
RESEARCH ARTICLE

Urban heat islands and landscape heterogeneity: linking

spatiotemporal variations in surface temperatures

to land-cover and socioeconomic patterns

Alexander Buyantuyev Æ Jianguo Wu

Received: 4 February 2009 / Accepted: 17 August 2009 / Published online: 4 September 2009
� Springer Science+Business Media B.V. 2009

Abstract The urban heat island (UHI) phenomenon

is a common environmental problem in urban land-

scapes which affects both climatic and ecological

processes. Here we examined the diurnal and sea-

sonal characteristics of the Surface UHI in relation to

land-cover properties in the Phoenix metropolitan

region, located in the northern Sonoran desert,

Arizona, USA. Surface temperature patterns derived

from the Advanced Spaceborne Thermal Emission

and Reflection Radiometer for two day-night pairs of

imagery from the summer (June) and the autumn

(October) seasons were analyzed. Although the urban

core was generally warmer than the rest of the area

(especially at night), no consistent trends were found

along the urbanization gradient. October daytime data

showed that most of the urbanized area acted as a

heat sink. Temperature patterns also revealed intra-

urban temperature differences that were as large as,

or even larger than, urban–rural differences. Regres-

sion analyses confirmed the important role of vege-

tation (daytime) and pavements (nighttime) in

explaining spatio-temporal variation of surface tem-

peratures. While these variables appear to be the main

drivers of surface temperatures, their effects on

surface temperatures are mediated considerably by

humans as suggested by the high correlation between

daytime temperatures and median family income. At

night, however, the neighborhood socio-economic

status was a much less controlling factor of surface

temperatures. Finally, this study utilized geographi-

cally weighted regression which accounts for spa-

tially varying relationships, and as such it is a more

appropriate analytical framework for conducting

research involving multiple spatial data layers with

autocorrelated structures.
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Introduction

Despite differences in regional climates, cities world-

wide have developed one common characteristic—

the urban heat island (UHI), i.e., urban areas have

higher air and surface temperatures than their rural

surroundings (Arnfield 2003; Oke 1982, 1997; Voogt
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2002). UHI occurs as a result of land-cover transfor-

mations, mainly the replacement of natural vegetation

and agricultural lands by impervious surfaces (con-

crete, asphalt, roof tops, and building walls) associ-

ated with urban land uses. These changes modify near

surface energy budgets by reducing evapotranspira-

tion, mounting solar energy absorbing surfaces, and

creating heat-trapping canyon-like urban morphol-

ogy. Excessive heat in cities is continuously produced

and emitted to the atmosphere by building infrastruc-

ture and transportation. Urban areas have become

increasingly important drivers of local and regional

climatic and environmental changes with many

deleterious consequences for social and ecological

processes (Bonan 2002; Wu 2008a, b). In arid and

semi-arid climates UHIs exert extra heat stress on

organisms, including humans. Located in the northern

Sonoran desert and characterized by mild winters and

hot summers, the Phoenix metropolitan region, USA

has an average annual daily maximum temperature of

30�C. With rapid urbanization in this area during the

last 50 years, the mean daily air temperature has

increased by 3.1�C and nighttime minimum temper-

ature by 5�C (Baker et al. 2002; Brazel et al. 2000).

Summers in Phoenix are characterized by a peak in

energy and residential water consumption (Baker

et al. 2002; Guhathakurta and Gober 2007; Watkins

et al. 2007). Understanding and quantifying UHI and

its factors are important steps toward improving the

quality of life of urbanites and achieving urban

sustainability in Phoenix and other cities (Grimm

et al. 2008; Wu 2008a).

It is important to recognize the multiplicity of

UHIs, characterized by the scale of analysis, type of

medium studied, and type of measurement instru-

mentation (Arnfield 2003). UHIs are commonly

measured in terms of air temperatures analyzed at

two scales—the urban canopy layer UHI and the

urban boundary layer UHI (Oke 1976). Remote

sensing made it possible to measure the upwelling

thermal radiance, and this indirect measurement of

surface, or skin, temperature is often referred to as the

Surface UHI (SUHI) (Roth et al. 1989; Voogt and

Oke 2003). Although UHI and SUHI tend to co-vary

spatially and temporally, the associations between air

and surface temperatures are not perfect and depend

on many factors. Specifically, surface temperatures

display a stronger dependence on microscale site

characteristics than air temperatures (Arnfield 2003;

Nichol 1996). Studies of urban surface temperatures

in the past two decades have advanced our under-

standing of spatial thermal patterns and their relation

to surface characteristics (Balling and Brazel 1988,

1989; Gallo et al. 1993b; Jauregui 1993; Lu and

Weng 2006; Nichol 1998; Owen et al. 1998b;

Quattrochi and Ridd 1998; Roth et al. 1989; Streutker

2002; Weng et al. 2004; Wilson et al. 2003; Xian and

Crane 2006), and elucidated urban surface energy

budgets (Grimmond and Oke 2002; Grossman-Clarke

et al. 2005; Hafner and Kidder 1999; Kato and

Yamaguchi 2007; Kim 1992; Voogt and Grimmond

2000).

Both UHI and SUHI develop primarily at night

throughout a year, and depend heavily on weather

conditions (Arnfield 2003; Souch and Grimmond

2006). The intensity of UHI in arid and semi-arid

environments is found to change seasonally due to the

high variability in vegetation (Jonsson 2004). It is

generally more intense during dry seasons when

leafless canopies and the dry and bright soil increase

the albedo. Reduced thermal heat capacity (lower heat

absorption) andmore effective radiative cooling of dry

grounds increase the urban–rural temperature contrast.

High similarities in surface characteristics between

urban and rural landscapes (e.g., Kuwait City) lead to

the lack of well-developed UHI (Nasrallah et al. 1990).

Urban vegetation, however, moderates surrounding

microclimates through increased latent heat exchange,

shading, and lack of heat from combustion sources

(Jonsson 2004; Spronken-Smith and Oke 1998). The

influence of urban parks and greenspaces as cooling

elements can extend in the order of hundreds of meters

beyond their boundaries (Spronken-Smith and Oke

1998; Upmanis et al. 1998).

Although spatial patterns of UHI and SUHI and

general characteristics of urban-to-rural temperature

differences have been extensively studied, a compre-

hensive understanding of how the heterogeneity of

land covers affects temperature distributions on

multiple spatial scales is still lacking. Thus, the

objectives of this study were twofold: (1) to quantify

diurnal and seasonal surface temperature variations in

the Phoenix metropolitan region at two spatial scales,

and (2) to explore biophysical and socioeconomic

factors that are responsible for the temperature

variations. Previous studies found strong correlations

between temperature and variables affecting its

spatial and temporal variation at both fine (Hartz
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et al. 2006; Stabler et al. 2005; Stefanov et al. 2004)

and coarse scales (Balling and Brazel 1988, 1989;

Brazel et al. 2007; Hsu 1984; Jenerette et al. 2007).

Here we used spectral and thermal data from the

Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer (ASTER) and auxiliary spatial GIS

data to further investigate the temporal and spatial

patterns of Phoenix’s SUHI. Specifically, we exam-

ined urban–rural differences and intra-urban variabil-

ity of surface temperatures using detailed land-cover

information. We also explored SUHI drivers that

were known to directly affect surface temperatures,

including percent vegetative cover, percent impervi-

ous surface, presence of open water, topography, and

land-cover heterogeneity. At the broader scale we

aggregated to the level of available socio-economic

data and used multiple regressions to assess their

contribution to the explanation of observed temper-

ature patterns.

Methods

ASTER data processing

We obtained atmospherically corrected level 2ASTER

data (Table 1) by using the search and retrieval tools

provided by the Land Processes Distributed Active

Archive Center (LP DAAC) of the US Geologic

Survey (USGS). Pairs of daytime and nighttime data

for hot and cold seasons were selected based on pre-

defined criteria: (1) No precipitation for at least 4 days

prior to imaging; (2) Relatively calm wind conditions;

(3) Cloud-free conditions; (4) No more than 3 days

between images in each day-night pair; (5) Maximal

spatial overlap between all datasets. Data from the

summer and late autumn of 2003 and consisting of

atmospherically and topographically corrected VNIR-

SWIR surface spectral reflectance (AST07, available

for daytime only) and surface kinetic temperature

(AST08, by special request) met these criteria. Sum-

mertime data were collected on June, 21 at 9:41 p.m.

and June, 24 at 11:15 a.m. LST. Autumn data were

collected on October, 20 and 21 at 9:35 p.m. and 11:21

a.m. LST, respectively. All images were subset to the

area of common spatial overlap, centered on the city of

Phoenix and extending 91 km in the north-south and

33 km in the west-east directions.

For each season we created land-cover maps

following two steps. In the initial image classification

we used the expert classification system (Stefanov

et al. 2001) which performs a posteriori sorting of

classes derived using the maximum likelihood clas-

sification. The system was developed for Landsat

data in ERDAS Imagine 8.7. It applies a sequence of

Boolean decision rules and uses information from

auxiliary data layers including land-use map, nor-

malized difference vegetation index (NDVI), water

Table 1 Characteristics of
the ASTER multispectral
instrument

Spectral subsystem Band Spectral
range (lm)

Spatial
resolution (m)

Visible—near infrared (VNIR) 1 0.52–0.60 15

2 0.63–0.69

3 N (nadir view) 0.76–0.86

3B (backward scan) 0.76–0.86

Shortwave—near infrared (SWIR) 4 1.60–1.70 30

5 2.145–2.185

6 2.185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

Thermal infrared (TIR) 10 8.125–8.475 90

11 8.475–8.825

12 8.925–9.275

13 10.25–10.95

14 10.95–11.65
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agricultural rights database, city boundaries, Native

American reservation boundaries, and variance tex-

ture images computed by a 3 9 3 pixel moving

window. We adapted the classification system to be

used with ASTER VNIR-SWIR data and acquired

contemporaneous auxiliary spatial layers. NDVI,

which provides an estimate of the abundance of

actively photosynthesizing vegetation (Huete and

Jackson 1987; Tucker 1979), was computed as

NDVI ¼ NIR� REDð Þ= NIRþ REDð Þ ð1Þ

where NIR corresponds to band 3 N and RED

corresponds to band 2. The index is based on the

property of green leaves to absorb wavelengths in the

red zone and strongly reflect in the near-infrared zone

of electromagnetic spectrum represented by values

ranging from -1 to 1. Bands 2 and 3 N were also

used to produce texture images. The second step was

to merge this preliminary map with the Southwest

Region GAP (SWReGAP) provisional land-cover

classification (Lowry et al. 2005). Anthropogenic

land covers were retained from the initial classifica-

tion but localities outside incorporated areas were

coded using natural vegetation categories from the

SWReGAP map. The final land-cover maps, one for

June (Fig. 1) and one for October, each has 15

categories and provide ecologically meaningful sub-

division of the area.

Surface temperature images were produced using

the temperature/emissivity separation hybrid

approach developed by the ASTER science team.

This method calculates temperature by means of

Plank’s Law using normalized emissivity of five

thermal bands of ASTER and has the relative

accuracy of ±0.3�C (Gillespie et al. 1998). Surface

temperature images were spatially co-registered by

using ground control points from the 0.6-m color

aerial photography mosaic and applying a first order

polynomial transformation.

Acquisition and processing of auxiliary spatial

data

We obtained the 10-m digital elevation model (DEM)

provided by the USGS and socio-economic geo-

graphic data compiled by the US Census Bureau. A

group of variables derived from these sources was

used to explore their statistical relationships with

surface temperature. DEM was resampled to the

resolution of ASTER and used to calculate slope and

aspect grids. We used socio-economic data at the

level of Census block group, a subdivision of the

Census tract that represent the smallest geographic

unit for which the desired information was available.

Several variables hypothesized to affect surface

temperature (Jenerette et al. 2007) were extracted

from the Decennial Census 2000 including total

population, population density, number of house-

holds, median household income, number of families,

median family income, number of housing units, and

median age of housing structures.

Statistical analyses

The magnitude and temporal variability of SUHI

were analyzed by stratifying temperature grids across

land-cover maps and computing descriptive statistics.

Land cover is an integrative characteristic which was

used to typify the urban–rural gradient with the major

assumption of relative uniformity of surface temper-

ature between pixels of a given land cover. To

compare between land covers we sampled all

temperature grids using a large subset (n[ 16,000)

of randomly chosen points spaced at no less than

300 m. This sampling design was chosen to minimize

the effects of spatial autocorrelation and to meet

independence assumption. Computed global Moran’s

I spatial autocorrelation indices (Fortin and Dale

2005) were 0.06 for June daytime and 0.17 for

nighttime, and 0.04 for October daytime and 0.1 for

nighttime, confirming spatial patterns of the four

samples were close to random. We used the Tukey–

Kramer HSD (Honestly Significant Difference) test

for unequal group sizes to compare means calculated

for each land cover (Neter et al. 1996).

Relationships between temperature, vegetation,

surface characteristics, and socio-economics were

investigated using traditional multiple ordinary least

squares (OLS) regression and geographically

weighted regression (GWR) (Fotheringham et al.

2002) focusing only on populated areas. To ensure all

variables were analyzed at a commensurate scale we

performed scale translation. We aggregated the data

to the coarsest spatial resolution represented by the

Census block groups (n = 1,368) for which demo-

graphic and economic characteristics were assumed

homogenous. We derived spatial averages of NDVI,

elevation, slope, aspect, and fractions of impervious
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surfaces (i.e., buildings and pavements), paved area,

and open water within each block group. Land-cover

variability was assessed as the number of land-cover

categories encountered in each block group. Final

selection of the independent variables was obtained

by stepwise forward and then stepwise backward

regressions. Bivariate regressions for temperature and

the two best independent variables from each subset

were constructed to describe the direction and

strength of relationships.

Geographically weighted regression is based on

the following interrelated principles: spatial data

Fig. 1 June 2003 land
cover map of Phoenix,
Arizona produced from
ASTER imagery
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often do not meet the assumption of stationarity;

relationship estimation is affected by spatial struc-

tures of data; relationships between variables are not

necessarily global (Fotheringham et al. 2002). To

deal with these issues GWR redefines the standard

OLS given by:

yi ¼ bo þ b1x i1 þ � � � þ bnx in þ ei ð2Þ

where yi is the dependent variable at point i; xi1 and

xin are independent variables at point i; bo, b1 and bn
are parameters to be estimated; and ei is the error term

at point i. The GWR framework allows local rather

than global parameters to be estimated and is

rewritten as:

yi ¼ bo ui; við Þ þ b1 ui; við Þxi1 þ � � � þ bn xin þ ei ð3Þ

where (ui,vi) denotes the coordinates of the ith data

point and bo and b1 are continuous functions of (u, v)

at point i (Fotheringham et al. 2002). The GWR

software calculates a local equation at each data point

where the contribution of a local sample is weighted

based on the spatial proximity to the data point.

Calibration of local models for our data used the

adaptive Gaussian spatial kernel, which is more

suited for data distributed unevenly in space. The

weighting function for kernel bandwidth was based

on minimization of the Akaike information criterion

(AICc). GWR outputs parameter estimates for each

local equation along with goodness-of-fit diagnostics

including local versions of coefficient of determina-

tion and the residuals (Fotheringham et al. 2002). All

statistical analyses other than GWR were performed

using SAS JMP 7.0.2 software.

Results

Seasonal and diurnal characteristics

of temperature variation across the Phoenix

metropolitan region

Surface temperature maps (Fig. 2) illustrate spatial

patterns and provide visual confirmation of associa-

tion with land covers. The urban core around the Sky

Harbor International airport along with major roads is

warmer than the rest of the developed area during

nighttime on both seasons. The majority of urban

locations can be as warm as, or cooler than, the

outside desert. The latter is particularly evident from

October daytime image when most of the urban and

agricultural areas emerged as ‘cool’ patches rather

than heat islands. Mountain slopes covered by

Arizona Upland (UPL) communities are generally

warm, but spatial patterns are very heterogeneous

reflecting differences in slope, aspect and shading.

Heavily vegetated areas, such as riparian woodlands

and active croplands, are consistently cooler than

other areas. Interestingly, the difference between

riparian areas and other land covers is minimal in the

June nighttime map. Larrea-Ambrosia desert (LAR)

and Atriplex desert (ATR), characterized by the

lowest vegetation density experienced the greatest

day-night temperature difference at both seasons.

Highly urbanized locations, desert mountain slopes,

and agricultural fields are recognized as those with

the least day-night difference (Fig. 3).

Spatially averaged temperatures provide further

details on differences between land covers (Fig. 4).

They corroborate the patterns observed in the tem-

perature maps and quantify temperature gradients

across the area. ATR and LAR were warmest during

the daytime and experienced large amplitudes in day-

time temperature transitions. They often formed

statistically significant individual groups. Paved areas

(PAVE) and commercial (COM) localities together

with UPL and residential xeriscapes (XER) were the

warmest land covers at night but occupied interme-

diate positions along the daytime temperature gradi-

ent. They frequently formed common groups with

other land covers. Urban vegetation consisting of

isolated dense patches of trees and shrubs was always

a distinctive group with low temperatures. Riparian

areas were also at the cool end of the gradient except

for nighttime June. While the results suggested no

consistency in spatial variation in temperature along

the gradient of urbanization at both seasons, we did

see distinct spatial patterns. The October daytime

data showed that the urbanized area is a cool island

(except fallow agriculture) with overall temperatures

colder than that of the surrounding desert (Fig. 4).

Regression analyses of relationships between

surface temperature and biophysical and socio-

economic factors

Mean NDVI was the most significant explanatory

variable of daytime surface temperature, but the

correlation was notably weaker at night (Fig. 5).
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Unlike vegetation, fraction of paved area correlated

positively with temperature. Although the relation-

ship was not very strong, paved area played a major

role in explaining night temperature patterns at both

seasons (Fig. 5). Median family income was the

second most important predictor of daytime temper-

atures. We estimated that for every NDVI increase by

0.1 (or roughly 10% cover) daytime mean tempera-

ture of block groups decreased by 2.8�C in June and

2.4�C in October. At night NDVI was approximately

two times less efficient in decreasing temperature.

Both summer and autumn nighttime surface temper-

atures increased by 0.9�C for each additional 10%

increase in paved area within block groups. Finally,

daytime temperatures decreased by 0.36�C in June

and by 0.23�C in October for every $10,000 increase

in family income.

Parameter estimates of the multiple regressions

demonstrate that, in the multivariate framework,

surface temperatures are always negatively related

to vegetation, but the relationship of surface

temperatures to other variables may change the sign

(Table 2). For example, temperature was related to

all other variables negatively in June and October

daytime, but positively in October nighttime. Land-

cover variability (LCVAR) and age of housing

structures (YBUILT) changed to a negative rela-

tionship in June nighttime. Surface temperature did

not appear to be related to YBUILT at both day and

night in October and in June daytime. It was also

not related to elevation (ELEV) in October daytime.

Table 3 shows diagnostics and allows comparisons

between the OLS and GWR. Both sets of models

replicated data reasonably well with adjusted R2

Fig. 2 Surface temperature
(�C) maps of Phoenix
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ranging from 0.39 to 0.59 for OLS and 0.61 to 0.77

for GWR. The GWR explained more variance in

mean surface temperature than the OLS did

although the increase is to be expected given the

difference in degrees of freedom (Fotheringham

et al. 2002). Other diagnostics also confirm that the

GWR provides a considerable improvement over

OLS regressions. It is indicated by consistently

smaller AICc and standard error of GWR estimates.

Additionally, the F test (a = 0.05) of the signifi-

cance of improvement suggested the GWR per-

formed better in all cases. The difference is

particularly large for October nighttime temperature

prediction (Table 3). The general spatial patterns of

mean surface temperatures for Census block groups

predicted by global OLS and GWR multiple

regression models seem similar (Fig. 6), but differ-

ences do exist in the detail. Both GWR and OLS

predict temporally stable and warmer cluster of

block groups in the area around the Sky Harbor

International Airport. Another heat cluster (except

June daytime) is found near Camelback Mountain

between Phoenix and Paradise Valley. However,

OLS predictions for daytime show a significantly

lower magnitude of these heat islands. This may be

an indication of the ability of GWR in highlighting

areas that are hot locally, but not depicted as such

when modeled by the OLS. Similar discrepancies in

predictions can be noticed in the cooler agricultural

area in western Glendale.

Fig. 2 continued
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Discussion

Landscape ecology has much to offer for understand-

ing the spatial pattern of surface temperatures along

urbanization gradients on multiple scales, but the

application of landscape ecological principles to the

studies of UHI is still scarce (Weng and Larson

2005). Concepts and tools developed in landscape

ecology can benefit the analysis of UHI formation, its

scaling properties, and impacts on human health and

comfort. The landscape ecological approach we

employed in this study focused on diurnal and

seasonal changes in spatial structure of surface

temperatures in relation to urban landscape pattern.

By examining these patterns along a landscape

modification gradient, we have obtained a number

of interesting findings.

Spatiotemporal patterns of SUHI at different

scales

Both UHI and SUHI manifestation and their percep-

tion by organisms can change with the scale of

analysis, as reported in previous studies (Arnfield

2003). The difference between the urban canopy and

the urban boundary layers represents the important

separation of local scale processes of energy

exchange and air flows near the ground from those

controlled by large scale processes (Oke 1976).

Accordingly, we studied surface temperature patterns

Fig. 3 Day-night
differences in surface
temperature (�C) of
Phoenix, AZ at two seasons
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at two scales. One scale corresponded to the original

resolution of ASTER data, and the other focused on

data aggregated to the level of block groups at which

broader patterns were investigated by relating tem-

perature to biophysical and socio-economic variables.

This higher level is appropriate for understanding the

impacts of excessive heating on human health and

comfort (Ruddell et al. 2009). It provides valuable

information for sustainable urban planning and better

decision-making.

Analyses of diurnal and seasonal variations of

surface temperature revealed the existence of night-

time SUHI and the daytime heat sink in Phoenix at

both the early summer and the late autumn seasons.

Formation of the morning heat sink is not unique to

the arid Phoenix, and has been previously observed in

cities located in other geographic settings (Nichol

1996; Pena 2008; Weng and Larson 2005). The heat

sink has been attributed to a variety of causes,

primarily high thermal inertia of built areas, shading

by tall buildings, and moisture differences between

urban and rural areas (Carnahan and Larson 1990;

Oke 1976; Pena 2008). In Phoenix, all of these

reasons, except shading by high-rise estates, are

likely to contribute to the formation of the morning

heat sink. The described temperature patterns were

persistent at both scales (Figs. 2, 6). Although the

coarser resolution approach enables consideration of

socio-economic variables, it convolves variations in

land cover because the analysis focuses on statistical

properties of variables. Upscaling to this resolution

required combining on average 3,300 NDVI pixels

(15 m) or approximately 90 temperature pixels

(90 m).

A number of researchers have described complex

spatial patterns of satellite-derived surface temperature

Daytime June

Class Temp

ATR 57.8 A

LAR 55.6 B

AGS 53.5 C

PAVE 53.2 C

UPL 52.0 D

DIST 52.0 D

XER 51.7 D E

RUV 51.5 D E

COM 51.7 E

MES 49.1 F

AGR 46.4 G

GRA 43.6 H

RIP 43.4 H

UVEG 42.5 I

Nighttime June

Class Temp

PAVE 27.7 A

UPL 26.0 B

XER 25.6 C

COM 25.5 C

RUV 25.4 C

MES 24.6 D

LAR 22.8 E

GRA 22.0 E

DIST 22.8 E

RIP 21.4 F

AGS 20.3 G

AGR 20.0 G

ATR 19.9 G

UVEG 18.4 H

Daytime October

Class Temp

ATR 46.9 A

LAR 45.9 B

AGS 43.9 C

UPL 43.9 C

RUV 43.8 C

DIST 43.7 C

PAVE 43.6 C

XER 42.8 D

COM 42.2 E

MES 40.0 F

AGR 39.3 G

GRA 37.4 H

UVEG 36.5 I

RIP 36.7 I

Nighttime October

Class Temp

PAVE 24.0 A

UPL 23.7 A

COM 21.8 B C

XER 21.7 B

RUV 21.1 C D

MES 20.8 D E

DIST 20.3 E

GRA 20.1 E F

LAR 19.8 F

AGS 18.8 G

ATR 18.1 H

AGR 17.8 H

UVEG 16.5 I

RIP 14.7 J

Fig. 4 Groupings of land cover classes based on spatially
averaged surface temperature at four time periods. Land cover
codes are the same as in the land cover map legend in Fig. 1
(anthropogenic ones are shaded here). Significance of

differences between the means was assessed by the Tukey
procedure. Letters A through J represent statistically significant
groups (at a = 0.05) ranked by surface temperature. Classes
not connected by same letter belong to different groups
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Fig. 5 Scatter plots of
bivariate relationships
between surface
temperature and its two
most influential explanatory
variables at each time
period (n = 1,368)
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patterns which often do not fit the characteristics of an

idealized atmospheric UHI (Nichol 1996; Streutker

2002). Nichol (1996) argued that earlier studies

(Goldreich 1985; Roth et al. 1989) detected an heat

island because low-resolution data were used, whereas

when high-resolution daytime data is analyzed, such

island is rarely seen. Instead of a single heat island we

often observe hotspots of elevated surface temperature

in multiple locations of an urban area. Hence we

suggest that an urban heat ‘‘archipelago’’ may be a

more appropriate term. Consisting of multiple cities

and towns, the Phoenix metropolitan region lacks a

well-developed and mature urban downtown core

(Golden 2004), and its surface temperature patterns

corroborate this suggestion.

We found that heterogeneity of the land-cover

mosaic inside the metropolitan area entails the

complexity in surface temperature spatial distribu-

tions. Surface temperature patterns (Fig. 2) are quite

heterogeneous and reveal high local gradients.

Importantly, intra-urban differences in surface tem-

perature were often in the same range as or even

larger than an urban–rural gradient. For example, the

difference between mean nighttime surface temper-

ature of pavements (PAVE) and urban vegetation

(UVEG), the two land covers frequently found in

close proximity, can be more than 9�C in June and

7�C in October. Yet, the difference was less than 8

and 6�C, respectively when PAVE was compared to

Atriplex (ATR) desert (Fig. 4). Agricultural land use

is another interesting example where daytime tem-

perature differences are quite large between cooler

vegetated and adjacent warmer fallow fields. At night

the difference is minimized due to the faster cooling

of open soil.

Paved areas are hottest urban surfaces at both day

and night because they have high thermal inertia

allowing them to absorb and store more sunlight

Table 2 Global OLS and GWR parameter estimates for multiple regressions constructed based on forward–backward stepwise
procedures (n = 1,368)

Parameter June daytime June nighttime October daytime October nighttime

OLS GWR
(median)

OLS GWR
(median)

OLS GWR
(median)

OLS GWR
(median)

Intercept 75.345070 78.483558 31.529908 32.593565 54.821740 55.508733 19.914333 20.244231

NDVI -38.927829 -41.416258 14.363006 -16.115356 -29.527550 -25.415320 -11.982573 -11.691157

PAVE -1.888084 -3.094252 7.9201253 6.655223 -5.143126 -3.208353 8.386252 7.557833

ELEV -0.010424 -0.010300 0.002328 0.000859 0.000281* -0.004605 0.011660 0.014003

WAT -21.852288 -21.781592 – – -24.414597 -18.977302 13.680034 5.810780

LCVAR -0.178948 -0.185865 -0.065999 -0.023124 -0.095658 -0.117967 0.091551 0.070789

FAMINC -0.000006 0.000002 0.000012 0.000010 -0.000004 -0.000003 0.000011 0.000009

DENSE – – 0.000078 0.000038 -0.000173 -0.000153 0.000027 0.000006

YBUILT -0.000050* -0.000281 -0.000425 -0.000246 -0.000020* -0.000219 -0.000102* -0.000243

NDVI = mean vegetation density within each block group (0–100%), PAVE = fraction of total area covered by pavements (0–
100%), ELEV = elevation (m), WAT = fraction of total area covered by open water (0–100%), LCVAR = variability of land
covers within each block group (number of land covers), FAMINC = median family income ($), DENSE = population density
(persons/square km), YBUILT = median age of housing structures (year built)

* Parameter is not significant according to the t statistic for the hypothesis b = 0 (a = 0.05)

Table 3 Regression diagnostics for both the OLS and the
GWR regressions (n = 1,368)

Regression model Adj. R2 SEE AICc F

June daytime

Global OLS 0.586 1.226 4,450.35

GWR 0.733 0.985 3,918.75 12.927

June nighttime

Global OLS 0.432 0.887 3,564.25

GWR 0.612 0.733 3,129.97 9.059

October daytime

Global OLS 0.641 1.010 3,921.27

GWR 0.738 0.864 3,594.50 6.552

October nighttime

Global OLS 0.393 1.200 4,392.87

GWR 0.767 0.744 3,187.21 25.139
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during a day which is a function of surface albedo

(Taha 1997). On the other hand, irrigated vegetation

cools the surroundings due to increased evapotrans-

piration which enhances positive latent exchange and

is often referred to as an ‘‘oasis effect’’ (Brazel et al.

2000) (Fig. 5). Shading by dense tree canopy and

presence of open water can be additional cooling

factors. The UHI in Phoenix develops at night due to

faster cooling of soils in the sparsely vegetated desert

but a slower release of energy accumulated in urban

structures. At night, plants close their stomata and

reduce latent heat exchange. This explains the

significantly lower negative correlation between

NDVI and nighttime surface temperature (Fig. 5).

Instead, overheated paved areas become the signifi-

cant positive correlate of temperature.

In summary, surface temperatures in Phoenix are

characterized by considerable spatial and temporal

Fig. 6 Mean surface
temperature predictions for
1,368 Census block groups
from the global OLS and
the GWR regressions
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heterogeneity by forming an archipelago of SUHI at

night and heat sink in the morning. Because surface

temperature is uniquely related to surface properties,

the use of detailed land-cover maps with relatively

homogenous (at a given scale) surfaces can help in

accurately quantifying temperature gradients across

the entire region.

Effects of vegetation patterns and socioeconomic

factors on temperature variations in the urban

landscape

The relationship between NDVI and surface temper-

ature is well established (Carlson and Arthur 2000;

Gallo et al. 1993a; Gillies et al. 1997; Owen et al.

Fig. 6 continued
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1998a; Quattrochi and Ridd 1998; Sandholt et al.

2002; Weng and Larson 2005; Weng et al. 2004), but

combined effects of vegetation, buildings, pave-

ments, and other characteristics of urban surfaces

have been less explored. Our regression analyses

confirmed the important role of vegetation and

pavements in explaining spatio-temporal variation

of temperatures in Phoenix. These variables appear as

dominant drivers of surface temperature and both are

effectively mediated by humans. SUHI emerges as a

result of socio-economic development and affects

human life in cities. It should be investigated in

conjunction with analysis of socio-economic struc-

ture and dynamics (Brazel et al. 2007; Guhathakurta

and Gober 2007; Jenerette et al. 2007).

Our findings of the effect of family income levels

on surface temperature are quite close to surface

temperature rise by 0.28�C for every $10,000

increase found by Jenerette et al. (2007) for the

entire metropolitan area, although their analysis was

conducted at the coarser level of census tracts and

used different but much related variable—the house-

hold income. Our results also support both the rural-

to-urban hypothesis and the luxury effect hypothesis

tested by Jenerette et al. (2007). In contrast with their

research, we conducted analyses at the finer scale and

used the expanded set of independent variables to

explain temperature patterns recorded by the

advanced ASTER instrument. Our findings highlight

seasonal and diurnal differences in surface tempera-

tures in Phoenix and demonstrate the varying roles of

different independent variables. In particular, our

results suggest that nighttime surface temperatures

are less controlled by the neighborhood socio-

economic status and more correlated with the areas

of pavements, instead. Lastly, we employed the GWR

regression which accounts for spatially varying

relationships, and as such it is a more appropriate

analytical framework in conducting research involv-

ing multiple spatial data layers with autocorrelated

structures.
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