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Abstract. Task allocation under uncertain conditions is a key

problem for agents attempting to achieve harmony in disas-

ter environments. This paper presents an agent-based simu-

lation to investigate task allocation considering appropriate

spatial strategies to manage uncertainty in urban search and

rescue (USAR) operations. The proposed method is based on

the contract net protocol (CNP) and implemented over five

phases: ordering existing tasks considering intrinsic interval

uncertainty, finding a coordinating agent, holding an auction,

applying allocation strategies (four strategies), and imple-

menting and observing the real environment. Applying allo-

cation strategies is the main innovation of the method. The

methodology was evaluated in Tehran’s District 1 for 6.6,

6.9, and 7.2 magnitude earthquakes. The simulation began by

calculating the numbers of injured individuals, which were

28 856, 73 195, and 111 463 people for each earthquake, re-

spectively. Simulations were performed for each scenario for

a variety of rescuers (1000, 1500, and 2000 rescuers). In

comparison with the CNP, the standard duration of rescue op-

erations with the proposed approach exhibited at least 13 %

improvement, with a maximal improvement of 21 %. Interval

uncertainty analysis and comparison of the proposed strate-

gies showed that increased uncertainty led to increased res-

cue time for the CNP and strategies 1 to 4. The time increase

was less with the uniform distribution strategy (strategy 4)

than with the other strategies. The consideration of strate-

gies in the task allocation process, especially spatial strate-

gies, facilitated both optimization and increased flexibility of

the allocation. It also improved conditions for fault tolerance

and agent-based cooperation stability in the USAR simula-

tion system.

1 Introduction

Preparation to manage an earthquake crisis requires opti-

mal and appropriate management. Agent-based modeling

of search and rescue operations after an earthquake is a

good model for decision-making compared with traditional

computational approaches (Hooshangi and Alesheikh, 2018).

Multi-agent systems consist of several automatic and au-

tonomous agents that coordinate their activities to achieve

a target (Crooks and Wise, 2013; Sabar et al., 2009). Multi-

agent systems are suitable for the modeling and simulation

of complex systems (Mustapha et al., 2013). They allow for

the division of the system into subdivisions (agents) and the

modeling of the relationships among these agents (Uno and

Kashiyama, 2008). The use of multi-agent systems is neces-

sary for disaster management (Hawe et al., 2015; Grinberger

and Felsenstein, 2016). Importantly, multi-agent systems can
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be used to implement various scenarios of search and rescue

operations, as well as distributions of facilities, in the crisis

area (Crooks and Wise, 2013).

Task allocation is one of the main coordination challenges

among sets of agents in a multi-agent system (Liu and Shell,

2012; Nourjou et al., 2011; Chen and Sun, 2012). Agents

fail to reach their ultimate goal without proper assignment

of tasks (Reis and Mamede, 2002). In disaster environments,

urban search and rescue (USAR) and the assignment of tasks

are dynamic processes occurring under uncertain conditions

(Hooshangi and Alesheikh, 2017). Generally, task allocation

on a large scale is influenced by uncertainties and various

factors (Cai et al., 2014). Uncertain conditions have a major

impact on the initial planning and results of rescue opera-

tions (Hooshangi and Alesheikh, 2018). Despite various in-

vestigations, an optimal task allocation solution has not been

established (Olteanu et al., 2012).

In many instances, the initial allocation may result in prob-

lems or new tasks may be added to the worklist; there-

fore, reallocation is necessary. Reallocation is an effective

reaction to environmental uncertainties and changes and has

important roles in both reducing the wasted time during

an operation and increasing operation profitability (Zhang

et al., 2014). Reallocation after instantaneous disruption is

very important, especially in large-scale distributed systems

(e.g., USAR operations) (Olteanu et al., 2012). An effective

task allocation approach in USAR operations should include

strategies for replanning to manage future situations. Be-

cause tasks may not be performed well for various reasons,

strategies such as minimum location displacement should be

applied to initial responses to preserve additional time during

reallocation or future task allocation. This approach to task

allocation optimizes planning performance to achieve better

performance time and provides conditions for fault tolerance.

The present article is the final part of a research project in

Iran. This research project was carried out over three phases.

In the first phase, uncertainty in task allocation among agents

was considered, and task allocation was performed only by

considering the proximity (spatial distance) to the tasks. The

developed method was evaluated in a square-shaped random

environment without a sensitivity analysis (Hooshangi and

Alesheikh, 2017). In the second phase, the feasibility of the

developed method was investigated in a simulated environ-

ment using real regional data. In this phase, the operational

environment of a crisis was simulated, and the developed

method was examined in a real environment. In the simu-

lated system, damage for a 6.8 magnitude earthquake was

calculated for District 3 of Tehran, and rescue operations

were modeled (Hooshangi and Alesheikh, 2018). In the third

phase using the concepts of previous articles (Hooshangi

and Alesheikh, 2018, 2017), spatial strategies were included

in task allocation among agents and simulated with real-

environment data. The present paper is the output of the third

phase of the research project. The main purpose of the re-

search is to improve task allocation in crisis-ridden condi-

tions for agent-based groups by considering proper strategies

to manage uncertainties. This paper first develops an agent-

based simulation system for USAR operations, then applies

uncertainties in agent decision-making by improving an in-

terval VIKOR method to perform task allocation, and de-

fines strategies for conditions under which the initial assign-

ment has encountered a problem and requires reallocation

(i.e., managing availability uncertainty during implementa-

tion). The innovation of the study is the establishment of an

approach to improve conditions during reallocations or future

allocations when initial allocations encounter problems, due

either to availability uncertainties or the addition of a new

task. In general, strategies are selected in such a manner that

the final cost of the system will not increase abnormally if

the initial allocations encounter problems. By applying spa-

tial strategies in the assignment of tasks, it is expected that

the assignment of tasks in conditions of uncertainty will be

done optimally and more quickly.

2 Literature review and background

2.1 Agent-based USAR simulation

An agent-based model is a class of computational models

for simulating the actions and interactions of autonomous

agents. Agent-based simulations have been used in various

investigations including crisis/disaster management (Wang

et al., 2012; Hooshangi and Alesheikh, 2018), emergency

supply chains (Ben Othman et al., 2017), tsunamis (Erick

et al., 2012), and collective behavior (Welch et al., 2014).

These simulations can be effective in both planning and pol-

icymaking (Fecht et al., 2014). Simulation of the operating

system involves a simplified real environment, which is used

to model a wide range of agents in complex systems. Var-

ious researchers have modeled a portion of the behavior of

agents in simulated environments (Erick et al., 2012; Wang

et al., 2012; Matarić et al., 2003) and demonstrated collab-

oration among agents. However, agent cooperation in catas-

trophic environments has been less extensively studied, such

that uncertainty in collaboration among agents has generally

not been considered. In previous studies, a geospatial infor-

mation system platform was used when preparing the envi-

ronment and creating a simulation base map (Welch et al.,

2014). Spatial analysis and related tools are used in most re-

search endeavors in USAR operations after an earthquake.

2.2 Approaches to applying uncertainties in task

allocation

Agents should include environmental uncertainties in their

performance with respect to planning goals. There are four

common approaches to considering uncertainty: probabilis-

tic, fuzzy logic, rough set, and interval set (Hooshangi and

Alesheikh, 2017). Uncertainty in task allocation has been in-

vestigated in various studies that can be categorized as sensor
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noise (Liu and Shell, 2011; Bertuccelli et al., 2009; Matarić

et al., 2003), an accidental event during execution (Lee and

Al-yafi, 2010; Li and Cruz, 2005), the occurrence of new

tasks (Xiao et al., 2009; Kayır and Parlaktuna, 2014), the

number of groups (Quiñonez et al., 2011; Dahl et al., 2009),

the relationship among agents (Choi et al., 2009; Su et al.,

2016), and decision parameters (Hooshangi and Alesheikh,

2017).

The above-mentioned methods have been used in vari-

ous applications such as multiple unmanned aerial vehicles

(Bertuccelli et al., 2009), supply chains (Dahl et al., 2009),

moving plants (Tan and Barton, 2016), and disaster envi-

ronments (Su et al., 2016). There is no dominant approach

to model uncertainty for all phenomena. The appropriate

method is determined based on the characteristics of the

phenomenon and the purpose of the study. In crisis envi-

ronments, there is uncertainty in all decision parameters. In

the category of uncertainty in decision parameters, which is

suitable for multi-agent systems, uncertainties are associated

with the decision parameters for assigning tasks. Therefore,

all information needed for task allocation is considered un-

certain. Various methods such as the contract net protocol

(CNP) (Hooshangi and Alesheikh, 2017), stochastic schedul-

ing (Tan and Barton, 2016), and genetic algorithms (He et

al., 2014) have been used in these contexts. Here, we present

an approach that includes uncertainties in decision parame-

ters and strategies in the CNP. The CNP produces local op-

timal solutions that are abundantly used in multi-agent sys-

tems (Choi et al., 2009). This method is simple and practi-

cal and is popularly used in agent-based modeling. In USAR

operations, complete individual expertise is impossible due

to a lack of environmental knowledge; therefore, determin-

ing membership function and the probability distribution is a

complex and time-consuming step. We used interval analysis

to manage these shortcomings and to consider the interval-

lic nature of available data within a rescue operation. In the

interval set method, due to the uncertainty in a parameter’s

value, that parameter is specified as an interval regardless of

the probabilistic distribution (unlike in probabilistic theory)

or membership function (unlike in fuzzy logic) (Hooshangi

and Alesheikh, 2017).

2.3 Reallocation and reassigning methods

Distinct algorithms have been proposed for scheduling and

task reallocation in accordance with the tasks and available

conditions within an environment (Gokilavani et al., 2013).

Some reallocation methods (e.g., data envelopment analy-

sis; Barnum and Gleason, 2010) and exact algorithms (e.g.,

a branch-and-bound algorithm with column generation) re-

solve problems on a smaller scale (e.g., 10 jobs and three ve-

hicles). In such methods, the process is time-consuming and

slow for resolving large-scale problems (Cai et al., 2014).

Therefore, they are not suitable for the allocation of tasks

that should be performed dynamically and instantaneously

in large-scale problems.

In some research, such as the investigation of gate reas-

signment problems, initial assignment tables have been cre-

ated using heuristic methods in such a manner that a suc-

cession delay is minimized (Cheng, 1997). The incidence

of adverse events may disrupt the original table. Notably,

this method is not suitable for a large number of tasks.

Some other task allocation methods are interdependent with

the plan’s ongoing tasks, such as in construction operations

(Olteanu et al., 2012). In those mathematical calculations,

when a task fails, all other tasks that were based on its correct

implementation must be replanned.

An appropriate reallocation method must be applied with

respect to the nature and scale of the problem. In USAR, a

rescue process generally occurs independently of any other

rescue processes, and only a portion of the workflow is ready

to be implemented and assigned. Moreover, because of the

large number of rescue groups in USAR operations, as well

as the available uncertainties and dynamic nature of multi-

agent systems in disaster environments, the concept of gen-

eral planning is uncommon, and appropriate plans should be

produced both locally and cross-sectionally. Most available

methods to resolve the problem of assigning tasks cannot be

developed for uncertain conditions and restrictions such as in

critical rescue environments (e.g., USAR after earthquakes).

With respect to USAR operations, task allocation methods

must include different strategies for all conditions and be dy-

namically generated in a real-time environment. In contrast

to previous studies, we define an approach based on spatial

strategies, such that the results of the initial task allocation

are used for future task allocations and are appropriate in

the rescue environment. Time limitations constitute another

issue in the reallocation and reassignment of rescue teams.

Therefore, the present study aims to expand the CNP method

for rapid problem resolution.

3 Case study and data

The proposed approach can be implemented in various study

areas. This study used a part of Tehran (District 1 in the capi-

tal of Iran) to evaluate the feasibility of the proposed method

on the basis of available data. District 1 is one of 22 central

districts of Tehran Province, Iran. District 1 has an area of

210 km2 and is located in the northernmost part of the city of

Tehran (Fig. 1). Its population is 433 500.

The recent Tehran earthquake (5.2 magnitude) in Decem-

ber 2017 attracted the attention of many urban planning or-

ganizations. Tehran is a highly seismic area because it is sur-

rounded by the Rey, Masha-Fasham, and North Tehran faults

(Fig. 1b). Tehran is located in the southern part of the Al-

borz Mountains, where a magnitude 7.3 earthquake occurred

in 1990 (Berberian and Yeats, 2016; Hamzehloo et al., 2007).

Seismologists have reported that a severe earthquake may oc-
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Figure 1. Location of case study: (a) peak ground acceleration map of Iran for a return period of 2475 years and approximate location of

Tehran and (b) location of District 1 and active faults in Tehran. (c) Map of District 1 (study area) and active faults, Tehran.

cur in Tehran in the future (Hosseini et al., 2009). The North

Tehran fault is the city’s largest fault and is approximately

175 km long (Kamranzad et al., 2020). For this purpose, the

North Tehran fault scenario, with the capacity to cause the

most destructive potential earthquake in Tehran, was selected

in the present study. Various scenarios have been simulated

in seismic studies in Tehran, such as 6.8 and 6.9 magnitude

earthquakes. The method developed in this research can be

implemented for any scenario. In accordance with the pre-

vious earthquakes and suggestions of seismologist experts,

we simulated 6.6, 6.9, and 7.2 magnitude earthquakes. The

basic data used in environment simulation were block maps,

population, distance from the fault, building material, agent

location, year of building construction, and building height.

4 Materials and methods

In this section, the simulated scenario and proposed method

are described.

4.1 Scenario of proposed agent-based USAR

simulation

We assume the presence of a disaster environment in which

events are uncertain. In this scenario, the crisis is assumed to

be an earthquake. The injured individuals are trapped under

rubble, and the number of such individuals in each build-

ing block is uncertain. Rescuing injured people is the main

goal. Saving each person is a task that must be performed

through the cooperation of rescue agents. After an earth-

quake, the numbers of injured and deceased people can be

estimated using different formulas by determining the mag-

nitude and location of the earthquake, as well as the urban

context data of the buildings (Kang and Kim, 2016). Fur-

thermore, the possible locations of injured individuals can be

predicted using building damage assessment models. There-

fore, the simulation inputs are the injured individuals’ loca-

tions and their characteristics, which are available with some

uncertainty. The rescue agents are attempting to save injured

individuals by moving toward the task location. Given the

results of previous studies (He et al., 2014; Hooshangi and

Alesheikh, 2017; Sang, 2013; Chen et al., 2012) and in ac-

cordance with expert opinion on USAR operations, the un-

certainties include the number of injuries, severity of the vic-

tims’ injuries, duration of the operation, infrastructure priori-

ties, agent energy, route status, task runtime by an agent, and

risk level for each agent. These are important uncertainties

in task allocation. All parameters are specified as intervals

during the task allocation process. After task identification,

an agent is assigned a task and pursues it. If an agent fails

to complete an assigned task because of any existing disrup-

tions, the task is updated with respect to uncertainties and

reported to the central agent, resulting in the reinitiation of

the task allocation process. In this process, task allocation

strategies are applied to minimize the cost of the system.

In this scenario, there is a central agent, as well as sev-

eral coordinators, rescuers, and injured agents in the environ-

ment. These independent agents are rational and can commu-
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nicate with each other. The agents have the following roles

and characteristics:

– Central agent. This agent is responsible for sorting

the tasks, specifying the coordinators, determining the

results, announcing rescuers, and applying allocation

strategies.

– Coordinating agent. The coordinator is a rescue agent

who is responsible for sending work details to rescuers,

receiving their proposals (bids), holding auctions, and

submitting the results and rescuer prioritization data to

the central agent.

– Rescue agent. This agent identifies and moves to the

task location, searches for injured individuals, sends the

task uncertainty to the central agent, and rescues injured

individuals from the debris.

– Injured agent. This agent exists in the environment

and has a critical condition that changes continuously.

This agent has no activity or communication with other

agents.

4.2 USAR simulation

In preparation for the USAR operation simulation, there

are three main parts: (1) calculating the damage rate of the

area and people (simulating an earthquake-damaged envi-

ronment), (2) defining agents and their characteristics, and

(3) implementing the suggested method for task allocation

between agents.

To simulate an earthquake-damaged environment, an

earthquake risk assessment model was developed based upon

the Japan International Cooperative Agency (JICA) model.

The JICA model is the output of cooperation between the

Center for Earthquake and Environmental Studies of Tehran

and the JICA. The results of this project and its implementa-

tion have been presented previously (Mansouri et al., 2008)

and used in various studies (Hooshangi and Alesheikh, 2018;

Vafaeinezhad et al., 2009). This model can calculate the

buildings’ level of destruction and the number of injured peo-

ple based on the earthquake intensity, earthquake location,

building vulnerability, and the population in these buildings.

In our scenario, we included four types of agents: injured

individual, rescuer, coordinator, and central agent. The tasks

described in the previous section were implemented for each

agent. The initial locations of injured agents were based on

building damage, and the locations of rescue groups were

randomly generated in the environment. The definitions of

agents and their characteristics were described in detail in

our previous article (Hooshangi and Alesheikh, 2018).

4.3 The proposed method

The proposed model for task allocation with uncertainties in

earthquake USAR operation is shown in Fig. 2.

The five steps of the proposed approach are the ordering of

existing work, specifying the coordinators, holding an auc-

tion, applying reassignment strategies (the innovation of this

paper), and implementing and observing environmental un-

certainties (performed by an agent). The proposed method is

presented below.

4.3.1 Ordering existing tasks

In crisis-ridden areas, there are varying degrees of urgency

(Chen et al., 2012). Tasks with a higher priority must be

performed first. Four parameters are used to prioritize tasks:

the number of victims, severity of injuries, time required for

a rescue operation, and infrastructure priorities. The initial

tasks with their uncertainties in the environment (four prior-

ity parameters) are available to the central agent. Therefore,

for each task feature, an interval such as that expressed in

Table 1 is specified.

To manage interval data in the CNP, various multi-criteria

decision-making methods are proposed. The interval-based

VIKOR method is used extensively to coordinate agents in

the assignment of tasks with interval data (Hooshangi and

Alesheikh, 2017). The interval-based VIKOR method has

been previously described (Sayadi et al., 2009). Ordering is

performed by the central agent.

4.3.2 Finding the coordinating agent

For each task defined by the central agent, the most appro-

priate agent is identified as the coordinating agent. The co-

ordinating agent is an agent who is located near that task

and is not currently working. The selection of a coordinat-

ing agent and creating groups to execute any task can be

achieved through different methods and is based on various

criteria (Chen and Sun, 2012; Su et al., 2018). In this study,

to simplify the calculations, only the criterion of proximity

(spatial distance) is used to identify the coordinating agent.

Therefore, the nearest agent to the task is selected as the co-

ordinator and is responsible for the auction. Selection of a

coordinating agent leads to the performance of calculations

at a distributed point. By selecting coordinating agents, the

computational overhead of the central agent is reduced.

4.3.3 Holding an auction

Coordinating agents hold auctions after receiving the task

characteristics and the list of agents in the subgroup. In the

CNP, agents bid for tasks, and the agent who offers the high-

est value for the task is the winner. During the auction, rescue

agents offer intervals (rather than values) for the route con-

ditions, the time required for the agent to execute the task,

the agent’s possible risk level, and their energy. Accordingly,

the agent calculates numbers for each of the four decision-

making criteria, such as variable X, based on Eq. (1). In

Eq. (1), the distance (in meters), severity of the victims’ in-

juries, and task priority are based on values declared by the
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Figure 2. Task allocation flowchart in the proposed approach, separated into five steps within an environmental simulation.

Table 1. Task characteristics based on intervals.

Task X Y Infrastructure Number of Severity of Duration of

no. coordinate coordinate priorities injuries victim injuries operation

1 X1 Y1 [Il1, Iu1] [Nl1, Nu1] [Sl1, Su1] [Dl1, Du1]

2 X2 Y2 [Il2, Iu2] [Nl2, Nu2] [Sl2, Su2] [Dl2, Du2]

. . . . . . . . . . . . . . . . . . . . .

i Xi Yi [Ili , Iui ] [Nli , Nui ] [Sli , Sui ] [Dli , Dui ]

. . . . . . . . . . . . . . . . . . . . .

n Xn Yn [Iln, Iun] [Nln, Nun] [Sln, Sun] [Dln, Dun]

central agent. Based on the rate of uncertainty presumed for

a given environment (for example, 30 %), an interval for this

number is estimated. The first number of this interval is in

the range between [X, X + 30 %X] and the second number

is in the range [X − 30 %X, X].

Agent energy (energy level, distance, number of people)

= energy level − distance/500

− number of people rescued · 0.3

Task runtime by an agent (distance, number of people, severity)

= distance/150 + number of people rescued · 15

+ severity · 2

Risk level for an agent (energy level, priority)

= priority − energy level

Route status (distance) = distance (1)

In the real world, each person can introduce intervals accord-

ing to their experience and their knowledge of the environ-

ment. In this study, we used the above equations based on

expert opinion to simulate the real environment. The coor-

dinating agent applies the interval-based VIKOR method to

order the agents’ bids. The coordinating agent sends the re-

sults to the central agent after ordering the agents. The use
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N. Hooshangi et al.: USAR simulation system 3455

of a central agent in this phase provides the opportunity to

make the best decision considering the task priorities and ca-

pacities of other agents.

4.4 Applying allocation strategies

In operations where there is uncertainty, the issue of task al-

location cannot be definitively resolved. In this phase, the

initial allocation should be done in such a manner that a po-

tential reallocation would waste the smallest amount of time.

Based on different strategies at this stage, the central agent

begins to assign tasks after obtaining all lists from coordi-

nating agents. In each strategy, a priority is assigned to spe-

cific tasks. In this section, four different strategy-based ap-

proaches are described, as follows:

– Task allocation according to priority (strategy 1). In this

strategy, task allocation begins with the assignment of

higher priority tasks, following establishment of the task

order and priorities of the rescue team in the previous

stage (prioritization and auction). Therefore, the agent

with the best performance is selected for high-priority

tasks and is subsequently excluded from the lists of

agents with no tasks. Subsequently, the tasks of lower

priority are assigned in the same order. The limitation

of this strategy is that it may cause some agents to not

receive tasks.

– Assigning tasks to all agents, preferably to specific

agents with optimal outcomes (strategy 2). This strategy

is based on the optimal use of all rescue teams. In this

strategy, all agents are assigned a task. For this purpose,

a task is first assigned to an agent who has applied for

the minimum number of tasks. The agent and task are

then eliminated from the agent and task lists, and the

allocation continues with the next agent who has made

few requests. Using this strategy, a task will be assigned

to all agents.

– Task allocation on a strategic spatial basis (strategy

3). Using this strategy, agents who play important and

strategic roles in the task allocation process are ex-

cluded to ensure their availability for the implementa-

tion of tasks if problems are encountered during the task

allocation process. Agents with strategic roles may be

defined differently. Agents who participate in the auc-

tions of more tasks are those with strategic locations.

In such instances, these agents are close to many tasks

(have strategic spatial locations) and can be used when

these tasks are not implemented. Figure 3 shows the

difference between the task allocation results for strate-

gies 2 and 3. In Fig. 3, a rescue agent located centrally

has a strategic position and will try to maintain this posi-

tion. Although the total movement may increase, if there

are problems in performing other tasks, this agent can

help all other groups.

Figure 3. Strategic agent illustration. Blue arrows show the final

results for strategy 2, and red arrows show the successful rescuers

in strategy 3.

Figure 4. Best density strategy illustration. Blue arrows indicate the

successful rescuers in strategy 2, and red arrows indicate the final

results for strategy 4.

– Assigning tasks by creating the best density in the envi-

ronment (strategy 4). This strategy is based on the op-

timal density of rescue agents. Using this strategy, task

assignments are made in a manner that ensures the uni-

form distribution of agents in the environment. Gener-

ally, no exact information is available concerning the

conditions of the tasks; therefore, this strategy aims to

ensure a uniform distribution of rescue teams within the

environment if the uncertainty is high. In disaster envi-

ronments such as earthquakes, the incident occurs over

a wide area, such that the damage and injured popula-

tion are uniformly distributed due to the texture of the

area. Therefore, the highest number of injured people

is not accumulated in any one spot. Furthermore, ap-

plying this strategy prevents the convergence of rescue

teams. To apply this strategy, the tasks of the highest

priority in the task lists should be given to the available

agents where the environmental density is the highest.

The concept of optimal density can be solved through

innovative algorithms. In our study, the simulated an-

nealing method was used to determine uniform density.

The implementation stages of simulated annealing have

been described previously (Sabar et al., 2009). Figure 4

shows the difference between task allocation outcomes

for strategy 2 and strategy 4.

4.4.1 Implementation and observation of real values in

the environment

During the implementation phase, tasks are implemented by

agents in a dynamic environment where there are always un-
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certainties during task execution. The rescuer observes the

difference between predicted values and the actual environ-

ment after the work begins. In this study, a random number in

the [X − 30 %X, X + 30 %X] interval was chosen to model

the real environment. In the real world, the difference be-

tween the predicted environment (through building vulnera-

bility estimation models) and the real environment will de-

termine the agent’s performance.

If the agent observes a large difference between the auc-

tion information and the real environment, the agent aban-

dons that task. In this instance, the agent updates the task’s

values and uncertainties and returns the work to the cen-

tral agent. The new uncertainty interval will be 80 % smaller

than the original interval. There are various conditions under

which agents will reallocate a task if the environment differs

from the expected scenario. For example, the agent can aban-

don the task if three of eight decision-making parameters are

out of range by 5%. Otherwise, the agent finishes the rescue

work by accepting the new conditions. The central agent as-

signs newly added tasks within the reallocation framework.

When a new task is assigned, the task allocation is combined

with that of both new and incomplete tasks.

4.5 Evaluation method

Assessment of a task allocation algorithm is typically per-

formed in the first phase through modeling and simulation

due to the dynamic and heterogeneous nature of different en-

vironments (Olteanu et al., 2012). Simulation is a suitable ap-

proach for the implementation and validation of a proposed

method (Nourjou et al., 2011). In a real test situation, the situ-

ations and conditions of the implementation scenario are dif-

ficult to reproduce. In the present study, we simulated three

scenarios for earthquakes in Tehran’s District 1 with magni-

tudes of 6.6, 6.9, and 7.2. We also estimated the numbers of

deceased and injured individuals who are distributed in the

centers of relevant building blocks and need to be rescued by

1000, 1500, or 2000 rescue agents. In the uncertainty analy-

sis of the suggested method, the lower and upper bounds of

uncertain values were also calculated. The proposed method

was compared with the traditional CNP. The intended task

allocation was considered efficient if profitability parameters

were maximized. In accordance with several recent studies

(Liu and Shell, 2012; Sang, 2013; Hooshangi and Alesheikh,

2017), three criteria were used to evaluate the performance of

the proposed method: the number of deceased victims, num-

ber of incorrect allocations, and rescue time.

Some of the major problems in reallocation and in the task

allocation environment include scalability, reliability, perfor-

mance, and dynamic resource reallocation (Gokilavani et al.,

2013). In this study, the results of two analyses (scalability

of the proposed method and interval uncertainty analysis) are

presented.

The first analysis focused on the evaluation of the pro-

posed approach at different scales and for different crite-

ria. Comparison and assessment were carried out at differ-

ent scales to measure the effectiveness of the proposed ap-

proaches in USAR operations. Nine scenarios were applied

in this study and compared with the traditional CNP.

The second analysis focused on interval uncertainty analy-

sis and studied the rescue operation duration in the 6.9 mag-

nitude earthquake at different levels of uncertainty. In this

analysis, time changes in rescue operations were investigated

according to different levels of uncertainties. The duration of

a rescue operation in the simulation model depended on two

main components: prioritization of tasks and outputs of each

operation in each phase (Hooshangi and Alesheikh, 2018).

Equation (2) defines the final model for calculating the oper-

ation duration based on these two components.

T (x1,x2,x3,x4,x5,x6,x7,x8) =

n+1
∑

n=1

αn (x1,x2,x3,x4) +

n+t
∑

w=t

βw (x5,x6,x7,x8) (2)

Variables x1 to x8 constitute the number of injuries, sever-

ity of injuries, duration of the operation, infrastructure pri-

orities, energy, route status, task runtime by agents, and risk

level for agents, respectively. αn is the function of task prior-

itization, and βw is the function of bidding.

To the best of our knowledge, interval uncertainty analysis

has rarely been employed. The method used in this research

was adapted from previous literature (Lan and Peng, 2016).

In our analysis, Chebyshev points are used. Equation (3)

depicts a Chebyshev formula for generating m collocation

points in the interval [0, 1] (Lan and Peng, 2016):

numberi =















0.5 ×

[

1 − cos
(

π(i−1)
m−1

)]

for j = 1,

if m = 1
0.5 for j = 1,

if m = 1















. (3)

Equation (3) was used to create different numbers for the

decision-making parameters. The output of the model was

then calculated for various numbers within the intervals. This

technique created different values for the output of the model.

5 Results and discussion

Multiple scenarios and experiments were designed to eval-

uate the proposed methods and strategies. The results are

presented in this section. In accordance with expert opinion,

three probable earthquakes were simulated with magnitudes

of 6.6, 6.9, and 7.2. Figure 5 shows the vulnerabilities of

buildings in these scenarios in the ArcGIS environment.

Based on the level of building destruction, the numbers

of injured and deceased people can be calculated using the

JICA model. The numbers of injured and deceased people in

scenarios with 6.6, 6.9, and 7.2 magnitude earthquakes are

listed in Table 2.

Nat. Hazards Earth Syst. Sci., 21, 3449–3463, 2021 https://doi.org/10.5194/nhess-21-3449-2021



N. Hooshangi et al.: USAR simulation system 3457

Figure 5. Vulnerability maps for District 1, based on earthquakes with magnitudes of (a) 6.6, (b) 6.9, and (c) 7.2 on the Richter scale.

Table 2. Results of earthquake simulations.

Severity level Numbers of affected individuals

6.6 Richter 6.9 Richter 7.2 Richter

Uninjured 374 295 270 455 182 340

Injured 28 856 73 195 111 463

Deceased 30 349 89 850 139 697

The computational scale of the JICA model uses urban

blocks. Therefore, the numbers of deceased and injured in-

dividuals in each urban block were calculated. The locations

of injured individuals were presumed to be in the centers of

the respective blocks.

The environmental simulation and proposed method were

implemented in AnyLogic software. This software can pro-

cess geospatial information system data. To simplify the en-

vironment and reduce the calculation volume, each agent was

regarded as a group in the real world. Figure 6 shows the sim-

ulated environment.

There are many injuries in the environment. The central

agent first sorts the tasks according to their priorities. After

the coordinating agent has been determined, the central agent

sends the task properties to the coordinating agent. The co-

ordinator holds an auction. Rescue agents bid in accordance

with their environmental and working conditions. Rescuers

are in a ready state at the start of the operation. Each suc-

cessful rescue agent moves to the task’s location. After reach-

ing the task position, the rescue agent begins rescuing the in-

jured agents. During the execution of their assigned work, the

agents may find considerable differences between the real-

world information and the information expressed in the auc-

tion. In such instances, the agents may stop performing their

tasks and report the discrepancies to the central agent.

Table 3 shows the durations of USAR operations as esti-

mated using scalability analysis with the proposed method.

In creating this table, an uncertainty of 30 % was consid-

ered. For this purpose, the range of task characteristics used

the intervals [X, X + 30 %X] and [X − 30 %X, X]. At each

stage, a given agent participated in the auction. For that

agent’s decision-making parameters, the numbers were ran-

domly converted into an interval. The average range of agent

tasks and decision-making was used for implementation of

the CNP, rather than interval values.

The operational time decreased when the number of agents

in rescue operations increased, with the number of tasks re-

maining fixed. The reduction rate ranged from 54 % to 60 %

when the number of agents was doubled. The duration of

a USAR operation increased when the number of tasks in-

creased for a given number of agents. Therefore, the dura-
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Figure 6. Overview of the USAR simulator.

Table 3. Comparison of operation duration in hours between the proposed method and the CNP (based on 30 % uncertainty).

No. of agents 1000 1500 2000

Simulated earthquake magnitude 6.6 R 6.9 R 7.2 R 6.6 R 6.9 R 7.2 R 6.6 R 6.9 R 7.2 R

No. of tasks 28 856 73 195 111 463 28 856 73 195 111 463 28 856 73 195 111 463

CNP 53.16 169.03 282.76 32.83 94.24 174.19 22.6 68.95 127.47

Strategy 1 45.37 142.47 241.81 25.22 74.91 135.75 19.643 59.36 108.56

Strategy 2 44.87 137.30 234.92 26.02 76.41 138.52 19.097 58.21 105.58

Strategy 3 43.75 133.76 230.12 25.75 74.33 132.75 18.332 56.33 101.77

Strategy 4 41.63 130.41 222.18 23.89 71.14 127.87 17.013 53.91 97.73

tion of the rescue operation was related to the number of res-

cue agents and the number of available tasks in a scenario.

There was an inverse relationship between the duration of

the USAR operation and the number of rescue agents and a

direct relationship between the duration of the operation and

the number of tasks.

The inclusion of uncertainty in any allocation strategy pro-

vided better results compared with the CNP method. Using

the proposed strategies, the smallest improvement in results

with uncertainty was 2.9 h (13 %) for a scenario with 2000

agents and 28 856 tasks (6.6 magnitude earthquake). The

maximum improvement was 60.6 h (21 %) for 1000 agents

and 111 463 tasks.

Among the task allocation strategies in this study, strat-

egy 1 produced the worst response. At each scale for the

discussed scenarios, strategy 1 resulted in USAR operations

with the longest durations compared with other strategies.

Strategies 1 and 2 provided similar results at different scales,

although strategy 2 achieved better results. Strategy 4, which

involved spatial information in task allocation, produced bet-

ter results at all scales, including improvements of 21 %,

24 %, and 23 % with 1000 agents for a 6.6 magnitude earth-

quake, 1500 agents for a 6.9 magnitude earthquake, and 2000

agents for a 7.2 magnitude earthquake, respectively, com-

pared with the CNP. The average improvement for strategy

4 was 26.6 h in rescue operations. The use of strategies 3 and

4 is more suitable in a larger environment with high num-

bers of both injured people and rescue agents because con-

trolling agent distribution with respect to expansion of the

environment and the uncertain environmental conditions can
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Figure 7. Numbers of deceased people with (a) 1000, (b) 1500, and (c) 2000 rescue agents.

Figure 8. Numbers of incorrect allocations with (a) 1000, (b) 1500, and (c) 2000 rescue agents.

be effective in future task allocations. In a real-world crisis-

ridden environment, the overall environment is damaged, and

the injured people are well distributed. Therefore, the spatial

distribution of agents is an important parameter to control in

USAR operations.

The simulation results in terms of deceased people for

1000, 1500, and 2000 agents with different numbers of tasks

are shown in Fig. 7. In these figures, for each of the four

priority parameters and decision parameters associated with

agents, a 30 % uncertainty level was considered.

Figure 7 illustrates the numbers of deceased people in the

rescue process with different numbers of agents and tasks.

Based on Fig. 7, an increased number of tasks led to an in-

creased number of deceased people, but an increased number

of rescue agents led to a decreased number of deceased peo-

ple. Regarding the numbers of deceased people at all three

scales, the CNP method produced the worst response. An av-

erage of 7253 people were deceased in the CNP model with

1000 agents. Conversely, 5853 people were deceased in the

model employing strategy 1 with 1000 agents. Overall, when

all strategies were considered, strategies 4 and 1 resulted in

the best and worst responses, respectively. As illustrated in

Fig. 7, the numbers of deceased people were approximately

equivalent in strategies 1 and 2.

Figure 8 illustrates the simulation results for the incorrect

allocation of 1000, 1500, and 2000 agents with several dif-

ferent tasks.

The overall trend in each chart was approximately similar

if all charts were considered simultaneously. Any incorrect

allocation was unrelated to the number of rescue agents be-

cause there were no changes when the number of agents was

increased. The number of incorrect allocations changed with

the number of tasks, such that it increased with an increas-

ing number of tasks. This increase is evident in all panels in

Fig. 8. Incorrect allocations usually occurred at a nearly fixed

rate.

Based on the results, the traditional CNP model produced

the worst response. The total incorrect allocations in the CNP

model with 1000 agents and 28 856 tasks, 1500 agents and

73 195 tasks, and 2000 agents and 111 463 tasks were 3780,

10 027, and 14 604 tasks, respectively. The numbers of in-

correct allocations assigned by strategy 1 were 3174, 8014,

and 12 455 tasks, respectively. Furthermore, the evaluation

criteria showed the advantages of including uncertainty in

task allocation. Therefore, the proposed approaches for all

three evaluation parameters resulted in better performance

compared with the traditional CNP method. The results in-

dicate that the reallocation of tasks through the proposed ap-

proaches and strategies offered a better response, based on

the scale of the event, because their differences from the CNP

model increased at a larger scale.

The results of interval uncertainty analysis were achieved

with 1000 randomized runs of each scenario (Fig. 9).

As shown in Fig. 9, there is a direct relationship between

interval length and operational time. According to Eq. (2),

assigning fewer tasks leads to less operating time and causes

less uncertainty in the simulated environment.
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Figure 9. Uncertainty analysis of the proposed method for USAR operations, for nine simulated scenarios.

As mentioned in Sect. 4.3.3, the rescuers use [X, X +

30 %X] and [X − 30 %X, X] to determine the intervals. An-

other analysis was performed for values other than 30 % in

the estimations. The results are shown in Fig. 10. An aver-

age event scale (1500 agents and 73 195 tasks) was used, and

different levels of uncertainty (uncertainty between 5 % and

55 % at five-unit intervals) were randomly generated, inves-

tigated, and evaluated. This realistic test aimed to assess the

proposed scenarios for each uncertainty value.

Figure 10 indicates a relationship between increased in un-

certainty (from 5 % to 55 %) and an increased rescue time.

The increases differed among strategies. The increase was

67.7 h for the CNP (from 66.8 to 134.4 h), whereas increases

of 63.4, 63.2, 61.7, and 56.5 h were obtained for strategies 1–

4, respectively. Based on the evaluation results, the proposed

methods are more efficient and present better responses in

the presence of various uncertainties. Therefore, increased in

uncertainty leads to a delay in USAR operations and possible

task elimination. Accordingly, delaying rescue operations or

removing tasks from the rescue list will increase USAR time.

6 Conclusion

Providing a suitable method for assigning tasks under uncer-

tain conditions is important, according to the results of sim-

ulated USAR operations. This study presented a task alloca-

tion approach that aimed to better assign initial tasks, thus

ensuring better conditions for potential reallocations of tasks

and wasting the least time possible for rescue teams if prob-

lems were encountered during the initial allocations or a new

task emerges. Some of the characteristics and advantages of

the study include the focus on the necessity of task reallo-

cation in disaster environments, the provision of an inno-

vative approach for managing uncertainties that cause non-

performance of tasks in the CNP method (the most widely

used task allocation method in multi-agent systems), and the

definition of spatial strategies for better task reallocation. The

proposed approach can be used in combination with a wide

range of algorithms for assigning tasks in accordance with

the structure of the system.

The results obtained from simulations with the proposed

approach revealed that the duration of rescue operations

when the proposed strategies were implemented was al-

ways shorter than the time required using the CNP method.

The worst improvement was identified for 2000 agents with

28 856 tasks (13 %) and the best for 1000 agents with 111 463

tasks (21 %). Furthermore, the results at different scales

showed that the application of uncertainty in task allocation

could improve the duration of USAR operations. There is a

relationship between an increase in uncertainty and increased

rescue operation duration. Furthermore, the results revealed

a significant decrease in the numbers of deceased people

and wrong allocations due to uncertainties, which demon-
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Figure 10. Uncertainty analysis when different values were used in determining intervals.

strated the importance of uncertainty inclusion in task alloca-

tion. The implemented method can be used for cooperation

among agents. In an earthquake-stricken environment, res-

cuers can use assistant agents (devices such as mobile phones

and tablets) to implement this methodology.

However, regarding comparisons of the proposed strate-

gies, it is insufficient to consider only uncertainty in ini-

tial decision-making concerning task allocation because the

working environment is quite dynamic, and the assigned

tasks may encounter various problems. An effective as-

signment approach should consider both uncertainties in

decision-making and strategies for reallocation to waste the

least time during system disruptions. This optimizes plan-

ning to achieve better implementation time and allows for

fault tolerance. The strategies for applying uncertainty dur-

ing the implementation of task allocation improve the effi-

ciency, performance, and stability of agent-based coopera-

tion. Task allocation strategies lead to flexibility in decision-

making and decrease the system’s overall costs. Furthermore,

spatial task allocation strategies can propose a specific ar-

rangement of the rescue team within an environment to pre-

vent time-wasting in the event of environmental uncertainties

or task reallocation.

Additional research is recommended to provide new

strategies and combine the proposed task allocation strate-

gies of the present study with a coalition-forming method to

select an appropriate coordinating agent in our proposed ap-

proach. Future studies should also consider other groups and

other uncertainties within a range of dynamic simulations.
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