we start with the preprocessing of our satellite images.

II. BILATERAL FILTERING FOR PREPROCESSING

Ikonos satellite images are not directly suitable for robust
SIFT keypoint extraction due to their resolution. The main
problem here is the minimum size of the filter scale used in
standard SIFT keypoint extraction. Unfortunately, this filter
scale is fairly large for detecting building properties. Therefore,
we first upsample the image by six in each coordinate axis
using bilinear interpolation. To note here, nearest neighbor in-
terpolation may also be used with a slight performance change.
Moreover, upsampling itself is not sufficient. We should also
eliminate noise in the satellite image. Unfortunately, objects are
so small in these images that it is almost impossible to discard
noise terms without disturbing object boundaries using standard
linear filters. Therefore, we propose the use of BF proposed by
Tomasi and Manduchi [28]. It performs nonlinear smoothing
on images by keeping the edge information. Nonlinear smooth-
ing is performed by combining the geometric and intensity
similarity of pixels. Elad [5] shows that BF is closely related
to edge preserving smoothing operations such as anisotropic
diffusion. We next explain the BF operation using Elad’s
notation.

Let Ig(x, y) be a grayscale image having values in the range
[0, 1]. Let Ib(x, y) be the bilateral filtered version of Ig(x, y).
The filtering operation can be represented as

Ib(x, y)=

∑N
n=−N

∑N
m=−N W (x, y, n,m)Ig(x−n, y−m)

∑N
n=−N

∑N
m=−N W (x, y, n,m)

.

(1)

This equation is simply a normalized weighted average of a
neighborhood of 2N + 1 by 2N + 1 pixels around the pixel
location (x, y). The weight W (x, y, n,m) is computed by
multiplying the following two factors:

W (x, y, n,m) = Ws(x, y, n,m) × Wr(x, y, n,m) (2)

where Ws(x, y, n,m) stands for the geometric weight factor.
It is based on the Euclidean distance between the center pixel
(x, y) and the (x − n, y − m) pixel as

Ws(x, y, n,m) = exp

(

−
(x − n)2 + (y − m)2

2σ2
s

)

. (3)

This way, nearby samples influence the final result more than
distant ones.

The second weight Wr(x, y, n,m) is based on the grayscale
intensity distance between the values of the center pixel (x, y)
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Fig. 1. Adana8 test image.

Fig. 2. Subpart of the Adana8 test image and its BF result. (a) Original.
(b) Bilaterally filtered.

and the (x − n, y − m) pixel. Again, it is based on the Euclid-
ean distance between intensity values as

Wr(x, y, n,m) = exp

(

−
(Ig(x, y) − Ig(x − n, y − m))2

2σ2
r

)

.

(4)

Thus, pixels with close grayscale intensity values tend to influ-
ence the final result more than those having distant values.

The bilateral filter is controlled by three parameters. N dic-
tates the support of the filter. A larger support gives a stronger
smoothing. The parameters σs and σr control the decay of the
two weight factors. We pick N = 5, σs = 3, and σr = 0.1 for
implementation. These values are picked keeping in mind the
minimum geometric size and intensity variations of buildings
in the Ikonos image to be detected. For other satellite or aerial
image types, these parameters should be adjusted accordingly.

In this study, we use the Adana8 image shown in Fig. 1 to
illustrate our method step by step. In this test image, it is hard
to detect the urban area and the buildings due to the low contrast
between building rooftops and the background. Moreover, this
is a typical test site.

To provide a detailed explanation of our system, we focus on
a subpart of the Adana8 image as in Fig. 2. In this paper, we
only consider two buildings. We first provide the BF results
of this subpart image in the same figure. As can be seen,
the bilateral filtered image is fairly smooth, with the edge
information of buildings kept fairly well.

III. SIFT

Lowe [19] proposed the SIFT for object detection based
on its template image. SIFT leads to local image descriptors,
invariant to translation, scaling, and rotation. These descriptors

are also partially invariant to illumination changes and 3-D pro-
jection. Mikolajczyk and Schmid [22] compared SIFT descrip-
tors with other invariant feature descriptors. They concluded
that SIFT performs best under changes in scale, rotation, and
illumination. Lowe proposed the detection of an object in an
image by descriptor matching. To do so, first, a template image
is obtained for the object to be detected in the test image. Its de-
scriptors are extracted. Then, descriptors for the test image are
extracted. A one-to-one matching between the template and test
image descriptors leads to detecting the object in the test image.

Buildings can be considered as objects to be detected in
the satellite image. In satellite images, buildings can have dif-
ferent illumination conditions, structural differences, and size
changes. More importantly, they can be imaged from different
viewpoints. The invariance properties of SIFT can handle most
of these variations. Therefore, SIFT is suitable for building de-
tection from satellite images. Next, we briefly explain SIFT and
keypoint extraction. More details on SIFT can be found in [19].

The first stage of keypoint detection is to identify locations
and scales that can be repeatedly assigned under differing views
of the same object. Detecting locations that are invariant to the
scale change of the image can be accomplished by searching
for stable features across all possible scales, using a continuous
function of scale known as scale space. The scale space of an
image is defined as a function L(x, y, σ) that is produced from
the convolution of a variable scale Gaussian, with the input
image Ib(x, y) as

L(x, y, σ) =
1

2πσ2
exp

(

−
x2 + y2

2σ2

)

∗ Ib(x, y) (5)

where ∗ is the convolution operation in x, y and σ is the
Gaussian scale.

To efficiently detect stable keypoint locations in scale space,
Lowe proposed the use of the scale-space extrema. It is calcu-
lated from the difference of Gaussian images computed from
the two nearby scales separated by a constant multiplicative
factor k as

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ). (6)

In order to detect the extrema of D(x, y, σ), each sample
point is compared to its eight neighbors in the current image
and nine neighbors in the scales above and below. The sample
point is selected only if it is larger than all of these neighbors
or smaller than all of them. Once a keypoint candidate has been
obtained by comparing a pixel to its neighbors, the next step
is to perform a detailed fit to the nearby data for the location,
scale, and ratio of the principal curvatures. This information
allows points that have low contrast (and are therefore sensitive
to noise) or are poorly localized along the edge to be rejected.
We label the keypoint by its spatial coordinates as (xi, yi).

One or more orientations are assigned to each keypoint
location based on local image gradient directions. By assigning
a consistent orientation to each keypoint based on local image
properties, the keypoint descriptor can be represented relative
to this orientation. Therefore, it has an invariance to image
rotation.
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Fig. 3. SIFT keypoints and their vector representation on the Adana8 subpart
image. (a) Keypoints. (b) Vectors.

Fig. 4. Two building (bright and dark) templates used in this paper. (a) Bright
building. (b) Dark building.

The keypoint descriptor generated by the SIFT algorithm is
created by sampling the magnitudes and orientations of the
image gradient in the patch around the keypoint. Finally, a
128-element vector (represented as f i) is formed as a descriptor.
This vector is then normalized to unity magnitude to have an
invariance to illumination.

We extract keypoints and vector representations from the
Adana8 subpart image as in Fig. 3. In this figure, vectors
originate from keypoint locations. They represent the dominant
direction of the SIFT descriptor for each keypoint as well as
their strength. As can be seen, keypoints in this image are
located around building corners and other significant intensity
changes.

IV. DETECTING THE URBAN AREA AND BUILDINGS

In the original SIFT, the object to be detected is represented
by one or several template images. Then, keypoint descriptors
are obtained for each template. Keypoint descriptors for the
test image are also obtained. A one-to-one matching between
template and test image keypoints is performed using the
Euclidean distance between keypoint descriptors. SIFT de-
scriptors are highly discriminative. Therefore, each template
keypoint matches with the closest (in the Euclidean distance
sense) test image keypoint. This is the strength of the original
SIFT-based object detection. However, this property of the
SIFT is not suitable for our problem. First, we have many
buildings in the satellite image to be detected. Second, it is
not feasible to have templates for all types of buildings to
be detected. Therefore, we propose novel graph theoretical
methods to detect the urban area and buildings.

To detect buildings and the urban area, we use two template
building images as shown in Fig. 4. The first template rep-
resents a bright building, having a high contrast between the
background and its rooftop. The second template represents
a dark building, having relatively low contrast between the
background and its rooftop. These two templates cover a wide
range of building characteristics.

As aforementioned, each SIFT keypoint is described by a
vector vi = (xi, yi, fi). Here, (xi, yi) represents the spatial
coordinate of the keypoint. fi is the 128-element feature vector
for that keypoint. We first extract keypoints for the two tem-
plates and the test image. Then, we represent them as v

a
i , i =

1, . . . , I , for the dark building template, v
r
j , j = 1, . . . , J , for

the bright building template, and v
t
m, m = 1, . . . , M , for the

test image.

A. Graph Representation

To detect the urban area and buildings, we cast the problem in
terms of graph theory. A graph G is represented as G = (V,E),
where V is the vertex set and E is the edge matrix showing
the relations between these vertices. For the urban-area and
building detection, we represent the keypoints extracted from
the dark building template (va), bright building template (vr),
and test image (vt) in a graph formation as Ga(V a, Ea),
Gr(V r, Er), and Gt(V t, Et), respectively. Let us consider Ga.
V a = {va

i }, i = 1, . . . , I . Ea is an I × I matrix defined as

Ea(i, j) =

{

dij , if dij < ǫ1
0, otherwise

(7)

where dij =
√

(xi − xj)2 + (yi − yj)2. We take ǫ1 = 30 due
to the size of buildings that we are detecting in the Ikonos
imagery. If this method is applied to higher resolution images,
then the value of ǫ1 should also be increased accordingly.
Ea(i, j) = 0 means that there is no edge between vertices vi

and vj . We form Gr and Gt in a similar way.

B. Multiple Subgraph Matching to Detect the Urban Area

Buildings in a region indicate the existence of an urban area.
Therefore, in order to detect the urban area, it is sufficient to
detect buildings. To detect all buildings in an image (without
selecting a special one), we apply multiple subgraph matching
between Ga, Gt and Gr, Gt separately. Applying multiple
subgraph matching between the template and test images is
different from the original SIFT. As aforementioned, we have
many buildings in the same region, and we want to detect all at
once without selecting a specific one. This formalism simplifies
our urban-area-detection problem since nearby buildings affect
each other’s detection probability in multiple subgraph match-
ing. Also, using this formalism, we relax the graph matching
condition.

From now on, we will explain our multiple subgraph match-
ing method on the Ga, Gt pair. The method is the same for
the Gr, Gt pair. Our multiple subgraph matching method can
be rephrased as a one-to-many matching between two graph
vertices both in unary and binary terms. For the unary match-
ing between Ga and Gt, we define multiple vertex matching
between two graphs Ga = (V a, Ea) and Gt = (V t, Et) as

M1

(

v
a
i ,vt

j

)

=

{

1, if
∥

∥f
a
i − f

t
j

∥

∥ < ǫ2
0, otherwise.

(8)

M1(·, ·) will be an I × M matrix. We check matching ∀va
i ∈

V a and ∀vt
j ∈ V t. In (8), ǫ2 stands for the adaptive tolerance

value for unary matching. Since we have multiple subgraph
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Fig. 5. Graph and its region obtained from the Adana8 subpart image.
(a) Graph Gd. (b) Region A(Gd).

matching, such an adaptive parameter adjustment strategy is
necessary. We calculate ǫ2 as follows. We first calculate the
best match between V a and V t. We assume this to be a valid
match. In other words, we assume that the matched vertex in
the test image belongs to a building. Then, we calculate the next
best match by comparing the match distance with the first best
match. We repeat this process as long as the match distance is
comparable with the best match case. If there is a larger distance
(such as two times the best match), then we assume that the
match is not valid. We pick this distance value as ǫ2.

For urban-area and building detection, matched keypoints
should also keep their structure. Therefore, we define bi-
nary vertex matching between the two weighted graphs Ga =
(V a, Ea) and Gt = (V t, Et) as

M2

(

Ea(i, j), Et(k, l)
)

=

⎧

⎨

⎩

1, if (M1 (va
i , vt

k) = 1)∧
(

M1

(

va
j , vt

l

)

= 1
)

∧ (γ < ǫ3)
0, otherwise

(9)

where γ = |Ea(i, j) − Et(k, l)|. Here, ǫ3 is the tolerance value
for binary matching. Based on the dimensions of the buildings
in our building template images, we set ǫ3 = 4. For other
building template images, ǫ3 should be adjusted accordingly.
For example, if a larger building template is to be used, then ǫ3
should be increased. Similarly, if a smaller building template is
to be used, then ǫ3 should be decreased.

We form a new graph, based on unary and binary match-
ing (matched vertices and edges of Gt). We call it as Gd =
(V d, Ed) to indicate that it contains vertices and edges of
the test image graph matched with the dark building template
graph. vt

m ∈ V d iff ∃va
i ∈ V a such that M1(va

i ,vt
m) = 1. We

form the edge matrix Ed as

Ed(k, l) =

⎧

⎨

⎩

Et(k, l), if ∃ i, j s.t.
M2 (Ea(i, j), Et(k, l)) = 1

0, otherwise.
(10)

We provide the constructed graph Gd on the Adana8 subpart
image in Fig. 5(a). As can be seen, all the matched vertices of
Gt (now the vertices of Gd) lie on the buildings in the image.
Due to multiple subgraph matching, most vertices on different
buildings also have edges connecting them.

We apply the same procedure to form Gb = (V b, Eb) in the
same way using the Gr, Gt pair. This graph indicates the unary
and binary matching between the bright building template and
the test image.

Fig. 6. Detected urban area from the Adana8 test image.

To locate the urban area containing buildings, we define the
region of a graph. For a graph G(V,E) with vertices V = {vi}
having spatial coordinates vi = (xi, yi), we define its region
A(G) as follows.

1) vi ∈ V ⇒ (xi, yi) ∈ A(G).
2) Let lij be the line segment joining vi, vj where E(i, j) �=

0; (xa, ya) ∈ lij ⇒ (xa, ya) ∈ A(G).
3) Let tijk be the triangle with corners vi, vj , vk ∈ V where

E(i, j) �= 0, E(i, k) �= 0, and E(j, k) �= 0; (xa, ya) ∈
tijk ⇒ (xa, ya) ∈ A(G).

This region is as small as possible. It includes all vertices
and line segments joining them. To clarify this operation, we
formed the region of graph Gd on the Adana8 subpart image.
We provide A(Gd) for this image in Fig. 5(b).

There may be both bright and dark buildings in a given test
site. Therefore, we detect the final urban area R using both
A(Gd) and A(Gb) as

R = A(Gd)
⋃

A(Gb). (11)

We provide the detected urban area from the Adana8 test
image in Fig. 6. As can be seen, the urban area in this image
is correctly detected. We provide more urban-area-detection
examples, as well as the qualitative results in the Section V.

C. Graph Cut Method to Detect Separate Buildings

Up to now, we benefit from the close proximity of buildings
in detecting the urban area. Now, the second step is detecting
each building alone. For separate building detection, we need
extra information. Therefore, we cut some edges of Gd and
Gb based on the intensity criteria. We hypothesize that vertices
(keypoints) on the same building have similar intensity values
due to the building color. Therefore, to locate separate build-
ings, we cut edges between vertices having different intensity
values. We expect the cut edges to be the ones between vertices
on different buildings. We form two new graphs as Gp =
(V p, Ep) and Gq = (V q, Eq). Here, V p = V d and V q = V b.
Let us consider Gp. We assign weights to its edges as

Ep(k, l) =

{

1, if
(

Ed(k, l) �= 0
)

∧ (wkl < ǫ4)
0, otherwise

(12)

where wkl = |Ib(xk, yk) − Ib(xl, yl)|. (xk, yk) and (xl, yl)
stand for the spatial coordinates of vk, vl ∈ V p. Ib(x, y) is our
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Fig. 7. Graph cut on the Adana8 subpart image. (a) Graph cut. (b) Buildings.

bilateral filtered image. ǫ4 = 0.1 is the tolerance value (remem-
ber Ib(x, y) ∈ [0, 1]). As long as the grayscale satellite image is
scaled between zero and one, fixing ǫ4 to 0.1 seems reasonable.
Therefore, this parameter is insensitive to the resolution of the
satellite image used. It may only be adjusted by the dynamic
grayscale range of the image. We apply the same procedure to
obtain Eq as

Eq(k, l) =

{

1, if
(

Eb(k, l) �= 0
)

∧ (wkl < ǫ4)
0, otherwise.

(13)

The weight-assignment step may not work properly if key-
points are located outside the building. To overcome this
problem, keypoint vectors may be used to shift each keypoint
location by an offset. For buildings brighter than the back-
ground (and the bright building template is matched with),
keypoint vectors are directed outside the building center. For
buildings darker than the background (and the dark building
template is matched with), keypoint vectors are directed toward
the building center (as can be seen in Fig. 3). This information
may be used to shift each keypoint location inside the building.

Equations (12) and (13) lead to disconnected subgraphs.
Each disjoint and connected subgraph possibly represents a
building. Therefore, we detect disjoint and connected subgraphs
from Gp and Gq. A graph G(V,E) can be decomposed into
disjoint and connected subgraphs Gl(Vl, El), l = 1, . . . , L.
Each subgraph satisfies the following conditions.

1) Vl ⊆ V .
2)

⋃L
l=1

Vl = V .
3) ∀vi, vj ∈ Vl∃ a path between vi and vj . A path in G is a

finite alternating sequence of vertices and edges.
4)

El(i, j) =

{

1, if (E(i, j) = 1) ∧ (vi, vj ∈ Vl)
0, otherwise.

(14)

We obtain disjoint and connected subgraphs for Gp using
the aforementioned definition as G

p
i , i = 1, . . . , I . However,

there may be many noise terms. To discard them, we select
subgraphs having at least two vertices. Similarly, we obtain
disjoint and connected subgraphs for Gq as G

q
j , j = 1, . . . , J .

For the Adana8 subpart image, we provide the obtained disjoint
and connected subgraphs G

p
i , i = 1, 2, in Fig. 7(a). As can be

seen, each disjoint and connected subgraph lies on a different
building in this test image.

As we hypothesized, each subgraph G
p
i , i = 1, . . . , I , and

G
q
j , j = 1, . . . , J , represents a candidate building. To locate

buildings, we obtain the region of each subgraph as A(Gp
i ) and

A(Gq
j) separately. Some subgraphs in G

p
i and G

q
j may represent

the same building. In other words, the building may be detected

Fig. 8. Detected buildings in the Adana8 test image.

by both dark and bright building templates. To eliminate double
counts, we obtain the union of regions as

F = A (Gp
i )

⋃

A
(

G
q
j

)

∀i, j. (15)

We apply binary labeling on F and obtain its connected com-
ponents [27]. Each connected component represents a building.
If the size of a connected component is less than 1000 pixels,
we take it to be noise and discard it. This corresponds to
approximately a building with a size of 6 × 5 pixels in the
original image (remember, we upsample the test image by six
in each coordinate at the beginning). We obtain the center of
mass of each connected component and take it as the location
of the building it represents.

We provide the building-detection result on the Adana8

subpart image in Fig. 7(b). As can be seen, the two buildings in
this image are correctly detected. We also provide the building-
detection results on the Adana8 test image in Fig. 8. Again,
most of the buildings are correctly detected in this test image.
Since the contrast between the background and the building
rooftops are very low for this image, it is really hard to detect
these buildings even for a human observer. In the next section,
we quantify our building-detection results on a diverse test set.

V. EXPERIMENTS

We test our urban-area- and building-detection methods on
28 panchromatic Ikonos images. Of these images, 19 are ac-
quired from different sites in Adana, Turkey. Five of these
images are taken from Ankara, Turkey, and four of these
images are taken from Istanbul, Turkey. In these test images,
the sizes and shapes of buildings, their proximity, environment,
and contrast w.r.t. background all differ. These test images are
specifically selected to represent a wide and diverse urban area
and building characteristics. We provide our test images (in the
first columns) in Figs. 9–11. In these figures, we provide the
detected urban area for each test image in the second columns.
We also provide the detected buildings for each test image in
the third columns. In the following sections, we analyze these
detection results quantitatively.

A. Urban-Area Detection

We start analyzing the urban-area-detection results. As can
be seen in Figs. 9–11 (second columns), our method labels the
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Fig. 9. Test results for Adana{1,2,3,4,5,6,7,9,10,11} images for each row
separately. (First column) Test images. (Second column) Detected urban areas.
(Third column) Detected buildings.

urban area for each test image fairly well. To quantify these
detection results, we formed the ground truth for each test
image to the best of our knowledge. In forming the ground
truth, we label a region as urban if it contains building clus-

Fig. 10. Test results for Adana{12,13,14,15,16,17,18,19} images for each row
separately. (First column) Test images. (Second column) Detected urban areas.
(Third column) Detected buildings.

ters, gardens around them, and nearby street segments joining
them. We provide the urban-area-detection performances (in
percentages) for all test images in Table I. In this table, Pd

stands for probability of detection (correct urban-area-detection
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Fig. 11. Test results for Ankara{1,2,3,4,5} and Istanbul{1,2,3,4} images for
each row separately. (First column) Test images. (Second column) Detected
urban areas. (Third column) Detected buildings.

ratio), and Pf stands for probability of false alarm (false urban-
area-detection ratio). The size of each image and the number of
urban-area pixels (in the ground truth image), labeled as “UA,”
are also given in this table.

TABLE I
URBAN-AREA-DETECTION PERFORMANCES

(IN PERCENTAGES) FOR TEST IMAGES

We obtain 89.62% correct urban-area detection and 8.03%
false-alarm rates over 739 263 pixels of total urban area labeled
from 28 test images. For our diverse test set, this result is very
promising. Table I can give us further information on our urban-
area-detection method. The lowest urban-area-detection rate is
obtained on the Istanbul3 image. Here, buildings are sparse.
Therefore, the region does not show strong urban characteris-
tics. In other words, there are many nonurban pixels surround-
ing building clusters. Since our urban-area-detection method
depends on building-cluster detection, this poor performance is
reasonable. However, the false-alarm rate for this image is fairly
low. The highest false-alarm rate is obtained on the Istanbul4
image. The reason for this high false-alarm rate is that some
nearby regions are also taken as urban. The best urban-area-
detection rate is obtained on the Istanbul2 image.

B. Building Detection

Having detected urban areas, we next concentrate on detect-
ing buildings. As can be seen in Figs. 9–11 (third columns),
our method detects buildings in each urban area fairly well.
To quantify building-detection results, we apply the following
methodology. If a part of a building is detected, we assume
it to be detected correctly. If our method detects a building
multiple times (particularly for large buildings), we assume it to
be detected correctly. If a building is in construction (showing
building characteristics), we expect our method to detect it.
Based on these assumptions, we provide the building-detection
performance for all test images in Table II. We tabulate the
total number of buildings in each test image under the column
“Buildings.” In this table, “TD” stands for the total number of
buildings correctly detected in the image. “FA” stands for the
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TABLE II
BUILDING-DETECTION PERFORMANCES FOR TEST IMAGES

total number of false alarms in the image. We also provide the
percentages of TD and FA for each test image in the last two
columns of the table.

In 28 different test images, our method detected 718 of
812 buildings correctly. This corresponds to an 88.4% correct
detection rate. There are also 117 false alarms in building
detection, and this corresponds to a 14.4% false-alarm rate. On
such a diverse test set, these results are very promising.

Next, we consider some test images in detail. The lowest
building detection rate is obtained on the Adana16 image. The
main reason for this poor performance is that some build-
ings are closely spaced, and they are small in this test site.
Therefore, some of the buildings could not be detected. The
highest false-alarm rate is obtained on the Adana2 image. Some
road segments are also labeled as buildings in this test image.
This is the main reason for such a high false-alarm rate. The
highest building detection rate is obtained on the Adana{2,4,7},
Ankara{1,3,4}, and Istanbul{1,3,4} images. In these test images,
buildings are well separated and distinctive. Therefore, our
method works fairly well on them. The lowest false-alarm rate
is obtained on the Adana14, Ankara5, and Istanbul2 images. In
these test images, there are no buildinglike structures besides
the actual buildings. This leads to a low false-alarm rate.

Aside from these test images, there are other noteworthy
test sites. For the Adana5 test image, the buildings are closely
spaced. However, most of the buildings are correctly detected.
For the Adana11 test image, the buildings are occluded by trees.
It is even hard for a human expert to detect buildings in this
image. However, again, most of the buildings are correctly
detected. For the Adana15 test image, there are regularly spaced
trees near buildings. One may think that, our building-detection

TABLE III
URBAN-AREA-DETECTION RESULTS ON THE Adana8 IMAGE.

DIFFERENT VARIATIONS

method may fail. However, for this test image, there are only
six false alarms, and almost all of the buildings are correctly
detected. In the Adana8 and Adana9 test images, the contrast
between buildings and background is fairly low. However, cor-
rect building-detection rates for these images are fairly well. For
the Ankara3 test image, there are complex buildings having
different parts with different intensity values, such as with
two different kinds of rooftops. This is also the case in the
Istanbul3 image. Our method can detect all of these buildings in
these images without any problem. Based on these experimental
results, we can conclude that our building-detection method
works fairly well on a diverse test set.

There are also some minor shortcomings for our building-
detection method. First, very closely spaced buildings cannot
be separated. They are detected as a single building. Second,
the contrast between the background and the building is very
important for detection. If the contrast is low, the building may
be missed. Third, some ground formations resembling buildings
(such as sand hillocks) are major reasons for false detections.
Finally, our building-detection method is limited with the tem-
plates used. If one needs to detect more complex buildings, then
the solution is to use the corresponding template.

C. Tests on Different Modules

As mentioned in previous sections, our urban-area- and
building-detection methods are composed of many submodules
(such as BF, SIFT keypoint extraction, and building template
matching). Therefore, in this section, we test the effect of
these different submodules on the final detection results. We
pick the Adana8 test image for this purpose. First, we test the
effect of the bilateral filter. There is also a faster version of BF
proposed by Paris and Durand [24]. We call this filtering as
“fast BF.” Instead of the normal bilateral filtering (we call it
as “normal BF”), we use this fast implementation. Second, we
test the effect of the building templates for detection. Instead of
using two building templates (as dark and bright), we test using
each template alone. Based on these variations, we provide the
urban-area-detection results in Table III.

As can be seen in Table III, in detecting the urban area,
the dark building template has the lowest performance. Using
both building templates drastically improves the performance.
Using normal or fast BF has a significant effect in urban-area-
detection performance. We also provide the building-detection
results based on the same variations in Table IV.

As can be seen in Table IV, in detecting buildings, the bright
building template has the lowest performance. Using the dark
building template or both templates improves the building-
detection performance. The type of the bilateral filter does
not affect the building-detection performance much. However,
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TABLE IV
BUILDING-DETECTION RESULTS ON THE Adana8 IMAGE.

DIFFERENT VARIATIONS

using the fast bilateral filter implementation slightly decreases
the building-detection performance in all template settings.

D. Tests on Parameter Values

In order to validate our parameter settings, we explore them
in detail here. As a benchmark, we pick the building-detection
results [in terms of true detection (TD)] on the Adana8 test
image. We change the value of each parameter and plot the TD
values in Fig. 12. As can be seen, for ǫ1, the optimal parameter
is around 30. As we increase ǫ1, the TD performance does not
decrease drastically. For ǫ3, the acceptable value is around 4.
Increasing ǫ3 further does not change the result further. We
obtain a similar result for ǫ4. The optimal value is around
0.1, and increasing ǫ4 does not affect the result much. These
experiments indicate the fairly robust characteristics of our
parameter adjustment methods. Further details on the physical
meanings of these parameters can be found in the previous
sections.

E. Comparison With Derivative of Morphological Profiles

We also compare our building-detection method with the
well-known derivative morphological profiles (DMP) method
[1]. To note here, DMP is not introduced for building detection
alone. However, because of its strength, it can also be used
for building detection in panchromatic images. Therefore, we
pick three test images and provide their segmentation results
using DMP in Fig. 13. In testing DMP, we applied its principal
component-analysis-based implementation. In segmentation,
we picked the best threshold value for the Adana8 test image.
As can be seen in Fig. 13, detected buildings using DMP is
not as good as our method. The main reason for this difference
is that we designed our system to building and urban-area
detection alone. On the other hand, the time needed for a DMP
operation on the Adana8 test image is 19.19 s. This timing
is much less than the time needed for our method. Next, we
discuss our method’s timing requirements in detail.

F. Computation Times

We finally tabulate the time needed to the detect urban areas
and buildings. To note here, timing directly depends on the test
image. As the number of buildings in a test image increases, the
number of local features will also increase. Therefore, the graph
matching and graph cut algorithms will need more computation
times. To give an idea for the possible reader, we consider the
Adana8 test image as a benchmark. We tabulate all CPU timings
for each module in Table V. In reporting these results, we used
a PC with an Intel Core2Due processor with a 2.13-GHz clock

Fig. 12. TD versus ǫ values for the building-detection performance on the
Adana8 test image. (a) TD versus ǫ1. (b) TD versus ǫ3. (c) TD versus ǫ4.

speed and having 4 GB of RAM. We used Matlab as our coding
platform except the original SIFT implementation. The SIFT
package is taken from D. Lowe’s web site, and it is written in
C. If we were to use the C platform for coding all modules, we
would have a much faster system.
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Fig. 13. DMP test results on the Adana1, Adana8, and Adana10 images.
(a) Adana1. (b) Adana8. (c) Adana10.

TABLE V
CPU TIMES (IN SECONDS) FOR URBAN-AREA- AND

BUILDING-DETECTION OPERATIONS ON THE Adana8 TEST IMAGE

In Table V, we provide both normal and fast BF imple-
mentations. Similarly, we provide the computation times for
using only the dark building template and both templates.
We can summarize the different scenarios as follows. Using
normal BF and both templates, urban-area-detection operation
requires 81.97 s. In the same setting, building detection requires
269.44 s. This scenario is for obtaining the best performances
for both urban-area and building detection. If we can tolerate
slightly lower detection performances, then we can use fast
BF and only the dark template. In this scenario, urban-area
detection requires only 19.31 s. Here, building detection only
requires 136.37 s. The possible reader should select the suitable
scenario (both in terms of detection performance and CPU time
needed) for his or her needs.

VI. FINAL REMARKS

This study focuses on urban-area and building detection on
VHR satellite images. To do so, we introduce novel methods
based on SIFT keypoints, multiple subgraph matching, and
graph cut methods. We picked two template building images,
one representing dark buildings and the other representing
bright buildings. We obtain their SIFT keypoints. We also
obtain the SIFT keypoints for the test image. Then, by applying
multiple subgraph matching between template and test image
SIFT keypoints, we detect the urban area in the test image.
From the detected urban area, we detect separate buildings
using a novel graph cut method. We test both urban-area- and
building-detection methods on a diverse and representative im-
age set. We obtain an 89.62% correct urban-area-detection per-
formance with an 8.03% false-alarm rate. This performance on
such a diverse test set is noteworthy. False alarms in urban-area
detection mostly occur because of terrain formations resem-
bling buildings (such as sand hillocks) in satellite images. The
building-detection performance on our test image set is 88.4%
with a 14.4% false-alarm rate. This performance on 28 test
images having different building characteristics is very promis-

ing. Our building-detection method may not detect buildings if
the contrast between their rooftop and the background is low.
Since we are only using the grayscale information in the satel-
lite image, this is reasonable. Moreover, some closely spaced
buildings may not be detected correctly. This is the major
drawback of our method. In a future study, we plan to embed
the multispectral information to detect closely spaced buildings.
Finally, we should mention that the proposed method can be
generalized to detect any kind of object in satellite images.
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