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Abstract

Satellite observations from the Ozone Monitoring Instrument are used in support of model evaluation 
of seasonal average results from the U.S. Environmental Protection Agency (EPA) Community 
Multi-scale Air Quality (CMAQ) model. Model evaluation was conducted with the purpose of 
identifying regional biases in model output compared to tropospheric columns. Comparison with 
tropospheric column NO2, an anthropogenic indicator, reveal that there are uncertainties regarding 
the emissions inventory input to CMAQ. Results have implications for developing accurate 
model inputs to produce accurate model output for relevant health impact assessments, which are 
increasingly important with increasing population, urbanization, and pollution in the region.

1. Introduction

India’s population exceeds 1.25 billion people, many of whom are exposed to exceedingly high 
ambient pollution, damaging human health and leading to illness and premature death. Indian 
cities rank among the most polluted in the world [World Health Organization, 2014],  for instance 
the capital city, New Delhi, averages concentrations of 286 µg/m³ and 153 µg/m³ for PM10 and 
PM2.5 respectively2. Fine particulate matter, PM2.5, is of greatest health concern in  India,  and  is  a  
pollutant  that  is  both  directly  emitted  as  well  as  formed  from atmospheric
reactions involving nitrogen oxides (NOX) and sulfur dioxide (SO2). Of increasing importance 
is surface level O3, formed from the reaction of NOX and volatile organic compounds (VOCs). 
Particulate ambient air pollution leads to 3.7 million deaths globally, with 570,000 occurring in 
India each year, and another 12,000 people estimated from gaseous O3 [Ghude et al., 2016]. Air 
pollution is a major health problem in India, affecting millions of residents and visitors.

India’s pollution has grown coupled with the economy, population growth, urbanization, and 
motorization. Satellite data has shown that NOX and SO2 emissions have increased by 70% in 
recent years [Lu and Streets, 2012; Lu et al., 2013], and surface observations from the CPCB 
show particulate concentrations have persistently increased in cities with 46 million people or 
more [ENVIS Centre on Control of Pollution, 2016]. Similarly, concentrations of O3 have been 
increasing at a rate of 1.3% annually in Delhi [Kumari et al., 2013]. Pollution in India does not 
go unnoticed, as recent efforts sought to reduce pollution in major cities including Delhi through 
transitions to liquid petroleum gas (LPG) for transportation [Bell et al., 2004; National Ambient 
Air Quality Monitoring, 2006], quantify pollution in Agra damaging to the Taj Mahal [Bergin et 
al., 2015], and assess source contributions in major cities across India [Guttikunda et al., 2014]. 
However, quantifiable efforts to improve air quality remain limited by weak enforcement power of 
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the Central Pollution Control Board and limitations in detailed air quality information in diverse 
regions across India.

This research examines the connections between energy, emissions, and air quality in India using a 
suite of air quality assessment tools and techniques. Here, we use vertical column densities of NO2 
to evaluate regional air quality model performance in India, including comparing modeled with 
satellite-derived surface NO2. Similar tropospheric column evaluation for formaldehyde (HCHO), 
a VOC, can be found in the Supplemental Information. This research investigates the use of 
satellite observations and spatiotemporal trend analysis in support of model column evaluation. A 
combination of air quality tools is imperative to this research as models and satellite observations 
offer vast spatiotemporal coverage to ensure thorough evaluation of air quality conditions in India, 
a highly polluted, developing region. Additional trend analysis in satellite observations of nitrogen 
dioxide (NO2), SO2, and HCHO from the Ozone Monitoring Instrument (OMI) and aerosol optical 
depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented in 
the Supplemental Information.

1.1 Satellite Observations for Air Quality Analysis

Enhanced spatial coverage by satellites fills in gaps left behind by surface observations. This supply 
of data is critical in regions like India, with spatial coverage mostly limited to urban areas and 
operational accuracy dissimilar across Indian states [ENVIS Centre on Control of Pollution, 2016]. 
Many studies on Indian air quality rely on satellite observations as a result of these biases and 
limited availability of ground-based monitor data across India, including NO2 from OMI aboard 
the Aura satellite [Lamsal et al., 2010; Ghude et al., 2013]. Satellite observations from OMI and 
other instruments have been previously used to evaluate emissions and surface concentrations 
[Lamsal et al., 2010; Lu and Streets, 2012; Lu et al., 2013; Streets et al., 2013], observe trends in 
air quality [Lamsal et al., 2013, 2015; Duncan et al., 2015; Krotkov et al., 2015], evaluate AOD 
for dust or anthropogenic pollution [King et al., 2003; Isakov et al., 2007; Zhao et al., 2010], and 
estimate NOX to VOC ratios in assessing O3 regimes [Jin and Holloway, 2015]. Limitations of 
satellite observations include temporal availability (i.e. once per day), and the fact that cloud or 
intense smoke coverage can obscure satellite imagery [Zhang et al., 2009; Muntaseer Billah Ibn 
Azkar et al., 2012]. Despite temporal and retrieval limitations, satellite observations provide a 
significant amount of data to evaluate a wide range of air quality phenomenon and circumstances.

1.2 Satellite Observations Supporting Model Result Evaluation

Satellite observations are an increasingly useful tool for air quality model analysis. Tropospheric 
column observations can be used to evaluate model performance in terms of relevant column 
output, examining emissions in a region, and drawing inferences for photochemical relationships 
among precursor species. They have been used to evaluate regional model results [Zhang et al., 
2009; Muntaseer Billah Ibn Azkar et al., 2012; Kemball-Cook et al., 2015], in support of O3 source 
assessment [McDonald-Buller et al., 2011], and for biogenic contribution assessment [Carlton and 
Baker, 2011]. The availability and use of satellite retrievals of air pollutant for model evaluation 
is incredibly useful to assess model performance in between surface monitors, important for rural-
regional conclusions.



The Wisconsin Horizontal Interpolation Program for Satellites (WHIPS) allows simpler 
comparison between model results and satellite observations [Oberman et al., 2014]. Produced 
at the University of Wisconsin—Madison, WHIPS interpolates Level 2 satellite data for select 
atmospheric constituents to a use-specified model grid. This allows nearly one-to-one comparison 
between modeled and satellite tropospheric columns. WHIPS has been used previously for model 
evaluation in numerous air quality studies in the U.S. [Harkey et al., 2015; Kemball-Cook et al., 
2015], and here WHIPS is used to process satellite data for air quality model evaluation in India.

Developing the capability of CMAQ, a policy-relevant regional air quality model, for answering 
air quality questions related to energy and emissions in India will be inherently helpful in future 
experiments isolating emission sector or airshed contributions to regional air quality. In this 
research validate the use of CMAQ with seasonal space-borne observation evaluation. Results are 
presented for simulations that include windblown dust, and implications and limitations of this 
modeling study are discussed.

2. Data and Methods

2.1 Satellite Interpolation

Space-based observations used for model evaluation are from OMI aboard the Aura satellite 
[National Aeronautics and Space Administration, 2012]. Tropospheric column observations 
include NO2 and HCHO (see Supplemental Information), indicative of urban combustion sources 
and a proxy for biogenic contributions, respectively. We assess tropospheric columns of NO2 
to determine spatial consistencies between modeled and observed. Finally, we present surface- 
derived NO2 from OMI as a way to estimate surface concentrations from OMI.

Daily tropospheric column values were downloaded from the TEMIS database3 and NASA Mirador4 
respectively for the overpass time across India of approximately 2 PM local time in Level 2 data 
format for further processing in WHIPS. Downloaded data were processed through WHIPS, which 
regrids Level 2 processed satellite data to be consistent with a model grid format the user inputs, in 
our case one that is comparable with our CMAQ grid and domain of choice. Through WHIPS we 
are able to provide a one-to-one comparison between OMI observed columns and CMAQ columns 
once an averaging kernel has been applied to model data columns.

2.3 Model Simulations from CMAQ

Model simulations were conducted using CMAQ v5.0.1 at 36 km by 36 km over the Indian sub- 
continent and surrounding countries including parts of Afghanistan, Pakistan, China, Nepal, 
Bangladesh, and Bhutan (5°N to 40°N, 60°E to 100°E). Model simulations are conducted for four 
seasonally representative months—January, April, July, and October—representing winter, pre-
monsoon, monsoon, and post-monsoon fall respectively. The CMAQ model includes processes 
related to surface and upper level emissions, photolysis, gaseous and particulate chemistry, 
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deposition, and dispersion across grid cells and 36 vertical layers in the troposphere up to about 
150hPa [Byun and Schere, 2006]. Model specifications include the chemistry bond 05 (CB05) 
chemical mechanism [Yarwood et al., 2005], the AERO 6 aerosol mechanism, and the inclusion of 
windblown dust [Dong et al., 2015; Tong et al., 2015]. A detailed description of updates to the dust 
mechanism is included in the Supplemental Information.

CMAQ requires inputs including boundary and initial conditions, emissions, and meteorology. 
Boundary and initial conditions remain static for all simulations. Anthropogenic emissions for year 
2010 are regridded to 36 km by 36 km from 0.5 degree by 0.5 degree output from the Greenhouse 
Gas-Air Pollution Interactions and Synergies (GAINS) Model. Anthropogenic emission sectors 
include energy combustion, domestic combustion, transportation, agriculture, extraction and 
removal of energy sources, area sources, and industrial sources. Meteorology for 2010 is simulated 
using the Weather Research and Forecasting (WRF) model v3.2 and Preprocessing System (WPS) 
and ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasting 
(ECMWF) [Dee et al., 2011]. WRF is used to interpolate 6- hour data to hourly data. Data from 
WRF is simulated using Grell cumulus parameterization [Grell and Devenyi, 2002] with 36 vertical 
sigma layers from the surface to approximately 150hPa. Meteorological data was preprocessed 
for use in CMAQ with the Meteorology- Chemistry Interface Processor (MCIP). Gaseous and 
particulate concentrations from model output at the surface and tropospheric column are validated 
with available surface observations and satellite observations, including the comparison with NO2 
columns presented here.

3. Results

3.1 3.1 Tropospheric Column NO
2

Highest OMI NO2 column densities are found nearly year round stretching across northern India 
bordering the Himalayan Mountains, as well as in cities such as Delhi (northwest), Mumbai 
(southwest coast), and Kolkata (east) (Fig. 1a-d). Because of the heavy monsoon rains in July, filters 
removing cloud cover greater than 30% are more prevalent in July than in any other month, leading 
to more grid cells without data in July as compared to other months (Fig. 1c). Monthly variations 
show lowest NO2 column densities in July, representative of the monsoon season with greatest 
rainfall rates, and greatest vertical column densities in January as a result of lower rainfall, shallow 
boundary layer height, and thus reduced wind speeds (Fig.1a). During winter, increased emissions 
from wintertime heating occur due to biomass burning in low- income urban and rural areas where 
biomass is the primary heating and cooking fuel. April exhibits consistent NO2 densities across 
much of India, with column totals peaking in northwestern India near Delhi. Relatively higher NO2 
column densities in April (Fig. 1b) and October (Fig. 1d) are found in Delhi and industrial regions 
in the eastern part of the country. High-density NO2 tropospheric columns in these regions are co-
located with emissions from aluminum manufacturing plants, located in Renukoot in the state of 
Uttar Pradesh and coal-fired power plants and industrial sources directly south in Korba in the state 
of Chattisgarh. Tropospheric column densities over Renukoot and Korba, with a population of 
about 350,000 and 315,000 people respectively, are often as large as column densities found over 
Delhi, a megacity with a population surpassing 12 million people. Industries in India are subject to 
minimal enforced emissions regulations, therefore OMI tropospheric columns detecting high  NO2 
densities in these regions are therefore unsurprising.



 Fig. 1: Tropospheric column NO2 from OMI for (a) January, (b) April, (c) July, and (d) October, from CMAQ
for (e) January, (f) April, (g) July, and (h) October, and the percent change between model and observed for (i)

January, (j) April, (k) July, and (l) October.



Comparative NO2 tropospheric column densities extracted from CMAQ tend to over-estimate 
column densities in urban regions, namely Delhi, and underestimate elsewhere across the country 
(Fig. 1e-h). In particular, regions of industry noted in the eastern part of India yield very miniscule 
modeled tropospheric column densities. Highest densities occur in January, coincident with the 
shallow boundary layer and low rainfall characteristic of wintertime meteorology (Figure 1e), and 
lowest in July due to high levels of mixing and monsoon rainfall (Fig. 1g). Column densities in 
Delhi tend to remain high despite high amounts of rainfall. In addition, CMAQ columns appear to 
overestimate NO2 in the urban south (e.g. Surat and Mumbai, along the west coast) and underestimate 
NO2 across rural regions. Other regions where CMAQ seems to overestimate NO2 tropospheric 
columns occur in parts of Nepal (January) and Bhutan (all seasons). Reasons for discrepancies 
are likely due to difficulties in accurately accounting for emissions in these regions coupled with 
modeling the topography of the Himalayas. Despite differences in magnitude, monthly variations 
in modeled NO2 column densities tend to mimic those observed. However, modeled tropospheric 
columns are only indicative of a response to meteorology, because emissions in our simulations do 
not vary seasonally. Across all seasons, modeled tropospheric columns of NO2 are overestimated 
in urban areas and underestimated everywhere else regionally (Fig. 1i-l).

Correlations between OMI and CMAQ tropospheric NO2 columns are moderate, at r2 = 0.42 across 
all four seasonally representative simulations (Table 1). Correlations are most positive in April 
and weakest in July. Poor correlations in July are likely a result of the monsoon season and a low 
precipitation bias in MCIP, resulting in greater modeled pollution. Annual average normalized 
mean bias is large and negative, with the greatest low bias in July (average: -65.8%, July: -80.9%), 
and as such annual average normalize mean error remains large at 77.0%. In all four simulations, 
model tropospheric densities over Delhi, Mumbai, and other highly populated regions exhibit high 
biases compared to OMI tropospheric columns by more than several molecules/cm2. Outside of 
major Indian cities in rural India, model NO2 columns exhibit extreme low biases compared with 
satellite-observed columns. From (Fig.1) we saw that much of the model domain exhibited a low 
bias in comparison to OMI observations, thus low model values in rural areas dominate domain 
average statistics.

Table 1: Correlations, normalized mean biases, and normalized mean errors for CMAQ and 
OMI NO2 tropospheric columns for January, April, July, and October monthly averages. Data 

points are limited, with a maximum of 123 time steps assuming one overpass for each day. 
Correlations differ across seasons due to meteorology or changes in non-anthropogenic emis-
sion inventories. A land mask has been applied to both datasets, and statistics are only taken 

for grid cells with land cover.



3.2 Satellite-Derived Surface NO
2
 Concentrations

From comparing OMI tropospheric NO2 columns and surface observations of NO2 at various 
locations across India (not shown), it is apparent that CMAQ exhibits a domain average low bias 
yet has a consistent high bias in urban areas. Much of the sub-continent remains unmonitored, 
but we can estimate satellite-derived surface concentrations for surface comparison using OMI 
and CMAQ tropospheric columns and CMAQ surface concentrations. Here, we use an identical 
equation structure to estimate surface observations as detected by OMI:

We compare annual average surface NO2 concentration from CMAQ at OMI overpass time 
(2PM, Fig. 1a), and surface-estimated OMI NO2 (Fig. 1b). Average surface NO2 concentrations 
at overpass time display a similar spatial distribution to annual average modeled surface NO2, 
but concentrations are lower across the country, including in Mumbai, Kolkata, and Delhi due 
to higher afternoon chemical reaction of NO2 and VOCs to form O3. Model concentrations at 
the 2PM overpass time are generally lower than surface-estimated NO2 from OMI tropospheric 
columns. Across most of India, OMI-derived surface concentrations exceed 1- 2 ppb, with high 
instances of urban and industrial regions exposed. OMI-estimated surface concentrations in the 
industrialized east exhibit NO2 surface concentrations more than three  times modeled surface 
concentrations, from less than 0.5 ppb estimated by CMAQ to more than 5 ppb estimated by OMI 
at the surface. Domain average surface concentrations differ by 0.7 ppb, with average NO2 from 
CMAQ of 0.3 ppb and average estimated NO2 from OMI of 1.0 ppb.  Vast differences suggest 
there are significant underestimates of NOX species in the emissions inventories used in these 
simulations, especially across southern India.

4. Summary and Conclusions

This report presents statistical evaluation of modeled tropospheric columns by using OMI NO2 
tropospheric columns to characterize and evaluate performance under different meteorological 
conditions from the summer monsoon to winter dry season. Model simulations with enhanced 
windblown dust were evaluated with satellite observations to characterize performance of NO2 as a 
result of including the dust parameterization. Evaluation techniques included satellite tropospheric 
column observations and deriving satellite-estimated surface concentrations of NO2. Although 
some global and regional models have been used to model air quality in south Asia, this is one of 
the earliest applications of CMAQ to simulate and evaluate modeled air quality in India. We find 
that model biases compared to OMI NO2 tropospheric column densities are quite large and negative 
in non-urban regions across the domain. Large biases may exist because of limitations in spatial 
distribution and quantity of NOX emissions input into CMAQ, including the fact that our simulations 
do not include NOX emissions from lightning. India, in the tropics, is prone to a significant number 
of annual lightning flashes across the entire country, including regions which already exhibit a high 
bias compared to OMI [Cecil et al., 2014]. However, regional average low biases between OMI 
NO2 tropospheric columns and regional and global chemistry models are common [Allen et al., 
2012; Kemball-Cook et al., 2015]. In the case of this study, we find that low biases exist in many 

Eq. 2:



non-urban regions across India between 
modeled and OMI NO2 column densities as 
well as between modeled, while modeled 
columns and surface concentrations at 
Delhi and other urban locations exhibit 
a high bias. Surface NO2 concentrations 
estimated from OMI tropospheric columns 
indicate that CMAQ concentrations are low 
by an average of 0.7 ppb across the domain. 
From this, we can attribute these biases 
to two factors: lack of upper tropospheric 
NOX  emissions from lightning particularly 
during the monsoon and periods of active 
convection, and an underestimate of rural 
NOX emissions in our inventory.

Model biases are lowest in northern India, 
where the population and emissions input 
into CMAQ are largest. Uncertainties in 
emissions inventories are commonplace 
across developing regions where much of 
the country’s energy may be derived from 
unaccountable biomass burning, industries 
and  power plants begin operating rapidly, 
private transportation is burgeoning, and 
direct emissions from easily measureable 
stationary sources largely remain 
unquantified because  the  industries 
themselves are given that task. These are 
inherent problems that require  addressing,   
however they  were  will  require significant 
effort to improve. In the present study, 
anthropogenic emissions are divvied up 
evenly into days, and allocated during 
typical emitting hours per sector.More 
detailed temporal emissions distributions 
have been quantified, mostly in Delhi 
[Guttikunda and Calori, 2013; Pant et al., 
2015], and season specific emissions have 
been measured across urban areas using tracers in source apportionment studies [Chowdhury et al., 
2007; Behera and Sharma, 2010; Ghosh et al., 2014]. Currently, monthly variations in ambient air 
quality are the result of meteorological impacts, where greatest pollution was evident in the winter, 
when PBL heights are shallow, and lowest during the monsoon season due to pollution “rain out.” 
Implementing seasonally varying anthropogenic emissions will likely have a significant impact 
on pollutant concentrations and tropospheric column comparisons with satellite observations. 

Fig. 5: Annual average surface NO2 from CMAQ at over-
pass time (top), and OMI-derived surface NO2 concentrations 

(bottom). Serious discrepancies exist across much of the 
subcontinent, especially in central India and noticeable regions 
on industry in the east. Differences can largely be attributed to 

emissions inventory shortcomings. The average CMAQ surface 
NO2 at overpass time is 0.3 ppb and the average OMI- derived 

surface NO2 concentration is 1.02 ppb.



Adding such seasonality to anthropogenic emissions will likely improve comparison with satellite 
observations.
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