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Land use and land cover (LULC)mapping in urban areas is one of the core applications in remote sensing, and it plays an important
role in modern urban planning and management. Deep learning is springing up in the 
eld of machine learning recently. By
mimicking the hierarchical structure of the human brain, deep learning can gradually extract features from lower level to higher
level. 	e Deep Belief Networks (DBN) model is a widely investigated and deployed deep learning architecture. It combines
the advantages of unsupervised and supervised learning and can archive good classi
cation performance. 	is study proposes a
classi
cation approach based on the DBNmodel for detailed urban mapping using polarimetric synthetic aperture radar (PolSAR)
data. 	rough the DBN model, e�ective contextual mapping features can be automatically extracted from the PolSAR data to
improve the classi
cation performance. Two-date high-resolution RADARSAT-2 PolSAR data over the Great Toronto Area were
used for evaluation. Comparisons with the support vector machine (SVM), conventional neural networks (NN), and stochastic
Expectation-Maximization (SEM) were conducted to assess the potential of the DBN-based classi
cation approach. Experimental
results show that the DBN-based method outperforms three other approaches and produces homogenous mapping results with
preserved shape details.

1. Introduction

Urban land use and land cover (LULC) mapping is one of the
core applications in remote sensing. Up-to-date LULC maps
obtained by classifying remotely sensed data are essential to
modern urban planning and management. In many remote
sensing systems, the synthetic aperture radar (SAR) has long
been recognized as an e�ective tool for urban analysis, as it is
less in�uenced by solar illumination or weather conditions
in contrast to optical or infrared sensors [1]. Since more
scattering information can be collected inmultipolarizations,
polarimetric SAR (PolSAR) data have been increasingly used
for urban LULC classi
cation [2–4].

Nevertheless, most studies about urban mapping using
SAR or PolSAR data are limited in identifying the urban
extent or mapping very few urban classes. Few studies have
focused on detailed urban mapping using SAR data. 	e

di
culty in detailed urbanmapping using SAR data ismainly
due to the complexity of the urban environment. 	e urban
environment is comprised of various natural and man-made
objects with several kinds of materials, di�erent orientations,
various shapes and sizes, and so forth, which complicates the
interpretation of SAR images. Problems can also originate
from the nature of polarimetric SAR imaging such as inherent
SAR speckle or geometry distortions such as shadow and
layover [1, 2]. As a consequence, detailed urban mapping
using high resolution SAR data is still a challenging task.

Regarding the method of urban land cover mapping,
approaches can be generally divided into pixel-based or
object-based classi
cation. Object-based methods, which
directly explore the contextual information to improve the
mapping accuracy, have been increasingly employed recently
[5]. By using object-based approaches, shape characteristics
and inner statistics of segmented objects can be used as
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Figure 1: Schematic of an RBM with � visible units and � hidden units, where� is the weight matrix.

classi
cation features [6–8]. However, the ideal segmentation
on urban areas using SAR data is o�en di
cult to achieve.
Pixel-based approaches have been traditionally used for
coarse-resolution SAR data with reasonable results. However,
when dealing with high-resolution SAR data, the pixel-by-
pixel approach is usually limited because of the speckles and
increased interclass variance [9]. To cope with the problem
of pixel-based approaches, some contextual analyses, such
as Markov random 
eld (MRF), have been employed [10–
12]. Although contextual approaches [10–18] can learn the
statistics within the local neighborhood, their capability to
represent spatial patterns is limited. Moreover, although
some texture indices can be used to describe certain spatial
patterns, most of them are still limited in their relatively
simple representation capabilities [19, 20].

From the perspective of data modeling, LULC classi
ca-
tion methods can be grouped into parametric and nonpara-
metric approaches. Parametric approaches, such as the min-
imum distance classi
er, maximum likelihood classi
er, and
the expectation-maximization (EM) algorithm, o�en require
proper assumptions of data distribution [21]. However, for
multitemporal or multisource data, the class distributions
are hard to model. On the other hand, nonparametric
approaches, such as arti
cial neural networks, decision tree,
and support vector machine (SVM), are widely used in land
cover classi
cation [22]. Nevertheless, the performance of
nonparametric approaches strongly depends on the selected
classi
cation features.

As an advanced machine learning approach, deep learn-
ing has been successfully applied in the 
eld of image recogni-
tion and classi
cation in recent years [23–27]. By mimicking
the hierarchical structure of the human brain, deep learning
approaches, such asDeep Belief Networks (DBN), can exploit
complex spatiotemporal statistical patterns implied in the
studied data [28, 29]. For remotely sensed data, deep learning
approaches can automatically extractmore abstract, invariant
features, thereby facilitating land cover mapping. However,
to the best of our knowledge, no research has been reported
using deep learning for detailed urban LULC mapping on
SAR data.

	e present study proposes a detailed urban LULC
mapping approach based on the popular deep learning archi-
tecture DBN. 	is study is one of the 
rst attempts to apply
the deep learning approach to detailed urban classi
cation.
Two-date high-resolution RADARSAT-2 PolSAR data over
the Great Toronto Area (GTA) have been used for evaluation.

	e rest of this paper is organized as follows. Section 2
describes the proposed land cover classi
cation approach

based on the DBN model. Section 3 introduces the data
and the process of the experiment. Section 4 presents and
discusses the experimental results. Finally, we conclude this
paper in Section 5.

2. Methodology

	e proposed approach is based on the DBN model. 	is
section brie�y reviews the principle of the DBN model and
describes the proposed method for land cover classi
cation.

2.1. Deep Belief Networks. 	e DBN model was introduced
by Hinton et al. in 2006 [28] for learning complex data
patterns. It has become one of the extensively investigated and
deployed deep learning architectures [24, 25]. 	e DBN is a
probabilistic multilayer neural network composed of several
stacked Restricted Boltzmann Machines (RBMs) [28, 30]. In
a DBN, every two sequential hidden neural layers form an
RBM. 	e input of the current RBM is actually the output
features of a previous one. A DBN is therefore expected to
hierarchically explore the pattern features in several abstract
levels, given that the features obtained by a higher-level
RBM are more representative than those obtained by lower
ones. 	e training of DBN can be divided into two steps:
pretraining and 
ne-tuning. 	is training process is further
discussed below.

2.1.1. Restricted Boltzmann Machines. As the basic compo-
nent of a DBN, Restricted BoltzmannMachine (RBM) can be
treated as an unsupervised energy-based generative model.
An RBM consists of a layer of visible units v and a layer
of hidden units h, connected by symmetrically weighted
connections, as shown in Figure 1.

Assuming binary-valued units, the RBM de
nes the
energy of the joint con
guration of visible and hidden units
(v, h) as

� (V, ℎ) = − �∑
�=1

��V� − �∑
�=1

	�ℎ� − �∑
�=1

�∑
�=1


��V�ℎ�, (1)

where 
�� represents the weight associated with the connec-
tion between the visible unit V� and the hidden unit ℎ�, �� and	� are the bias terms, and � and � are the numbers of visible
and hidden units, respectively.	e RBM assigns a probability
to each con
guration (v, h) using the energy function given
by

� (V, ℎ) = �−�(V,ℎ)
 , (2)
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where 
 is a normalization factor obtained by summing up
the energies of all the possible (v, h) con
gurations:


 = ∑
V

∑
ℎ
�−�(V,ℎ). (3)

	e conditional probabilities can be analytically computed as

� (ℎ� = 1 | V) = �(	� + �∑
�=1
V�
��) , (4)

� (V� = 1 | ℎ) = �(�� + �∑
�=1

ℎ�
��) , (5)

where �(�) is the sigmoid function; that is, �(�) = 1/(1+�−�).
	e training process of the RBM can be described as

follows. A�er the random initialization of the weights and
biases, iterative training of the RBM on the training data is
performed. Given the training data on the visible units {V�},
the states of hidden units {ℎ�} are sampled according to (4).
	is step is called the positive phase of the RBM training.
In the negative phase, the “reconstruction” of the visible
units {V	� } is obtained according to (5). 	e positive phase

is once more conducted to generate {ℎ	�}. A�erwards, the
RBM weights and biases can be updated by the contrastive-
divergence (CD) algorithm [31] through gradient ascent,
which can be formulated as

Δ
�� = � (⟨V�ℎ�⟩ − ⟨V	�ℎ	�⟩) ,
Δ�� = � (⟨V�⟩ − ⟨V	�⟩) ,
Δ	� = � (⟨ℎ�⟩ − ⟨ℎ	�⟩) ,

(6)

where � denotes the learning rate and ⟨⋅⟩ represents the
mathematical expectation under the corresponding data
distribution.

2.1.2. Pretraining. 	e DBN takes a layer-wise greedy learn-
ing strategy, in which RBMs are individually trained one a�er
another and then stacked on the top of each other. When
the 
rst RBM has been trained, its parameters are 
xed, and
the hidden unit values are used as the visible unit values for
the second RBM. 	e DBN repeats this process until the last
RBM. Since pretraining is unsupervised, no label is needed.
Unsupervised learning is believed to capture the crucial
distribution of the data and can therefore help supervise
learning when labels are provided. A batch-learning method
is usually applied to accelerate the pretraining process; that is,
theweights of the RBMs are updated everyminibatch [32, 33].

2.1.3. Fine-Tuning. A�er the pretraining phase, the 
ne-
tuning procedure is performed. A so�max output layer can
be placed on top of the last RBM as a multiclass classi
er,
and the output-layer size is set to the same value as the total
number of classes. To accomplish classi
cation by utilizing
the learned feature, we use the ordinary back-propagation
technique through the whole pretrained network to 
ne-
tune the weights for enhanced discriminative ability. Given

that the 
ne-tuning procedure is supervised learning, the
corresponding labels for the training data are needed. A�er
training, the predicted class label of a test sample can be
obtained by forward propagation, in which the test data pass
from the lowest-level visible layer through multi-RBM layers
to the so�max output layer.

2.2. LULC Classi�cation Based on DBN. To better under-
stand the structure of the DBN-based LULC classi
cation, a
�owchart is given in Figure 2. To delineate the high variance
and speckles of the PolSAR image, a neighbor window is
used for local analysis, with the to-be-classi
ed pixel placed
at the center. Such neighbor window with size of winsize ∗
winsize can be represented by a vector formed by the pixel
values from the window. 	e original input feature for the
DBN consists of the processed Pauli parameters, which are
the diagonal elements (0.5|HH + VV|2, 0.5|HH − VV|2, and2|HV|2 under the reciprocal assumption) of the coherency
matrix with their logarithm form stretched by linear scaling
[2]. One kind of Pauli feature in a window is reshaped in a
vector by sequentially connecting each feature line. A Pauli
vector of a day can then be formed by connecting the three
Pauli feature vectors. For multitemporal analysis, the input to
DBN can be formed by connecting the" dates’ Pauli vectors,
with the dimension of winsize ∗ winsize ∗ 3∗ m.

For the training of DBN, Pauli vectors of the training
samples are assigned to the visible layer of the 
rst RBM
as input training features. With a layer-by-layer pretraining
strategy, the spatiotemporal dependencies are successively

encoded in the hidden layers h(1), h(2), . . . , h(
−1), and h
(
).

In the output layer, the labels of the training samples are
provided, and the weights of the DBN are 
ne-tuned in a
supervised manner.

For the prediction, the input features of the test samples
are prepared in the same way as that of the training samples.
	e classi
cation labels for the test samples can be obtained
from the forward propagation of the test features through the
trained network.

3. Data and Experiment

	e study area is located in northern Greater Toronto Area
(GTA), Ontario, Canada. 	e ten major LULC classes in the
study area are as follows: high-density residential areas (HD),
low-density residential areas (LD), industrial and commercial
areas (Ind.), construction sites (Cons.),Water, Forest, Pasture,
golf courses (Golf), and two types of crops (Crop1 and
Crop2).

Two 
ne-beam full polarimetric SAR images were
acquired by the RADARSAT-2 SAR sensor on June 19,
2008, and July 5, 2008. 	e center frequency is 5.4GHz,
that is, C-band. 	e June 19 data were obtained from the
descending orbit, whereas the July 5 data were obtained from
the ascending orbit, as shown in Figures 3(a) and 3(b). 	e
data from the ascending and descending orbits were expected
to complement each other from two di�erent look directions.
A total of 4952065 pixels of the overlap between the two
images were classi
ed.
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Figure 2: Flowchart of the proposed DBN-based classi
cation approach.
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Figure 3: PolSAR images of northern Greater Toronto Area. (a) Pauli RGB image of RADARSAT-2 data on June 19, 2008. (b) Pauli RGB
image of RADARSAT-2 data on July 5, 2008. (c) Training set. (d) Test set.

During the preprocessing, the multitemporal raw data
were 
rst orthorecti
ed using the satellite orbital parameters
and a 30m resolution DEM. 	en, they were registered
to a vector 
le National Topographic Database (NTDB).
A multilook process was further applied to generate the
PolSAR features with the 
nal spatial resolution of about 10
meters.

In the classi
cation scheme, 19 subclasses were de
ned
for the abovementioned 10 major land cover classes accord-
ing to di�erent scattering characteristics (e.g., the man-
made structures have varying scattering appearance due to
their distinctive shapes and directions). Approximately 1000
training pixels were assigned to each subclass. 120617 pixels
evenly distributed over the classi
cation area were randomly
selected as the test samples. 	e training and test samples are
visually shown in Figures 3(c) and 3(d), respectively.

	e e�ective con
gurations of the DBN for detailed
urban mapping were investigated. Comparisons with
SVM, conventional neural networks (NN), and stochastic
Expectation-Maximization (SEM) were conducted to assess
the potential of our approach.

4. Results and Discussions

In this study, several experiments were conducted to validate
the impact of di�erent DBN con
gurations, including di�er-
ent network depths and hidden layer node numbers. To eval-
uate its classi
cation e
ciency, the DBN-based approach was
compared with three other land cover methods: SVM, tra-
ditional neural networks (NN), and stochastic Expectation-
Maximization (SEM). To quantitatively compare and esti-
mate the capabilities of the proposed method, the overall
accuracy (OA) and Kappa coe
cient [34] were used as
performance measurements.

	e performance of theDBN-based classi
cationmethod
is sensitive to the neighbor window size. As the window
size increases, more spatial dependencies could be captured
by the DBN; thus, it is expected that better classi
cation
accuracy could be obtainedwith larger neighborwindow size.
Nevertheless, larger neighbor window size does not ensure
better classi
cation performance. Overly large window sizes
could decrease the classi
cation performance because bound
areas tend to be confounded under an overlarge window. In
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Table 1: DBN parameters setting.

Pretraining stage

Learning rate 0.01

Number of epochs 50

Size of minibatch 100

Momentum 0.5 for the 
rst 5 epochs, 0.9 therea�er

Weight decay rate 0.0002

Fine-tuning stage

Learning rate 0.1

Number of epochs 20

the following experiments, the neighbor window size is set
to 11 ∗ 11; thus, the dimension of the input data would be11 ∗ 11 ∗ 3 ∗ 2 = 726.

Several parameters of the DBN are listed in Table 1; some
of these parameters are based on experimentation, while the
others are based on the recommendation of Hinton [33].
All the hidden layers in the DBN have the same number of
hidden units. For all the DBN depths mentioned below, only
the hidden layers were counted.

4.1. E	ect of Network Depth. We 
rst examine how the DBN
depth in�uences the classi
cation performance. 	e number
of hidden layers is one of the key factors to the deep learning
strategy. On one hand, it is proved that additional RBM
layer can yield improvedmodeling power [35]. A higher level
of representation leads to potentially more abstract features
[27]. On the other hand, Larochelle et al. [36] argue that
unnecessary RBM layers may degenerate the generalization
capability of the DBN because more layers engender a more
complex network model with more parameters to 
t. With
relatively less training samples, complex models o�en cause
the over
tting problem [35]. 	e best depth of the DBN is
usually related to a speci
c application and dataset.

To 
nd a proper network depth, DBN models with
increased number of RBM layers (i.e., fromone to four layers)
were compared. Each DBN model had the same constant
structure; that is, all the RBM layers had the same number
of hidden neurons. Comparisons were also conducted by
varying the number of hidden neurons from 100 to 600
per layer. 	e results in Figure 4 show that, regardless of
the number of neurons, improved overall accuracies were
all obtained by the two-layer DBN model. Although the
comparisonsweremade only up to 4 layers, it is expected that,
with more layers, the over
tting problem will become more
serious, which will lead to worse results. As such, the depth
of DBN was set to two layers in the following experiment.

4.2. Comparison with Other Classi�cation Methods. To de-
monstrate the e�ectiveness of the proposed LULC classi
ca-
tion method, a comparison was conducted with three other
land cover classi
cation approaches (i.e., SVM, conventional
NN, and SEM). 	e same Pauli features as the DBN-based
method were used in SVM and traditional NN. 	e SEM
method [9] applied an adaptiveMarkovRandomField (MRF)
to explore contextual information, and we used the same

100 200 300

Nodes in each hidden layer

400 500 600
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

O
ve

ra
ll

 a
cc

u
ra

cy

1 hidden layer

2 hidden layers
3 hidden layers

4 hidden layers

Figure 4: Impact of network depth.

settings reported there. 	e DBN contained two RBM layers,
and each hidden layer had 500 units. Conventional NN had
the same parameters as those of DBN; their only di�er-
ence was that the weights of NN were not pretrained with
unsupervised learning. 	e LIBSVM [37] toolkit was used
as the implementation of SVM. SVM is a binary classi
er,
and the one-against-one strategy was used to convert the
multiclass categorization problem to the binary classi
cation
problem. Experiments were performed using a radial basis
function (RBF) kernel. 	e penalty term # and the RBF
kernel width � were selected using grid search within a

given set {2−10, . . . , 210}. 	e 
vefold cross validation method
indicated that the best validation rate was achieved when# = 32 and � = 2−7.	ese parameters were then used to train
the SVM model. 	e classi
cation accuracies using di�erent
classi
cation approaches are presented in Table 2, where $
and % stand for the producer’s accuracy and user’s accuracy,
respectively.

Table 2 shows that, among the four classi
cation meth-
ods, the DBN method results in the best performance, with
an overall accuracy (OA) of 81.74%. Tables 3, 4, 5, and 6 list
the confusion matrices of the four classi
cation methods in
percent.

Obviously, SEM obtained the highest accuracies in most
natural classes (Water, Golf, Pasture, Crop1, and Forest).
However, it performed extremely badly in several man-made
classes (LD, HD, and Ind.). Generally, SEM provided the
lowest overall classi
cation accuracy of 72.43%.

Although SVM attained higher producer’s accuracies in
Cons., LD, and Crop1, its overall accuracy was still below
DBNby 5%.	e improved classi
cation accuracy by theDBN
method mainly originated from the signi
cant increase of
Pasture and Crop2. Tables 3 and 6 show that the accuracy
of Pasture was greatly improved owing to the decrease of
the confusion with the Golf class. 	e improvement of the
accuracy of Crop2 was mainly due to the decrease of the
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Table 2: Comparison of di�erent classi
cation methods.

SVM NN SEM DBN$ % $ % $ % $ %
Water 0.8521 0.9169 0.7847 0.9560 0.9668 0.9733 0.8697 0.9052

Golf 0.8588 0.5364 0.8922 0.6048 0.9245 0.8346 0.8118 0.7727

Pasture 0.5776 0.8949 0.6095 0.9198 0.8502 0.8499 0.8139 0.8987

Cons. 0.7639 0.6879 0.6383 0.6657 0.7239 0.7750 0.7265 0.7899

LD 0.6847 0.8509 0.5771 0.8175 0.3160 0.7697 0.6703 0.8884

Crop1 0.9020 0.7548 0.7991 0.8971 0.9617 0.6497 0.8800 0.8804

Crop2 0.7965 0.8882 0.8615 0.7671 0.8306 0.8649 0.8986 0.8469

Forest 0.8703 0.9098 0.8908 0.9408 0.9542 0.7076 0.9095 0.9489

HD 0.7203 0.5830 0.7195 0.4570 0.6264 0.4898 0.7824 0.5867

Ind. 0.7593 0.7556 0.6817 0.7394 0.4135 0.5811 0.7936 0.7632

OA 0.7679 0.7437 0.7243 0.8174

Kappa 0.7398 0.7119 0.6906 0.7945

Table 3: Confusion matrix (in percent) of the SVMmethod.

Water Golf Pasture Cons. LD Crop1 Crop2 Forest HD Ind.

Water 85.21 3.70 0.07 0.96 0.00 0.02 0.00 0.00 0.01 0.18

Golf 11.85 85.88 26.41 5.24 1.36 3.27 2.51 2.46 0.05 0.48

Pasture 0.02 6.55 57.76 0.00 0.09 0.75 0.72 1.07 0.02 0.00

Cons. 2.92 2.00 0.34 76.39 0.00 0.03 10.87 0.00 0.47 0.20

LD 0.00 0.17 0.31 0.03 68.47 1.65 0.24 3.03 4.57 3.04

Crop1 0.00 0.55 6.80 0.83 5.34 90.20 1.53 0.20 4.31 1.12

Crop2 0.00 0.58 3.67 15.52 0.11 0.16 79.65 0.68 0.06 0.02

Forest 0.00 0.11 2.25 0.07 1.57 0.65 4.20 87.03 0.13 0.04

HD 0.00 0.07 2.27 0.09 15.65 3.12 0.21 3.71 72.03 18.98

Ind. 0.00 0.37 0.12 0.88 7.40 0.15 0.07 1.83 18.34 75.93

Table 4: Confusion matrix (in percent) of the NN method.

Water Golf Pasture Cons. LD Crop1 Crop2 Forest HD Ind.

Water 78.47 2.05 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00

Golf 19.56 89.22 19.21 6.71 0.24 3.05 1.12 0.40 0.02 0.17

Pasture 0.00 1.93 60.95 0.77 0.13 2.68 1.18 0.13 0.01 0.01

Cons. 1.64 3.28 0.68 63.83 0.00 0.04 9.88 0.00 0.04 0.01

LD 0.00 0.14 0.01 0.00 57.71 5.25 0.02 2.34 5.61 2.07

Crop1 0.00 0.30 2.37 0.38 1.74 79.91 0.64 0.14 0.33 0.53

Crop2 0.15 2.45 14.48 26.70 0.71 3.13 86.15 0.94 0.19 0.02

Forest 0.00 0.47 1.96 0.18 2.06 0.64 0.98 89.08 0.16 0.09

HD 0.00 0.06 0.33 0.37 31.99 5.13 0.03 6.21 71.95 28.95

Ind. 0.17 0.10 0.03 0.71 5.41 0.18 0.00 0.77 21.69 68.17

Table 5: Confusion matrix (in percent) of the SEMmethod.

Water Golf Pasture Cons. LD Crop1 Crop2 Forest HD Ind.

Water 96.68 0.53 0.08 0.13 0.08 0.12 0.09 0.09 0.04 0.11

Golf 3.10 92.45 4.36 4.41 0.54 0.03 0.38 0.28 0.53 1.01

Pasture 0.08 5.40 85.02 1.15 2.11 1.32 4.82 0.75 0.69 0.07

Cons. 0.06 1.01 0.60 72.39 0.21 0.00 6.12 0.03 0.78 0.35

LD 0.00 0.00 0.01 0.03 31.60 0.16 0.03 0.36 6.54 3.18

Crop1 0.06 0.07 6.80 1.21 6.28 96.17 3.58 0.85 4.67 10.90

Crop2 0.04 0.35 2.55 20.16 0.94 0.22 83.06 1.21 0.73 0.43

Forest 0.00 0.15 0.53 0.32 34.84 1.69 1.89 95.42 2.43 0.53

HD 0.00 0.02 0.04 0.13 10.20 0.29 0.01 0.76 62.64 42.07

Ind. 0.00 0.01 0.00 0.06 13.20 0.00 0.01 0.24 20.95 41.35
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Table 6: Confusion matrix (in percent) of the DBN method.

Water Golf Pasture Cons. LD Crop1 Crop2 Forest HD Ind.

Water 86.97 5.72 0.02 0.21 0.00 0.00 0.00 0.00 0.00 0.00

Golf 11.92 81.18 5.93 3.42 0.16 0.66 0.29 0.40 0.01 0.38

Pasture 0.11 10.55 81.39 0.31 0.03 2.28 0.55 0.17 0.09 0.00

Cons. 0.99 1.26 0.26 72.65 0.00 0.01 6.16 0.00 0.31 0.05

LD 0.00 0.09 0.27 0.03 67.03 2.22 0.23 1.95 3.35 1.46

Crop1 0.00 0.14 2.49 0.93 2.47 88.00 1.22 0.23 0.71 0.26

Crop2 0.00 0.66 7.20 21.05 0.23 0.63 89.86 1.70 0.12 0.00

Forest 0.00 0.22 1.11 0.19 1.70 0.69 1.39 90.95 0.15 0.08

HD 0.00 0.15 1.31 0.31 19.67 5.40 0.24 2.61 78.24 18.41

Ind. 0.00 0.04 0.02 0.90 8.70 0.11 0.05 2.00 17.04 79.36

(a) (b) (c)

Water Golf Pasture

(d)

Cons. LD Crop1HD

(e)

Crop2 Forest Ind.

(f)

Figure 5: Zooming comparison of (a) Google Earth image and (b) PolSAR Pauli image and the classi
cation results using (c) SVM, (d) NN,
(e) SEM, and (f) DBN in a selected area.

commission to Cons. One plausible explanation for this
improvement is that, with the e�ective features represented by
the hidden layers, DBN could extract additional underlying
dependencies and structures for the SAR data.

Compared with conventional NN, DBN obtained higher
classi
cation accuracies for almost all land cover types,

resulting in a notable increase in OA of 7%. 	e reason
behind the superiority of DBN over NN is that, with an
unsupervised pretraining process, more appropriate initial
weights are assigned to the network, while the traditional
neural network just sets random values for initial weights.
	e DBN-based method combines the advantages of both
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(a) (b) (c)

Water Golf Pasture

(d)

Cons. LD Crop1HD

(e)

Crop2 Forest Ind.

(f)

Figure 6: Zooming comparison of (a) Google Earth image and (b) PolSAR Pauli image and the classi
cation results using (c) SVM, (d) NN,
(e) SEM, and (f) DBN in an Ind. area.

unsupervised and supervised learning; thus it can better
distill spatiotemporal regularities fromSARdata and improve
classi
cation performance.

	e e�ects of di�erent land cover classi
cation methods
are further illustrated in Figure 5. As can be observed in
Figure 5, comparedwith SVM, theDBNmethod signi
cantly
reduces the misclassi
cation of Forest. Compared with NN,
DBN greatly decreases the misclassi
cation of Pasture from
Golf. Compared with SEM, DBN preserves the detail of
residential areas. Figure 6 shows another example from an
Ind. area. 	e 
gure shows that the DBN-based method
provides classi
cation map with more homogenous regions
of the Ind. land cover type, which is more in line with reality.

5. Conclusion

A detailed urban LULC classi
cation method based on the
DBN model for PolSAR data is proposed. 	e e�ects of
di�erent network con
gurations are discussed. It is found
that DBN with two hidden layers were appropriate for such
detailed LULCmapping application.	e experimental results
demonstrate that the proposed method provides homoge-
nous mapping results with preserved shape details and that it

outperforms other land cover classi
cation approaches (i.e.,
SVM, NN, and SEM) in a complex urban environment. Our
future work will focus onmore deep learningmodels for SAR
data to further improve the classi
cation results.
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