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Abstract

With urban population increasing dramatically worldwide, cities are playing an increasingly critical role in human societies
and the sustainability of the planet. An obstacle to effective policy is the lack of meaningful urban metrics based on a
quantitative understanding of cities. Typically, linear per capita indicators are used to characterize and rank cities. However,
these implicitly ignore the fundamental role of nonlinear agglomeration integral to the life history of cities. As such, per
capita indicators conflate general nonlinear effects, common to all cities, with local dynamics, specific to each city, failing to
provide direct measures of the impact of local events and policy. Agglomeration nonlinearities are explicitly manifested by
the superlinear power law scaling of most urban socioeconomic indicators with population size, all with similar exponents
(*1.15). As a result larger cities are disproportionally the centers of innovation, wealth and crime, all to approximately the
same degree. We use these general urban laws to develop new urban metrics that disentangle dynamics at different scales
and provide true measures of local urban performance. New rankings of cities and a novel and simpler perspective on urban
systems emerge. We find that local urban dynamics display long-term memory, so cities under or outperforming their size
expectation maintain such (dis)advantage for decades. Spatiotemporal correlation analyses reveal a novel functional
taxonomy of U.S. metropolitan areas that is generally not organized geographically but based instead on common local
economic models, innovation strategies and patterns of crime.
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Introduction

How rich, creative or safe can we expect a city to be? How can

we establish which cities are the most creative, the most violent, or

most effective at generating wealth? The conventional answer is to

use the rank order of per capita measures of performance [1,2].

However, per capita indicators conflate general effects of

urbanization, common to all cities as a function of their population

size, with local events and dynamics that are specific to particular

places. Because it is often the latter that are of most interest for

scientific analyses that can inform policy decisions it is important

to define a set of urban metrics of local performance that are

independent of expectations due solely to population size.

Per capita measures of urban performance are ubiquitous in

official statistics, policy documents and in the scientific literature.

For example, official statistics on wages, income or gross domestic

product (GDP) compiled by governmental agencies and interna-

tional bodies worldwide [3] report on both total amounts and per

capita quantities as a means to compare the economic perfor-

mance of various places. Similarly, official crime statistics (see e.g.

the FBI Uniform Crime Reports [4]) are expressed in terms of

crime rates (number of crimes per 100,000 inhabitants per year).

Many other important indicators that measure local economic and

social well-being, such as unemployment rates, innovation rates

(see e.g. [5]), cost of living index, morbidity and mortality rates,

poverty rates, etc, all are reported on a per capita basis. Even well

known composite indices of urban performance and quality of life,

such as those compiled by Fortune, Forbes and The Economist, rely

primarily on linear combinations of per capita quantities.

The use of per capita indicators assumes implicitly that, on

average, specific urban characteristics, Y , increase linearly with

population sizeY (N)!N . However, this approach is unsuitable for

characterizing and comparing cities because it ignores the

fundamental emergent phenomenon of agglomeration [6–11]

resulting from non-linear interactions in social dynamics [6,7,10]

and organization [11,12] as cities grow. Such non-linearities are

fundamental to the very existence of cities [6,7,9,11,13] and are

manifested as systematic scaling laws [14–19] which explicitly show

that cities are more than the linear sum of their individual

components. For example, economic productivity [12,13,15,20–22]

(value-added in manufacturing, GDP, wages, personal income, etc.)

increases systematically on a per capita basis by *15% with every

doubling of a city’s population, regardless of a city’s initial size

(whether from, say, 50,000 to 100,000 or, from 5,000,000 to
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10,000,000). Remarkably, these general increasing returns to

population size manifest, on average, the same statistical relation-

ship (the *15% rule) across an extraordinarily broad range of

metrics, regardless of nation or time. Similar increases apply to

almost every socioeconomic quantity, from innovation rates [10,14]

and rhythms of human behavior [15] to incidence of crime [15,16]

and infectious diseases [15,18]. They express a continuous and

systematic acceleration of socioeconomic processes with increasing

numbers of people [15], so that larger cities produce and spend

wealth faster, create new ideas more frequently and suffer from

greater incidence of crime all approximately to the same degree.

These empirical regularities strongly suggest that underlying

these apparently diverse phenomena there is a universal socioeco-

nomic dynamic reflecting average organizational behavior of

human interactions in cities [15,17]. From this perspective a city’s

population size is an aggregate proxy for a set of general processes

facilitated by the co-location of many different individuals and social

organizations, with different motivations and expertise. Such effects

rely on more intense and effective social interactions as city size

increases and have been described at length in sociology and

economics [23–26]. Big cities derive many advantages from larger

populations such as more efficient economic specialization and

division of labor, more efficient socioeconomic matching that

facilitates social and economic markets, easier sharing of resources

resulting in greater economies of scale and faster learning and

innovation from the observation and recombination of a larger and

more diverse set of technological and organizational processes [27].

However, the difficulty persists that many of these processes, such as

the idea of knowledge spillovers promoting innovation and

economic growth [28], have remained very hard to quantify and

model in general terms. As a consequence the relative importance of

different detailed micro-level processes remains unclear and a

subject of intense investigation in several disciplines [29]. It is in the

aggregate of the city that these stochastic micro-processes add up to

population size dependent stable averages, expressing the general

effects of urbanization in terms of non-trivial scaling laws as

functions of population size [15].

Thus, scaling laws provide the average baseline behavior and, by

extension, the null model necessary for addressing the long-standing

problem of how to rank specific cities meaningfully and assess the

effects of local events, historical contingency, and policy, indepen-

dently of population size. These agglomeration laws provide the

expected average characteristics that a city of a given size should

manifest in the absence of any specific local features. However, it is

very often local characteristics, represented by how particular cities

deviate from their expected baseline behavior, that are the most

interesting for both policy and scientific analyses. Here, we show

how deviations from scaling laws can be used to construct truly local

measures of a city’s organization and dynamics. As a result, we are

able to address several fundamental questions such as how

exceptional can a city be relative to its peers, what timescales are

relevant for local policy to take effect, what are the local

relationships between quantities such as economic development,

crime and innovation, and whether each city is unique, or if there

are identifiable (geographic) organizing principles expressed as

shared patterns of urban development across families of cities.

Results

Agglomeration effects in cities are typically manifested as (i)

economies of scale in material infrastructure [11,15,17] (for

example, as decreases in the per capita area of road surface or

length of electrical cabling with increasing population size) and (ii)

as increases in per capita temporal rates [15] of socioeconomic

activities, such as wealth creation, innovation and crime. We focus

on wealth creation, innovation and crime because they share a

common origin in social interactions in cities and are key

indicators of well-being. However, it should be kept in mind that

the procedure described below applies equally well to any other

urban indicator that scales systematically with population size.

Non-linear agglomeration effects are manifested as simple

scaling laws. Recent studies [14–19] have shown that most urban

quantities, Y (t), follow approximate power-law scaling

Y (t)~Y0N(t)b, ð1Þ

where Y0 is a normalization constant, N(t) is the population size

at time, t, and b is the scaling exponent. Consequently, with each

fractional increase of population size, DN=N, the relative increase

in the per capita quantity, y(t):Y (t)=N, is, from Eq. (1), given by

Dy=y&(b{1)DN=N. When b~1, then, on average, Dy~0, y is

constant and Y is linear in N. In this case, a standard per capita

measure is the appropriate baseline for ranking deviations.

However, for almost all quantities of interest b=1 and the

baseline itself is a function of N. For material infrastructural

quantities the exponent is sublinear, b&0:85v1, so that Dyv0,

expressing economies of scale, whereas for socioeconomic

quantities it is superlinear, b&1:15w1, so that Dyw0, expressing

increasing returns to scale. A typical example of an urban scaling

law (Gross Metropolitan Product, or GMP) is shown in Figure 1A.

Eq. (1) is motivated by the more general observation that diverse

characteristics of many complex adaptive systems, and especially

those of biological organisms [30] and social systems with much in

common with cities, obey simple nonlinear scaling laws.

Furthermore, such systems often manifest a universal nonlinear

behavior. In biology this is reflected in the predominance of

approximate quarter-power exponents, whose origins are physical

and geometric properties of underlying resource and information

distribution network structures [17,30] (e.g., vascular and neural

systems). Similar scale-free, fractal-like behavior has been observed

in many human social networks [31], including cities [17,31–33].

It is therefore natural and compelling that the essential features of

a quantitative, predictive theory of cities originate in the dynamics

and form of social [34,35] and infrastructural networks [11,15,33]

and that these underlie the observed scaling and the approximate

universal values of the exponents, b.

For a given value of DN=N , y depends only on b but not on

initial city size, N, expressing the principle that a meaningful

comparison between cities should rely on relative quantities rather

than on their absolute values. Eq. (1) is analogous to a mean-field

description and expresses the average behavior of urban metrics,

Y (Ni), for a city of populationNi. Deviations from this average (the

analogues to statistical fluctuations) parametrize the characteristics

of each individual city. These are quantified by the residuals [36],

ji~ log
Yi

Y (Ni)
~ log

Yi

Y0N
b
i

ð2Þ

where Yi is the observed value of the metric for each specific city.

We refer to the ji as Scale-Adjusted Metropolitan Indicators (SAMIs).

Unlike per capita indicators, SAMIs are dimensionless, independent

of city size (Figure 1B) and usually of other urban metrics such as

land area or population density (see Discussion and Text S2).

SAMIs capture human and social dynamics specific to a given place

and time - its true local flavor - and represent its successes or failures

relative to other cities. They allow direct comparison between any

two cities and provide meaningful rankings across the urban system.

Urban Scaling and Deviations
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To illustrate this methodology and its potential impact we analyze

data from U.S. Metropolitan Statistical Areas (MSAs) (see Materials

for data sources and city definitions). These are socioeconomic units

defined via commuting flows, in contrast to more arbitrary political

divisions such as counties or administrative cities. This definition

emphasizes social interactions as the defining feature of cities. It

attempts to circumscribe the city geographically as a mixing

population where all residents can come into contact with each

other, a familiar concept in epidemiology and ecology [37].

We find that the variation in local quantities corresponding to

different cities in the same year is well characterized statistically by

a Laplace (exponential) distribution density

w(j)~(1=2s) exp ({DjD=s), ð3Þ

where s parametrizes its width, or more precisely the mean

expectation for the absolute value of SAMIs s~SDjDT. Figure 1B

shows the normalized SAMI histogram (the estimate of the SAMI

probability density function) for 360 MSAs, in good agreement

with the prediction from the Laplace distribution (red line).

Interestingly, this Laplace distribution for SAMIs implies that

the statistics of the urban indicators themselves also follow a

power-law distribution density. Substituting, the definition of

SAMIs, Eq. (2), into the Laplace distribution (3), and accounting

for the change in measure in the probability density dj~dYi=Yi,

allows us to derive the statistics of the original indicators Yi as

p(Yi)~
1

2Yis ln 10

Yi

Y (Ni)

� �

{
E½Yi{Y (Ni )�

s ln 10
, ð4Þ

where the number ln 10~2:30 and the sign function e(x)~z1

for xw0 and{1 for xv0. The average value of Yi is given by the

scaling law Eq. (1). The average magnitude of the deviations from

scaling, namely the width of w(j), s, depends on the given

quantity, but is stable over long periods of time (for instance,

decades for personal income and patents). Its values are larger for

patents (s~0:42) than for violent crime (s~0:17), and significantly

larger than for economic quantities, such as income (s~0:07) or
GMP (s~0:08). Thus, these economic quantities are least sensitive

Figure 1. Urban Agglomeration effects result in per capita nonlinear scaling of urban metrics. Subtracting these effects produces a truly
local measure of urban dynamics and a reference scale for ranking cities. a) A typical superlinear scaling law (solid line): Gross Metropolitan Product of
US MSAs in 2006 (red dots) vs. population; the slope of the solid line has exponent, b=1.126 (95% CI [1.101,1.149]). b) Histogram showing frequency
of residuals, (SAMIs, see Eq. (2)); the statistics of residuals is well described by a Laplace distribution (red line). Scale independent ranking (SAMIs) for
US MSAs by c) personal income and d) patenting (red denotes above average performance, blue below). For more details see Text S1, Table S1 and
Figure S1.
doi:10.1371/journal.pone.0013541.g001

Urban Scaling and Deviations
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to local variation with 93–96% of their variance being predicted

solely by population size (see Table S1). Violent crime follows,

where scaling accounts for 86% of the variance while patents are

subject to stronger local factors, having a wider SAMI distribution,

with scaling effects accounting for about 65–70% of the variance

in the data.

The first use of SAMIs is to provide a meaningful way to rank

cities. Figure 1C,D show two examples of rankings of approxi-

mately 360 US MSAs in 2005 by the magnitude and sign of their

SAMIs for income and patents. Complete tables are available

online (http://www.santafe.edu/urban_observatory/). Compared

to per capita indicators, which place 7 of the largest 20 MSAs in

the top 20 for GMP, SAMIs show no population size bias, ranking

none of these cities in the top 20. SAMIs also reveal that New York

is quite an average city, marginally richer than its size might

predict (rank 88th in income, 184th in GMP), not very inventive

(178th in patents) and quite safe (267th in violent crime). San

Francisco is the most exceptional large city, being rich (11th in

income), creative (19th in patents) and fairly safe (181th in violent

crime). The truly exceptional MSAs are smaller, such as

Bridgeport for income, Corvallis and San Jose (Silicon Valley)

for patents and Logan or Bangor for safety.

The probability distribution of SAMIs, Eq. (3), might suggest

that they behave much like random fluctuations. However, as

illustrated in Figures 2, 3, and 4, they display strong regularities

both in time and between cities. For instance, Figure 2A and B

show the temporal trajectory of SAMI values for a few typical

cities for personal income and patents over nearly four decades.

The persistence in time of SAMIs indicates that even as cities gain

or loose population, local characteristics are preserved and, in

many instances, are reinforced to a surprising degree. Thus, the

most salient feature of Figure 2A,B is how slow fundamental urban

change actually is [38]. Most cities that were rich and innovative in

the 1960s tend to remain rich today, and rankings of poor and

technologically disadvantaged cities likewise persist over the same

period. The change in a city’s performance is measured by the

auto-correlation of its metrics over time, Ai(t)~Sji(t’zt)ji(t’)T
(see Materials and Methods), and by the Fourier temporal power

spectrum Pi(v)~D�jji(v)D
2 of urban trajectories (see Methods for

definitions). Their averages over all cities for personal income and

Figure 2. The temporal evolution of scale independent indicators (SAMIs) displays long-term memory. The value of SAMIs as functions
of time for a) income (1969–2006) and b) patents (1975–2006) for selected MAs. Shaded grey areas indicate periods of national economic recession.
The temporal autocorrelation c) for patents and personal income and exponential fits, * exp ({t=t), with characteristic decay times of t=18.9 and
34.9 years, respectively and d) temporal Fourier power spectrum for the same quantities shows that their dynamics is dominated by long timescales.
doi:10.1371/journal.pone.0013541.g002
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patents are illustrated in Figure 2C and D, respectively, and show

that, although there is change on short time-scales, most dynamics

happens over characteristic time-scales of decades.

In general, higher rates of violent crime positively correlate with

higher average incomes. However, this is primarily because both

quantities scale similarly with city population size. SAMIs allow us

to factor out these dominant general size effects and identify local

relationships. Figure 3A, B, C show polar plots of these quantities

in 2005. These representations are obtained by dividing the

SAMIs for each quantity by s, and plotting the result in

coordinates on the circle. Although SAMIs have different average

magnitudes, s, for different quantities this representation allows us

to show exceptional cities in terms of two variables at once on the

same scale. Once population size effects are removed, the

remaining correlations between income, patents and personal

crime are, in fact, weak. However, some trends persist (solid lines),

showing that cities that outperform in income tend to outperform

in patents, and that underperformance in both is positively

correlated with higher rates of violent crime [39]. There are some

notable exceptions, however, as shown in Figure 3. In this sense, it

is possible to be poor but safe (Logan, Provo) or rich and violent

(Fairbanks, Santa Fe).

Place and geography are important in the development of cities

[11,12,40,41], so that it is interesting to investigate if urban

performance of nearby cities is similar. Figure 3D shows the spatial

distribution of SAMIs for personal income (see online (http://

www.santafe.edu/urban_observatory/). for more maps and years).

Such maps reveal regions with clusters of cities that under or over-

perform relative to size expectations, resulting in short-distance

positive correlations between local dynamics. However, these

effects average out among neighboring cities with different

characteristics so that significant average spatial correlations

disappear for distances w200 km (Figure 3E). Consequently,

spatial proximity is not in general a good determinant of similarity.

This lack of greater spatial similarity in socioeconomic SAMIs

raises the question of whether the local dynamics of different cities

are idiosyncratic and unique (random spatial fluctuations), or

whether there are common patterns across the urban system. To

investigate this question we ask more specifically if the SAMI

histories of different cities, see Figure 2A, B, are similar for the

same indicator. We measure similarity by the equal time cross-

correlations of SAMIs time-series (see Methods for definitions).

Once computed we can use this measure of similarity as a distance

with which to cluster cities into classes of urban dynamics. Cities

Figure 3. Relationships between local urban performance measured by personal income, patents and violent crime and their
spatial distributions. A) normalized SAMIs for income versus patents are shown in polar coordinates, see SI, together with best-fit linear relation
capturing overall average correlation (solid line, gradient = 0.38+0.04, R2 = 0.20). The color and size of circles both denote the magnitude of the
combined SAMIs for each city; b) similar representation for income versus violent crime with best-fit linear relation (gradient =20.19+0.07,
R2 = 0.05), and c) similar representation for patents versus violent crime with best-fit linear relation (gradient =20.34+0.05, R2 =0.12). Note that B)
and C) show a small amount of anti-correlation between SAMIs, which contrasts with the positive correlations for the per capita quantities due to
their size dependence. d) Spatial distribution of income residuals (SAMIs) in 2006 (created with Google maps, see online (http://www.santafe.edu/
urban_observatory/).). Red (blue) dots correspond to deviations above (below) expectation for city size. The size of the circle denotes the magnitude
of the SAMIs. e) Average cross-correlation between SAMIs versus spatial separation distance, showing short-range spatial correlation. Averages shown
are subject to large variation for distances w200 km (124 miles) with standard deviation §0.6.
doi:10.1371/journal.pone.0013541.g003
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showing the highest cross-correlations not only perform similarly

relative to expectation for their size, but also have similar local

histories. This suggests the concept of kindred cities exhibiting

common characteristic advantages and challenges as they evolve.

These clusters of similar cities can be visualized using a heatmap,

which is a correlation matrix sorted by similarity, grouping

together sets of similar MSAs (denoted in red) and separating anti-

correlated ones (blue); see Figure 4A for personal income for US

MSAs above 1 million. An equivalent representation is the

taxonomic tree shown in Figure 4B (for patents, violent crime and

GDP see Figures S2, S3, S4, S5, S6, and S7). At any given level of

similarity this tree can be cut into a number of non-overlapping

families of kindred cities. When, as is natural, we choose as the

benchmark the point where the value of the cross-correlation

vanishes and two cities are neither positively nor negatively

correlated, we obtain only five families of cities. These clusters do

not generally correspond to geographic proximity, but reflect

instead commonalities of economic choices and historical paths.

Examples include the cluster containing San Francisco, San Jose,

Minneapolis, Denver and Seattle as high-tech centers, and

Pittsburgh, Cincinnati, Memphis and Birmingham as market

and transportation hubs with industrial pasts.

Discussion

In this paper, we have proposed a systematic procedure for

solving the long-standing problem of constructing meaningful,

science-based metrics for ranking and assessing local features of

cities [39]. By using nonlinear urban scaling laws as a baseline, our

procedure accounts for the underlying principles and socioeco-

nomic dynamics that give rise to cities to distinguish general effects

of urbanism from local dynamics and, consequently, leads to a

much simpler and direct perspective into the local factors that

make or break specific places.

Population size plays a fundamental role in this approach. In the

spirit of the successful application of scaling analysis to many other

system - from collective physical phenomena [42] to biological

organisms and ecosystems [30,43–46] - the systematic variation of

the properties of cities with population size reveals the ways in

which cities result in more than the simple agglomerations of

people. This is the phenomenon that anthropologist Carneiro

described as quality from quantity in his studies of the emergence of

organizational forms in small human societies [47]. Scaling laws

for cities show systematic effects of spatial densification, temporal

acceleration and socioeconomic diversification, that have long

been discussed in the social sciences [23–26], but that can only

now start be appreciated for their quantitative generality. In

particular two general aspects of the scaling properties of urban

indicators appears systematically across time, and in different

urban systems: i) economies of scale in urban material infrastruc-

ture and ii) increasing returns in socioeconomic productivity.

Whenever these two general effects can overcome other

socioeconomic disruptions, such as expensive transportation and

social insecurity, cities become magnets for human social activity.

Thus, population size is not so much a causal force, but rather a

proxy aggregate variable that denotes a set of diverse socio-

economic mechanisms that derive advantages from the co-location

and intense interaction of people. The general regularity of urban

scaling laws and of the statistics of their deviations point to the

possibility of a general theory of cities that can account for the

essence of these interactions and predict a small set of fundamental

scaling regularities common to all urban systems.

Figure 4. Families of kindred cities. The cross-correlation between SAMI time-series gives a measure of similarity, which can be used to group
cities into clusters with similar characteristics; A) sorted correlation matrix (heatmap) for personal income in US MSAs with population over 1 million.
Red (blue) denotes greatest (dis)similarity; B)Dendrogram showing detailed urban taxonomy of USMAs according to personal income. This clearly
manifests clustering among cities with similar time trajectories. Here we used a decorrelation measure dij~(1{cij)=2 as distance between any two
cities, where cij is the cross-correlation of Figure 4A. When the decorrelation dij~0:5, ci,j~0, indicating no correlation(dashed line), revealing five
families of kindred cities. See Figures S2, S3, S4, S5, S6, and S7 for other quantities.
doi:10.1371/journal.pone.0013541.g004
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From this viewpoint, the general statistically stable properties of

cities emerge as a hierarchy of interrelated fundamental quantities.

First, it has been known for some time that the population size

distribution of cities has remained relatively stable over time and

across many different nations and is well-described by a Zipf

power law distribution [48,49]. Analogously, we have shown [15]

that scaling laws for socioeconomic and infrastructural metrics

persist over time and across every nation that has been studied,

and that these organize urban quantities into two broad

universality classes of dynamics that manifest either increasing

returns to scale (socioeconomic quantities) or economies of scale

(material infrastructure) both to approximately the same degree.

Here, we have taken the analysis a step further and shown that the

deviations from these generic scaling laws, which express local

factors specific to individual cities, also manifest distributions and

correlations that are surprisingly stable over long times. These

distributions represent averages over much faster individual and

social dynamical processes, including changes in personal

behavior, social contact structure, and migration. It is therefore

extraordinary that, despite the immense diversity of human and

social behavior, the dynamics and organization of urban systems,

as well as of individual cities, is an emergent predictable

phenomenon.

Secondly, perhaps the most conspicuous property of SAMIs is

that they do not randomly fluctuate over time but, instead, show

long temporal persistence. This indicates that, even though the size

and structure of a city’s population may change considerably over

time, any initial advantage or disadvantage that it has relative to its

scaling expectation tends to be preserved over decades. In this

sense, either for good or for bad, cities are remarkably robust.

Examples are Phoenix, which has remained a mild economic

under-performer over the last four decades maintaining a similar

value of j for personal income even as the city nearly quadrupled

in population since the late 1960s (Figure 2A). Or, the initial

advantages of San Jose (Silicon Valley) in terms of wealth creation

and innovation which was already present in the 1960s. This over-

performance was sustained and even reinforced over forty years,

despite the short term boom and bust technological and economic

cycle in 1999–2000, at the end of which the city returned to its

long term basal trend (Figure 2A). Put slightly differently: apart

from a relatively small bump in the late 1990s, the continued

success of San Jose was already set well before the birth of Silicon

Valley. Other examples that deal with population loss are also

illuminating. Former industrial cities, such as Pittsburgh or

Buffalo, have now experienced almost four decades of slow

population loss, despite massive interventions to reverse such

trends. The recent histories of these cities are also characterized by

negative SAMIs (especially for income) and by their lowest levels

coinciding with the greatest population loss. These examples

suggest that, at least in part, we should think of cities as sets of

socio-economic processes with a temporal persistence much longer

than that of typical policy initiatives or the participation of

particular individuals. In this sense, urban policy that promotes

population growth as a means to benefit from the effects of

agglomeration leaves the character of a city, including most of its

challenges, unresolved, and may, in fact, contribute to exacerbate

them. Policies that focus instead on establishing beneficial

fundamental change in local urban dynamics will be very difficult

to achieve but very much worth creating, as they will position a

city for a long run of prosperity and innovation. It would be

interesting to investigate whether similar long term memory and

persistence of urban dynamics is also a property of fast changing

urban systems such as those in China or India. We intend to

explore some of these important questions in future work.

Our analyses show that average spatial correlations between

cities in the US are relatively short ranged (v200 km) and may

have been weakening over time. Thus, compared to their temporal

persistence, geographic proximity is, at best, a weak predictor of

the characteristics of a city. This is perhaps surprising in view of

classical models of urban settlement and growth [11,40,41], which

assume a close interdependence of a city and its surrounding area.

The present lack of greater close spatial similarity may be the

result of elevated and increasing mobility within the US [50], so it

would be interesting to analyze urban systems in other nations

where these effects may have played out differently.

Despite the lack of greater similarity due to geographical

proximity, we find that most cities in the US show strong similarity

with groups of other cities so that all US MSAs fall into a small

number of classes of kindred cities sharing common historical paths.

The same is true in terms of dissimilarity (or negative correlation)

among cities, indicating that beneficial periods in specific sectors of

the urban system coincide with negative developments in others, as

Figure 4A illustrates. In fact, it is particularly interesting and

perhaps surprising that these classes of local urban dynamics are not

more diverse but, instead, fall into just a few groups, as quantified by

local urban trajectories for personal income, patents and violent

crime. The non-local nature of the similarity among urban

trajectories strongly suggests that policy-makers should not search

for analogous challenges and solutions in nearby cities but should

instead consider who their kindred cities are.

Finally, it is important to emphasize that the average properties of

most socioeconomic quantities such as wealth creation, crime and

innovation are strongly predicted by the scaling laws expressed in

Eq. (1), which are non-linear functions of population size and

account for 65–97% of the variance in the data (see Table S1). The

shape of the city in space, including for example its residential

density, matter much less than (and are mostly accounted for by)

population size in predicting indicators of urban performance. Said

more explicitly, whether a city looks more like New York or Boston

or instead like Los Angeles or Atlanta has a vanishing effect in

predicting its socio-economic performance. However, there are, of

course, some specific urban quantities that depend additionally on

other properties of the city such as its spatial layout or climate.

Examples are energy spent on transportation or climate control, and

related emissions of pollutants. In these cases analyses of local

indicators (SAMIs) will show dependence on other general urban

variables, such as population density or urban area, which, on

average, do not affect the quantities studied here.

In summary, we have used the empirical manifestations of the

underlying principles of agglomeration and the implicit network

structures and dynamics responsible for the formation of cities to

account systematically for urban dynamics at different scales. This

paradigm allows us to separate measures of true local dynamics and

organization in cities from their generic universal behavior. We have

shown that these local indicators (SAMIs) have well defined statistics

and that the consideration of their temporal and spatial properties is

an essential element of models and theory of urban evolution and a

new tool for the formulation of improved urban policy.

Materials and Methods

Data sets and sources
Our spatial unit of analysis is the metropolitan statistical area

(MSA). MSAs are defined by the U.S. Office of Management and

Budget and are standardized county-based areas having at least

one urbanized area of 50,000 or more population, plus adjacent

territory that has a high degree of social and economic integration

with the core, as measured by commuting ties. Data on Gross
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Metropolitan Product (GMP) was recently made available by the

US Department of Commerces Bureau of Economic Analysis and

is a measure - in 2001 chain-weighted dollars - of the market value

of final goods and services produced within a metropolitan area in

a particular period of time. Data on the number of violent crimes

is provided by the US Federal Bureau of Investigation (Uniform

Crime Reports). Metropolitan patent counts were constructed

using data provided by the U.S. Patent and Trademark Office, see

Text S1. Data on personal income and population was obtained

from the US Bureau of Economic Analysis Regional Economic

Information System.

Scaling analysis and residual statistics
Data for GMP, personal income, violent crime and patents for

each MSA corresponding to the same year were transformed

logarithmically and fitted using Ordinary Least Squares to the

logarithm of population, according to (1). Residuals from these fits,

ji(t), which we call Scale-Adjusted Metropolitan Indicators

(SAMIs) were then isolated and binned to form a normalized

histogram, from which a probability distribution is constructed.

Both Gaussian and Laplacian (exponential) distribution functions

were fitted to the resulting distribution using standard maximum

likelihood estimators, see Table S1 The goodness of fit was

evaluated in terms of the R2 of these fits to the cumulative

residuals distribution; see Figure S1.

Urban ranking
The magnitude of the SAMIs corresponding to a given quantity

and year for each city were used to rank cities. Two examples are

shown in Figure 1A, B. Their spatial distribution are shown in

Figure 3D, and online (http://www.santafe.edu/urban_observatory/).

Temporal analysis
The temporal autocorrelation is defined as

Ai(Dt)~
1

Dji D
2

X

t

ji(t)ji(tzDt) ð5Þ

where Dt is measured in years. Dividing by Dji D
2
~

P

t ji(t)
2

ensures the normalization A(0)~1. In practice, because the length

of the vectors ji are finite in time we also take into account the

multiplicities of the overlap relative to the equal time norm, so that

A(Dt)~1, for ji(t)~constant. The temporal autocorrelation was

computed for each MSA using the corresponding time-series of

personal income (period 1969–2006) and patents (1975–2005).

Individual city autocorrelation functions were averaged to produce

the points shown in Figure 2C. These data were then fitted to an

exponential curve to obtain the characteristic decay times t. In
Figure 2D the SAMI time-series for patents and personal income

for each city were Fourier transformed and their power spectra

produced as a function of temporal frequency. Individual power

spectra were averaged over cities to produce the points shown.

Polar plots
In Figure 3 A, B, C SAMIs were divided by their average

distribution width s computed via fitting of a Laplace (exponential)

distribution to the normalized histogram of residuals for a given

year (see also Table S1). Resulting quantities were then combined

two by two to produce polar plots, where, for each city

(represented by a point in the polar diagram), the radius is the

square root of the sum of the SAMI amplitudes for the two

quantities and the polar angle is its phase.

Interactive Online Maps
Interactive maps and tables of SAMIs for each quantity and

year were produced using Exhibit (http://simile.mit.edu/wiki/

Exhibit) and Google maps (http://maps.google.com). The figure

shows one example. The full set can be viewed online (http://

www.santafe.edu/urban_observatory/).

Spatial autocorrelation
Spatial similarity between cities was computed in terms of the

equal-time cross-correlation of their SAMI time-series

Cij~
1

Dji DDjj D

X

t

ji(t)jj(t) ð6Þ

This definition ensures that cities with similar values of SAMIs and

time series (up to a multiplicative constant) will have the highest

similarity. Distance was computed as the straight line connecting

the two cities, by converting GIS coordinates to physical distance.

Pairs of cities were grouped in distance bins of 50 km and

averaged over all pairs to produce the points shown in Figure 3E.

The standard deviation of these averages is large (*0.6 for pairs of

cities beyond *200 km). Thus, we find no significant average

spatial correlations between local trajectories except for short

distances.

Urban similarity, clustering and heatmaps
Heatmaps were created by clustering the SAMI cij for pairs of

cities. High cross correlation is shown in warm colors (red), while

anti-correlation correlation is shown in cold ones (blue). The

corresponding dendrogram groups cities together in terms their

similarity. The measure of decorrelation shown is dij~(1{cij)=2,
so two cities i and j that are perfectly correlated have dij~1, while

cities that are maximally anti-correlated have dij~0; dij~1=2
corresponds to cij =0, i.e. no correlation.

Supporting Information

Figure S1 Fit of cumulative exponential (Laplace) and Gaussian

distributions to residuals for personal income in 2005. Both

distributions give an excellent fit, but the exponential (Laplace)

distribution is better, especially for residues around zero.

Found at: doi:10.1371/journal.pone.0013541.s001 (3.33 MB TIF)

Figure S2 Dendrogram of U.S. metropolitan areas grouped by

incidence of violent crime, for cities with population above 1

million. Only cities reported by the FBI every year between 2001–

06 are shown.

Found at: doi:10.1371/journal.pone.0013541.s002 (1.92 MB TIF)

Figure S3 Heatmap of U.S. metropolitan areas grouped by

incidence of violent crime for cities with population above 1

million. Only cities reported by the FBI every year from 2001 to

2006 are shown.

Found at: doi:10.1371/journal.pone.0013541.s003 (11.97 MB

TIF)

Figure S4 Dendrogram of U.S. metropolitan areas grouped by

patenting rates for cities with population above 1 million. Data

covers the period of 1975–2005.

Found at: doi:10.1371/journal.pone.0013541.s004 (8.04 MB TIF)

Figure S5 Heatmap of U.S. metropolitan areas grouped by

patenting rates for cities with population above 1 million. Data

covers the period of 1975–2005.

Found at: doi:10.1371/journal.pone.0013541.s005 (12.02 MB

TIF)
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Figure S6 Dendrogram of U.S. metropolitan areas grouped by

Gross Metropolitan Product (GMP) for cities with population

above 1 million. Data covers the period of 2001–2006.

Found at: doi:10.1371/journal.pone.0013541.s006 (7.62 MB TIF)

Figure S7 Heatmap of U.S. metropolitan areas grouped by

Gross Metropolitan Product (GMP) for cities with population

above 1 million. Data covers the period of 2001–2006.

Found at: doi:10.1371/journal.pone.0013541.s007 (2.94 MB TIF)

Table S1 Summary statistics for 2005. Scaling exponent with

95% confidence interval and R-squared for log-log fits of total

urban indicator versus total population. Two fits to the residual

distribution using an exponential (Laplace) and Gaussian distri-

butions. The parameter s measures the width of the Laplace

distribution. Similarly, s is the standard deviation of the Gaussian.

Values of R-squared shown for these parameters indicate goodness

of fit of the cumulative residual distributions to the data (see Figure

S1).

Found at: doi:10.1371/journal.pone.0013541.s008 (0.05 MB

DOCX)

Text S1 This describes in greater detail our methodology for

assigning patents to metropolitan statistical areas.

Found at: doi:10.1371/journal.pone.0013541.s009 (0.11 MB

DOCX)

Text S2 This contains a summary of statistical analysis of

correlations between SAMIs and population growth rates of

Metropolitan Statistical Areas.

Found at: doi:10.1371/journal.pone.0013541.s010 (0.08 MB

DOCX)
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