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Abstract: The large concentration of the world’s population in cities, along with rapid urbanization,
have brought numerous environmental and socioeconomic challenges to sustainable urban systems
(SUS). However, current SUS studies focus heavily on ecological aspects, rely on SUS indicators that
are not supported by available data, lack comprehensive analytical frameworks, and neglect SUS
regional differences. This paper develops a novel approach to assessing urban sustainability from
regional perspectives using commonly enumerated socioeconomic statistics. It integrates land use
and land cover change data and ecosystem service values, applies data mining analytics to derive
SUS indicators, and evaluates SUS states as trade-offs among relevant SUS indicators. This synthetic
approach is called the integrated socioeconomic and land-use data mining–based multi-objective
assessment (ISL-DM-MOA). The paper presents a case study of urban sustainability development
in cities and counties in Inner Mongolia, China, which face many environmental and sustainable
development problems. The case study identifies two SUS types: (1) several large cities that boast
well-developed economies, diversified industrial sectors, vital transportation locations, good living
conditions, and cleaner environments; and (2) a few small counties that have a small population,
small urban construction areas, extensive natural grasslands, and primary grazing economies. The
ISL-DM-MOA framework innovatively synthesizes currently available socioeconomic statistics and
environmental data as a unified dataset to assess urban sustainability as a total socio-environmental
system. ISL-DM-MOA deviates from the current indicator approach and advocates the notion of
a data-mining-driven approach to derive urban sustainability dimensions. Furthermore, ISL-DM-
MOA diverges from the concept of a composite score for determining urban sustainability. Instead, it
promotes the concept of Pareto Front as a choice set of sustainability candidates, because sustainability
varies among nations, regions, and locations and differs between political, economic, environmental,
and cultural systems.

Keywords: sustainable urban system; urban sustainability indicators; ecosystem service values; land
use and land cover changes; multi-objective optimization problems; total socio-environmental system

1. Introduction

Approximately 55 percent of the world’s population (4.2 billion inhabitants) lives in
cities (World Bank Urban Development 2020 [1]), and the urban population could add
another 2.5 billion people by 2050 (United Nations 2018 [2]). Continued rapid urban
expansion brings numerous challenges, such as accelerated demand for affordable housing,
transport systems, basic services, and jobs. On the other hand, rapid and unplanned
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urbanization creates many environmental problems, including deterioration of natural
resources, accelerated air and water pollution, climate change, and excessive emission
of greenhouse gases (Sarigai et al., 2021 [3]). As a result, the interest in and literature
on sustainable urban system (SUS) research have grown exponentially in recent years
(Goodwin et al., 2021 [4]).

Urban sustainability is a comparatively new research theme compared to the topic
of ecosystem sustainability (Corredor-Ochoa et al., 2020 [5]), which has been at the front
of scientific inquiries and societal discussions for decades. A common feature of urban
sustainability studies has stemmed from ecosystem or environmental sustainability studies
(McPhearson et al., 2016 [6]). For instance, the three-pillar model of ecosystem sustain-
ability consists of the environment, economy, and social system (Costanza, 1991 [7]). This
concept of sustainability has been widely accepted in urban sustainability studies and
expanded in the context of urban systems. A new dimension of culture has been added
and called the four-pillar model (Hawkes, 2001 [8]). Various concepts such as governance
(Lozano, 2008 [9]), institutional function (Higgins, 2015 [10]), public health, and community
safety (Mapar et al., 2017 [11]) have been gradually added into the dimensions of urban
sustainability. However, these cultural, economic, environmental, and social pillars of
SUS are measured or modeled relatively independently, like silos (Gibson et al., 2005 [12];
von Edmund, 2012 [13]). To a large degree, these sub-themes of urban sustainability are
relatively loosely coupled rather than closely integrated as a whole system based on a
conceptual model (Ali-Toudert and Ji, 2017 [14]).

Urban sustainability is an emergent concept for designing inner city-built structures
and managing broad urban environments (Batty, 2018) [15]. Architects, urban planners, and
civil and environmental engineers have developed many well-known systems to rate and
certify sustainable urban development. Good examples include Brandon and Lombardi
(2009) [16], Cole and Valdebenito (2013) [17], Benson and Bereitschaft (2019) [18], Sharifi
and Murayama (2013) [19], and Ali-Toudert et al. (2020) [20]. Many of these SUS rating
systems use multicriteria-based or indicator-based approaches (Chan and Lee, 2019) [21]
(Chan, 2020) [22]. These green infrastructure-based SUS evaluation systems judiciously
select multicriteria in the context of sustainability goals. They focus on articulating the
system conceptualization and illuminating the measurability of various system compo-
nents. However, the final judgment often falls upon a summative score that has difficulty
preserving the measurable complexity of SUS. This inner-city structure approach starts
from building design and focuses on urban design and its surrounding communities, which
is excellent from a civil engineering point of view, but different from the perspectives of
socio-ecological, socio-environmental, or coupled human–natural approaches. In addition,
renewable energy, and energy efficiency have been added as critical urban sustainability
elements in recent years (Lucchi and Buda, 2022 [23]; Razmjoo et al., 2019a [24], 2019b [25],
2021 [26]; Tomoiagă et al., 2013 [27]). Furthermore, the concepts of sustainable development
goals (SDGs) have been adopted to achieve a holistic approach for evaluating sustainable
development, both for developing and developed countries (Griggs et al., 2013 [28]; Kumar
et al., 2017 [29]). SDGs are the prioritized goals or targets for sustainable development at
national scales; they include local conditions while complying with internationally accepted
norms (Le Blanck, 2015 [30]). For example, the United Nations proposed a large set of
sustainable development goals consisting of 17 broad dimensions and 169 interconnected
targets based on national priorities (UN-Habitat, 2015 [31]). Most current urban sustain-
ability dimensions and targets are selected or evaluated based on a large set of urban
sustainability indicators.

However, several deficiencies have been identified in this exploding volume of lit-
erature. First, the large body of current studies ignores major socioeconomic issues such
as equity, justice, and public engagement (Sharifi, 2021 [32]). Second, most current SUS
assessments rely heavily on selecting and evaluating SUS indicators (Shen et al., 2011 [33]).
However, the selections of SUS indicators are often challenged by the limitation of available
data, the ambiguity of SUS targets and thresholds, and the lack of a conceptual framework
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for indicator selection (Verma and Raghubanshi, 2018 [34]). Third, there is general igno-
rance about national and regional differences in understanding the contextual meanings
and interpretations of the SUS assessment (Verma and Raghubanshi, 2018 [34]).

This paper develops a novel and synthetic approach to assessing urban sustainability—
called integrated socioeconomic and land-use data mining–based multi-objective assess-
ment (ISL-DM-MOA)—from regional perspectives but with national (and international)
comparison considerations. First, this new approach examines SUS by analyzing commonly
enumerated socioeconomic statistics and integrating them with land use and land cover
data detected from remote sensing technologies. Second, this new method synthesizes SUS
dimensional indicators by applying current data mining analytics. Third, it also adopts
the popular environmental approach of assessing urban sustainability based on ecosystem
service values. Finally, the new approach advocates the notion that SUS should not be a
precise quantity, but an evaluation framework that enables assessing the trade-offs of a set
of indicators closely related to SUS. However, due to the limitation of data availability, the
cultural dimension of urban sustainability was not examined in this study.

The remainder of this paper is structured as follows. Section 2 introduces current urban
sustainability measurement methods and related indexes. Section 3 describes our new
measurement framework of ISL-DM-MOA. To verify the proposed framework, Section 4
reports a case study applied to Inner Mongolia, China. In Section 5 we further discuss
and speculate on the implications of the research. Finally, Section 6 draws conclusions and
points to future work.

2. Urban Sustainability and Related Measuring Indexes

From the perspective of evaluating or measuring urban sustainability, the critical termi-
nology in sustainable urban system studies is the notion of sustainability indicators (Huang
et al., 2015 [35]; Liu et al., 2018 [36]; Michalina et al., 2021 [37]). Quantifiable indicators are
needed to measure progress towards sustainable development in the context of sustainable
development goals and targets (Bai et al., 2016 [38]; Liu et al., 2015 [39]; Pupphachai et al.,
2017 [40]). These quantifiable sustainable development indicators are called sustainability
indicators (SIs) (Cutaia, 2016 [41]). SIs can be some simple socioeconomic indicators like
gross domestic product (GDP) or highly complex quantities such as the genuine progress
indicator (GPI) and the inclusive wealth index (IWI). GDP is extremely limited in terms
of quantifying social welfare and environmental sustainability (Bagstad and Shammin,
2012 [42]). GPI is a national-level measure of economic growth and prosperity and accounts
for externalities, such as environmental and carbon footprints, resource depletion, pollution,
and long-term environmental damage (Kubiszewski et al., 2013 [43]). IWI is developed as a
synthetic indicator to supersede or complement the iconic Human Development Index (HDI)
(Dasgupta, 2009 [44]). IWI measures the wealth of nations, including all of the assets from
which human well-being is derived, including manufactured, human, and natural capital
(Roman and Thiry, 2016 [45]).

Another good example is the City Prosperity Index (CPI) for measuring the overall
achievement of a city (UN-HABITAT, 2015 [31]). The CPI is a composite index covering
six dimensions of city prosperity: productivity, infrastructure, quality of life, equity and
social inclusion, environmental sustainability, and governance and legislation. Each di-
mension consists of between two and four measurable indicators. CPI can be calculated
at four scales: (1) global city ranking for global and regional monitoring; (2) basic CPI
as an initial diagnosis that is internationally comparable; (3) extended CPI for in-depth
diagnosis that is comparable within a specific country; and (4) contextual CPI that is policy
implementation-oriented as an urban monitoring tool. CPI articulates a robust and flexible
indicator framework that provides methodological and conceptual solutions for developing
a comprehensive index and connecting healthy cities’ indicators with the needs of policy
and governance (Wong, 2015 [46]).

The urban sustainability index (USI) is also a type of SI. Numerous indicators have
been proposed to measure urban sustainability (Merino-Saum et al., 2020 [47]), and many
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methods have been developed to calculate USI (Kaur and Garg, 2019 [48]). One GIS
remote sensing-based calculation method estimates USI through dynamic ecosystem service
values (DESVs) (Liang et al., 2020 [49]). Urban sustainability is the square root of the sum
squares of DESVs, GDP, and per capita net income (PCNI) (Fu et al., 2016 [50]; Xue & Luo,
2015 [51]). Although the estimation of DESVs is relatively sophisticated, the ecosystem
service value (ESV)-based USI has firm roots in the concepts of ecosystem sustainability
and ecological economics. The ESV-USI indicator represents a different perspective of
interpreting urban sustainability.

In general, many SIs are based on the statistical data at the national scale and involve
a large number of macroeconomic variables. The calculations or definitions of these SIs
require much socioeconomic information, which is not enumerated at local and regional
scales. As a result, it is hard to use SIs to quantitatively examine cities’ urban sustainability
at a regional or provincial scale. On the other hand, ESV-USI describes urban sustainability
at a regional scale, prioritizing ecosystem sustainability.

Analytically, there are three groups of analytical methods for examining sustain-
able urban systems (SUS). The first group consists of multivariate statistics (Verma and
Raghubanshi, 2018 [34]). Factor analysis (Huang et al., 2015 [35]) and principal component
analysis (Mascarenhas et al., 2015 [52]) are the most useful methodologies. Unfortunately,
these statistical analyses are often ad hoc and do not support a coherent and proven method-
ological design (Zhou et al., 2022 [53]). Many of these statistical methods, such as analysis
of variance, principal component analysis, Pearson correlations, multiple regression anal-
ysis, and redundancy analysis (Chen and Lu, 2014 [54]) have been adopted. However,
the unique insights provided by each analysis and the added values of integrating these
analyses have not been addressed.

The second group emphasizes geospatial technologies, including geographic informa-
tion science, remote sensing, and spatial statistics, which have been increasingly used to
model and discern the coupled socio-environmental system (CSES) processes (Anselin and
Rey, 2014 [55]; Lechner et al., 2019 [56]; Gupta et al., 2020 [57]). Recent developments in re-
motely sensed earth observation data are becoming increasingly advantageous in indicator
studies because these new data sources add new approaches to detect ecological conditions
and land use and land cover changes to support CSES studies (Xie et al., 2008 [58]; Salvati
and Carlucci, 2014 [59]; Liang et al., 2020 [49]). These information and system approaches
provide richer data and better analytical methods for describing, interpreting, and simu-
lating feedback between subsystems and are less confined within traditional disciplinary
domains (Turner and Robbins, 2008 [60]; Li, 2012 [61]). The indicator of ESV-USI is an
excellent example of this approach.

The third group focuses on big data analytics (Kong et al., 2020 [62]). Big data analytics
includes many techniques, which are re-empowering traditional statistical techniques with
big data. For instance, classification, clustering, regression, association rules analysis, and
social network analysis are commonly used (Hassani et al., 2016 [63]). Different methods
extract information for distinct perspectives and may produce different findings. A good
review can be found in the recent work by Kong and his colleagues (2020). However, big
data applications in SUS evaluation mainly focus on specific subsystem applications, such
as environmental sustainability, public health and safety, social equity, resources, energy
utilization, real estate, or retail planning. Many current discussions elaborate on potential
advantages and possible future directions for using big data in SUS studies. Comprehensive
assessments of SUS based on big data analytics are still missing.

3. The New Method—Integrated Socioeconomic and Environmental Data
Mining–Based Multi-Objective Assessment (ISL-DM-MOA)

The ISL-DM-MOA analytical framework is designed based on an integrated socioeco-
nomic and environmental database (Figure 1). Current sustainability indicators (like IWI,
GPI and CPI) are computationally sophisticated, require too much data, and are only avail-
able at the national level. Data gaps exist between available socioeconomic statistics and the
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required information for calculating sustainability indicators proposed by the United Na-
tions (Roman and Thiry, 2016 [45]). On the other hand, socioeconomic statistics throughout
the world are collected for demographic and economic analyses, educational and human
resource planning, and assessing progress toward national and regional objectives. They
contain much information about the health and progress of urban development.
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Figure 1. Integrated Socioeconomic and Land-use Data Mining–based Multi-objective Assessment
(ISL-DM-MOA).

On the other hand, the environmental data include land-use-land-cover (LULC)
changes, ecosystem service values, and additional related environmental status informa-
tion, depending on availability. In particular, remote sensing technologies have provided
much data about land use and land cover changes (LULC). The socioeconomic statistics
in combination with LULC data can provide rich information revealing sustainable or
unsustainable urban development. However, they are not collected for computing the
sophisticated sustainability indicators advocated by the United Nations. More importantly,
the socioeconomic statistics have been collected over a long period, while remote sensing–
based LULC data can be traced back to the early 1970s (Xie et al., 2008 [58]). Therefore,
socioeconomic statistics and LULC data compose a sizeable urban development dataset
and can support a long time-series examination of urban sustainability progress. The
ISL-DM-MOA analytical framework deviates from the current indicator approach. ISL-
DM-MOA does not recommend a pre-determined set of urban sustainability indicators.
ISL-DM-MOA advocates the notion of a data-mining-driven approach to derive urban
sustainability dimensions. The availability, completeness, and fine administration or geo-
graphic scales of an integrated socioeconomic and environmental database determines the
granularity of urban sustainable dimensions. Moreover, ISL-DM-MOA diverges from the
concept of a composite score for determining urban sustainability. Instead, ISL-DM-MOA
promotes the concept of Pareto Front as a choice set of sustainability candidates because
sustainability varies among nations, regions, and locations. The perception and acceptance
of urban sustainability differs between political, economic, environmental, and cultural
systems. Therefore, beyond the foundation of integrated data, ISL-DM-MOA provides
three interconnected analytical functions to realize its implementation. The inspirations,
descriptions, and implementation of these functions are provided below.
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3.1. Identify Interaction Dimensions Embedded in Regional Integrated Environmental and
Socioeconomic Data

The ISL-DM-MOA framework supports assessing SUS over a region, province, or
state as a whole. This procedure will apply the commonly used data mining technique
of principal component analysis (PCA) to mine how the synthesized socioeconomic and
environmental variables interact. PCA has long been an applicable statistical procedure in
urban sustainability studies (Mascarenhas et al., 2015 [52]). Large datasets are increasingly
common and are often difficult to interpret. PCA is commonly recognized as a technique
for reducing the dimensionality of a large dataset and revealing associations between
the dimensions and the variables in the large dataset with minimized information loss
(Jolliffe and Cadima, 2016 [64]). These dimensions are the newly created factors (principal
components) that do not correlate among themselves. Each dimension includes a subset
of variables in the original big dataset, while the variables in this subset interact with (or
correlate with) this dimension. More importantly, the new dimensions are generated by the
dataset in the study, but not a priori. Therefore, PCA is an adaptive data analysis method
and an essential big data mining technique (Sarigai, et al., 2021 [3]). It is expected that
these PCA-derived dimensions shall approximate the newly proposed indicators, such
as genuine progress indicator (GPI), inclusive wealth index (IWI), and city prosperity
index (CPI). The GPI, IWI, and CPI indices are built based on the national economic and
environmental data that are usually not available at regional or provincial scales. The
advantage of PCA is that it can overcome data limitations because it can be conducted
with whatever variables are available in a study area. The PCA-generated dimensions or
factors synthesize the interactions embedded in the available variables. These dimensions
are called derived urban development indicators (DUDI) in the context of SYS studies.

3.2. Ecosystem Service Values and Urban Sustainability Index

As we discussed in the introduction section, evaluating the urban sustainability in-
dex (USI) from the perspective of ecosystem service values (ESV) has a long tradition in
ecological and environmental studies of SUS. Therefore, the ISL-DM-MOA framework
incorporates the concept of ESV-USI and uses remotely sensed land use and land cover
data to compute ESV-USI as an ecological method for computing USI. The USI can be
calculated in numerous ways (Sharifi and Murayama, 2013 [19]; Mapar et al., 2017 [11];
Ali-Toudert et al., 2020 [20]). The present paper adopts the approach of computing USI
based on ecosystem service value (ESV) to assess the integrated interactions and feedback
between environmental and socioeconomic systems. It was confirmed that the use of ESV
for computing USI is a comprehensive approach to examine the ecological consequences of
urban expansion (Liang et al., 2020 [49]).

3.3. Multi-Objective Optimization Analysis—Pareto Front

When PCA generates the dimensions (principal components) in a dataset that includes
variables of socioeconomics and LULC changes related to sustainable or unsustainable
urban development, all of these dimensions are related to urban development. Since
the variables are both socioeconomic and environmental, these dimensions are called
socio-environmental dimensions. It is difficult to differentiate which dimension is more
important in terms of contributing to urban sustainability than any other dimension.
Moreover, the USI based on ecosystem service values is a standard ecological method to
estimate urban sustainability. ESV-USI is different from the dimensions reflecting urban
socioeconomic development and environmental status generated by PCA. Similarly, it is
not appropriate to compare ESV-USI with the socio-environmental dimensions in terms
of their contribution to or influence urban sustainability. Since all of these indicators are
related to urban sustainability, there is a need for a new evaluation approach to evaluate
how these indicators relate to urban sustainability.

From the perspective of multi-objective optimization, the socioenvironmental dimen-
sions from PCA and ESV-USI consist of a vector of decision candidates affecting urban
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sustainability. These decision candidates usually complement or conflict with each other.
Consequently, minimizing or optimizing each decision candidate could give a different
solution. As a result, the answers to a set of decision candidates comprise a set of trade-off
solutions that are considered equally important or optimal. In other words, it could be the
case that Solution A outperforms Solution B according to one criterion, but that Solution
B is better than Solution A considering another criterion. Therefore, the outputs of multi-
objective optimization include a set of optimal but non-dominant solutions, which are often
called multi-objective optimization problems (MOOPs). As a result, MOOPs comprise a
Pareto front that consists of a set of solutions. One solution outperforms all other solutions
for at least one criterion, but will not surpass all other solutions for all criteria.

Multi-objective optimization problems (MOOPs) are a technique specifically devel-
oped to find a vector of decision candidates that optimizes an objective function (Longo
et al., 2019 [65]). MOOPs are widely adopted in scientific research and engineering appli-
cation projects, such as water resources utilization (Reed et al., 2013 [66]), gene selection
(Rajapakse & Mundra, 2013 [67]), industrial scheduling (Han et al., 2017 [68]), and energy
allocation (Tomoiagă et al., 2013 [27]).

Many multi-objective evolutionary algorithms have been developed to solve MOOPs
(Deb, 2011 [69]). A mathematical programming method was initially applied to trans-
form MOOPs into single-objective problems. Typical scenarios include the weighted sum
method, the Tchebycheff approach, and the boundary intersection method (Zadeh, 1963 [70];
Geoffrion, 1968 [71]). Later, an evolutionary optimization algorithm was adopted to solve
MOOPs. As a result, multi-objective optimization began to develop rapidly, resulting
in many methods for solving MOOPs. These methods can be roughly divided into two
categories. The first category mainly focuses on the Pareto-dominant individual selection
and fitness value sharing. Good examples include the multi-objective genetic algorithm
(MOGA) (Fonseca & Fleming, 1993 [72]), the non-dominated sorting genetic algorithm
(NSGA) (Srinivas & De, 1994 [73]), and the Niched Pareto genetic algorithm (NPGA) (Horn
et al., 1994 [74]). The other category mainly emphasizes the non-dominated solutions or
individuals in the evolution process to preserve the explicit diversity. Its typical samples
include the Strength Pareto evolutionary algorithm II (SPEA-II) (Zitzler et al., 2001 [75]),
the non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002 [76]), the non-
dominated sorting genetic algorithm III (NSGA-III) (Deb & Jain, 2014 [77]), and the Pareto
envelop-based selection algorithm-II (PESA-II) (Corne, 2001 [78]).

The NSGA-III algorithm was adopted in the present study. Annual Pareto fronts
were calculated with four PCA factors of GP (Figure 2)—AP, SLS, and GR and ESV-USI—
for 89 counties in Inner Mongolia from 2001 to 2017. GP, GR, and USI should be max-
imized in Pareto front analysis among the five vectors, while AP and SLS should be
minimized. Take the multi-objective problem of minimization as an example. The vector
f
(
X
)
=
(

f1
(
X
)
, f2
(
X
)
, . . . , fn

(
X
))

consists of n objective components fi
(
X
)
(i = 1, . . . , n),

and two decision variables Xu and Xv are arbitrarily given. For ∀i ∈ {1, . . . , n}, when
fi
(
Xu
)
< fi

(
Xv
)
, then Xu dominates Xv. For ∀i ∈ {1, . . . , n}, when fi

(
Xu
)
≤ fi

(
Xv
)
, and

there is at least one f j
(
Xu
)
≤ f j

(
Xv
)
, j ∈ {1, . . . , n} at the same time, then Xu weakly

dominates Xv. Under the constraints of the above conditions, we screened 89 counties by
years to obtain the corresponding city set (that is, the Pareto front) and then counted the
occurrences of each of 89 cities and counties in the Pareto front from 2001 to 2017. Based on
the occurrences, these cities and counties’ urban sustainability status was assessed.
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Figure 2. General Progress (GP) scores of different Cities/Counties in IMAR.

4. The Case Studies

The Inner Mongolia Autonomous Region (IMAR) (37◦24′~53◦23′ N, 97◦12′~126◦04′

E) is located on the northern border of China and the southern portion of the Mongolia
Plateau, with a total area of about 1.18 million km2 (Figure 3). The average elevation of
the study area was 1000–1200 m, and it is predominantly covered by the temperate steppe.
The terrain is flat, with the Greater Khingan Range in the east and Yinshan and Henan
Mountains in the south. The climate in the steppe area is a typical temperate continental
climate, with an annual precipitation of 50–450 mm and an annual average temperature
ranging from −1 ◦C to 10 ◦C. The weather gradually transitions from humid and semi-
humid in the east to semi-arid and arid in the west. The average precipitation decreases
from the northeast to the southwest, but the temperature increases. The whole area extends
diagonally from the northeast to the southwest in a long and narrow shape. The IMAR
temperate grasslands account for about 67 percent of the region’s total area and 22 percent
of the grassland area of China.
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Figure 3. The Study Area and the Cities/Counties in the Pareto Front.

Together, IMAR and Mongolia comprise one of the most extensive remaining grass-
lands in the world. The study area covers all 89 banners (counties) in IMAR. IMAR
grassland has witnessed severe degradation due to excessive population growth and eco-
nomic development in recent decades. For example, IMAR witnessed dramatic economic
growth from 2000 to 2017. Although the total population increased by almost 9.35 percent
during this period, from 23.10 million to 25.26 million, the GDP increased 1040.87 percent,
from 14.26 billion Chinese Yuan in 2000 to 16.28 trillion Chinese Yuan in 2017 (IMAR
Statistical Bureau, 2001–2018 [79]). Livestock numbers increased by 127.9 percent, from
49.36 million sheep units in 2000 to 112.50 million units in 2017. The urban construction
area increased 114.23 percent from 2000 to 2017. The excessive socioeconomic activities and
urban expansion have threatened the grassland ecological security and urban sustainability
development. Therefore, IMAR is one of the best sites in which to study coupled human
and natural systems due to its fragile semi-arid environment and excessive human activities
(Brown, et al. 2013 [80]).

The data of LULC primarily came from the NASA MCD12Q1 Data Product (https://
lPCAac.usgs.gov/products/mcd12q1v006/, 15 January 2022) at 500 m resolution. Sixteen
out of the 17 International Geosphere-Biosphere Program LULC types were found in
the study area (the exception was “Evergreen Broadleaf Forest”) (http://www.igbp.net/,
15 January 2022). However, the urban land areas in the NASA MCD12Q1 Data Product
were the values in 2000, and no further updates were provided. Therefore, we replaced the
urban land data in the NASA MCD12Q1 Data Product with the yearly urban and build-up
impervious surface data (Gong, et al., 2019 [81]). This dataset is open-source and can be
downloaded from http://data.ess.tsinghua.edu.cn, 15 January 2022.

The socioeconomic variables were extracted from the statistic yearbooks of the IMAR
from 2000 to 2017 (IMAR Statistical Bureau, 2001–2018 [79]). The variables included total
area, population, rural population, arable and grazable area, grain production, livestock,
length of highway, farming income, GDP, local government revenue, governmental in-
vestment, retail, infrastructure, and social capitals. There are 31 variables in total, and
the explanations of these variables are provided in Table 1. The z-scores are applied to
standardize these variables for statistical analysis. (Note: The classification of population is

https://lPCAac.usgs.gov/products/mcd12q1v006/
https://lPCAac.usgs.gov/products/mcd12q1v006/
http://www.igbp.net/
http://data.ess.tsinghua.edu.cn
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based on the head/tail breaks (Jiang 2013 [82]) in order to show the inherent hierarchy or
living structure of the cities.)

Table 1. The list of variables.

Abbreviation Explanation Unit

POP Population (PP) 10,000 people

GDP Gross Domestic Product (GDP) 2016 10,000 yuan

GOVA Gross Output Value of Farming, Forestry, Animal Husbandry and Fishery
(Agriculture) GOVA-2016 10,000 yuan

AA Arable Area (AA) Hectare

GRAIN Grain Production (GP) Ton

LIVESTOCK The amount of the livestock by the end of the year (ls) 10,000 head

FAI Fixed Assets Investment (FAI)—2014 10,000 yuan

LGR Local Government Revenue (LGR)—2014 10,000 yuan

IOFP Per capita net income of farmers and pastoralists (IOFP) Yuan

LOH The total length of highways (LOH) Kilometer

RPOP Rural Population—RPOP 10,000 people

TCRV Total consumer retail value 10,000

PTE Number of professional and technical workers Person

MHT Number of middle and high school teachers Person

HPB Number of hospital beds One

HMP Number of health and medical professionals Person

PCURDI The per capita disposable income of urban permanent residents Yuan

PIO Total Output Value—Primary Industry (10,000 yuan) 10,000

SIO Total Output Value—Secondary Industry (10,000 yuan) 10,000

TIO Total Output Value—Tertiary Industry (10,000 yuan) 10,000

LandArea Total Land Area Sq. kilometers

Water Water Area Sq. kilometers

Forest Forestland Area Sq. kilometers

Shrub Shrubland Area Sq. kilometers

Grass Grassland Area Sq. kilometers

Wetland Wetland Area Sq. kilometers

Crop Crop Area without Planted Grassland for Harvest Sq. kilometers

ACrop Crop Area + Planted Grassland for Harvest Sq. kilometers

Urban Urban Land Area Sq. kilometers

Snow Snow Covered Area Sq. kilometers

Sand Sandy Land Area Sq. kilometers

The analytical method proposed in the paper is a synthetic approach consisting of three
analytical methods: (1) principal component analysis to identify interaction dimensions
embedded in the regional integrated environmental and socioeconomic data; (2) ecosystem
service value-based urban sustainability assessment for a precise accounting of ecosystem
functionalities for urban sustainability; and (3) a multi-objective optimization problems
(MOOPs) solution to evaluate how socioeconomic interactions and ecosystem service
functions impact regional urban sustainability.
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4.1. PCA and Four Derived Urban Development Indicators (DUDI)

PCA generated four dimensions (factors) with the eigenvalues larger than 1.0, which
is the common criterion for determining how many dimensions are chosen to explain the
total variance in the original data. Four dimensions had >1.0 eigenvalues and cumulatively
explained 81.26 percent total variance (Table 2).

Table 2. Total Variance Explained.

Factor Eigenvalues % of Variance Cumulative %

1 10.289 46.768 46.768

2 5.230 23.773 70.541

3 1.330 6.045 76.586

4 1.028 4.673 81.259

5 0.816 3.708 84.967

Factors 6–21 were deleted because of their Eigenvalues < 1.0

22 0.005 0.024 100.000

Furthermore, the PCA rotated component matrix exhibited how the variables in the
original data interacted in each dimension (factor) (Table 3). Eleven variables interrelated
with Dimension 1 (D1) and explained almost half (46.77 percent) of the total variance. The
variables included gross domestic production (zgdp), tertiary industrial output (zTIO),
secondary industrial output (zSIO), fixed assets investment (zfai), local government rev-
enue (zlgr), per capita disposable income of permanent urban residents (zPCUREI), total
consumer retail value (zTCRV), number of health and medical professionals (zHMP), num-
ber of professional and technical employment positions (zPTE), number of middle and
high school teachers (zMHT), and total population (zPP). Obviously, D1 represented the
development progress in production, wealth, commerce, health, technology, education,
and human resources. Therefore, D1 was analogous to the genuine progress indicator (GPI)
and was named “General Progress” in this paper.

Table 3. PCA Rotated Component Matrix a.

General
Progress

Agricultural
Progress

Stress on Land
Supply

Grassland
Resource

zgdp 0.974 b 0.086 −0.032 0.024

zfai 0.962 0.055 −0.009 0.035

zlgr 0.961 −0.015 −0.038 0.019

zTCRV 0.955 0.089 −0.095 0.020

zTIO 0.947 −0.023 −0.066 0.015

zHMP 0.929 0.154 −0.121 −0.084

zPCUREI 0.927 −0.072 −0.013 −0.006

zPTE 0.908 0.142 0.021 −0.043

zSIO 0.902 −0.071 0.074 0.036

zMHT 0.888 0.368 −0.100 −0.017

zpp 0.816 0.496 −0.060 0.062

ziofp 0.433 −0.126 −0.281 −0.052

zPIO 0.225 0.909 0.169 −0.069

zgova 0.214 0.895 0.163 −0.048

zrpop 0.207 0.851 0.084 0.208
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Table 3. Cont.

General
Progress

Agricultural
Progress

Stress on Land
Supply

Grassland
Resource

zaa −0.065 0.814 0.180 −0.142

zgp −0.174 0.792 0.215 −0.189

zACrop 0.025 0.738 −0.077 −0.491

zloh 0.162 0.236 0.821 −0.180

zUrban 0.335 −0.141 −0.579 −0.066

zls −0.068 0.511 0.568 0.142

zGrass 0.010 −0.190 −0.035 0.944
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a

Rotation converged in 6 iterations. b the bold numbers indicate these variables closely correlate with this factor.

Six variables interacted with Dimension 2 (D2), and all of them were various indicators
reflecting agricultural growth. Thus, D2 indicated the agricultural growth dimension. Three
variables (the total length of highway—zloh, urban land percentage—zUrban, and the
amount of livestock—zls) reflected the stress or consumption of natural land supplies. They
were interrelated with Dimension 3 (D3), which revealed the land resource consumption.
Dimension 4 (D4) related to a single variable, grassland percentage (zGrass), and thus
represented the grassland resource dimension.

4.2. Ecosystem Service Value-based Urban Sustainability Index (ESV-USI)

The values of USI by years and banners (counties) were calculated based on the
formulas and parameters developed for assessing sustainable urban development in the
same study area by Liang and colleagues (2020) [49] and using the yearly land-use data
compiled for this paper (Table 4).

Table 4. The equations and parameters used to compute USI.

Calculation Steps Equations Explanation

1
unit price per hectare (2219.48) = average
actual food production of cropland (4415)
× 1/7 × average price for grain (3.519)

4415 kg/ha2 is the average value from 2005 to 2016; 3.519
Yuan/kg is the grain price of 2005.

2 VCkf = unit price per hectare (2219.48) ×
total equivalent weight factor

VCkf is the value coefficient for category k and service function
type f. Total equivalent weight factors include 7 land-use types:
Forest, Grass, Shrub, Crop, Wetland, Water, and Urban; Forest

replaced woodland and Urban replaced built-up.

3 ESVS = ∑k ∑ f Ak ×VCk f
ESVS refer to the total static ecosystem value. Ak represents the

area of LULC category k.

4
ESVS = ESVS

Eavg
× Ean

Ean = Em/∏m
i=n ∅i

Eavg, Ean, Em are economic values of one weight factor, while
Eavg is the average value and Ean is calculated by the Em in

current year m during the study period, n refers to the start year.
∅i is GDP index.

5
ESVd = ESVc ×Ac

Ac = 1/(1 + exp(−t))
t = (1/En)− 3

En indicates Engel coefficient of cities and towns of entire
Inner Mongolia.

6 USI =
√(

GDP2 + PCNI2 + ESV2
d

)
/3 IOFP was used to replace PCNI.

The parameters and calculations were based on Jianyuan Liang, Yichun Xie, Zongyao Sha, and Alicia Zhou,
Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE), Computers,
Environment and Urban Systems 84 (2020) 101542 [49].
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4.3. The Results of Multi-Objective Optimization Problems Solution—Pareto Front Analysis

The PCA and the USI analyses generated five composite indicators that were closely
related to the sustainable conditions of urban growth: general progress (GP), agricultural
progress (AP), stress on land supply (SLS), grassland resource (GR), and urban sustainability
index (USI). These indicators interacted in different ways with sustainable urban states. For
instance, GP reflected the general socioeconomic health of urban development and was
a positive sign of sustainable urban development. Thus, GP is a maximization function
in PFA. AP, in general, had negative feedback with sustainable urban growth in IMAR
because grazing was the primary economic activity that fitted with the grassland ecosystem
(Li and Xie, 2013 [83]). AP consisted of a minimizing function in PFA, and SLS negated
sustainable urban growth and was a minimizing function.

On the contrary, GR was the most important natural resource in IMR and should
be preserved toward ecosystem sustainability. Therefore, GR comprised a maximization
function in PFA. Furthermore, USI was an eco-economic indicator of urban sustainability
with joint consideration of urban economic development and LULC consumption. Hence,
USI should be a maximization function in PFA. The discussions above further confirmed
no absolute solutions concerning which of the five composite indicators was more decisive
in determining sustainable urban growth. They were a set of trade-off solutions in which
no one was dominant, but merely consisted of a trade-off included in PFA.

Eighty-nine cities and counties in IMAR were evaluated from 2001 to 2017 through
PFA with five functions of GP, AP, SLS, GR, and USI. We report the positions of 89 cities
and counties falling within the Pareto Front for 17 years in Table 5 and Figure 3.

Table 5. The list of cities and banners in the Pareto Fronts by years.

City/County Name Occurrence in PFA Occurrence Year

Baotou City 14 2001,2002,2003,2004,2005,2006,2008,2009,2010,2011,2012,2014,2015,2016

Chifeng City 13 2001,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2016

Jining District 9 2003,2004,2005,2006,2009,2010,2011,2013,2014

Ejinna Banner 9 2002,2003,2004,2006,2010,2014,2015,2016,2017

East Ujimqin Banner 7 2001,2002,2003,2004,2006,2007,2008

Wuhai City 5 2004,2005,2010,2013,2014

Otog Banner 5 2001,2002,2003,2006,2007

Hohhot City 4 2001,2002,2003,2011

Jarud Banner 4 2003,2004,2005,2007

Yakeshi City 4 2001,2002,2003,2005

Genhe City 3 2001,2002,2003

Manzhouli City 3 2004,2005,2006

Ergun City 3 2001,2002,2003

Dongsheng District 2 2009,2011

Jungar Banner 2 2001,2002

Horqin Right Front Banner 2 2001,2003

Oroqin Autonomous Banner 2 2001,2002

Xilinhot City 2 2001,2004

Erenhot City 1 2001

Hexigten Banner 1 2005

Zhalantun City 1 2001

Ongniud Banner 1 2001

Dalad Banner 1 2001

Ar Horqin Banner 1 2005
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Overall, the urban sustainability states in IMAR gradually worsened. A good number
of cities and counties were within the Pareto Fronts (PFs) before 2010. However, the number
of the PFs entries decreased sharply after 2010. In particular, some traditional large pastoral
banners and cities, such as East Ujumqin Banner, Jarut Banner, and Xilinhot City were no
longer in PFs. After 2010, only a few cities, such as Baotou, Chifeng, and Jining, remained
in PFS because they were large cities with rich ecological resources, comprehensive and
robust economic foundations, and balanced urban economic development. The inaugural
year of China’s ecological compensation policy launched in IMAR was 2010 (Chen et al.,
2017 [84]; Deng et al., 2017 [85]). However, it was surprising that this year marked a
turning point of deteriorating urban sustainability. In other words, this policy did not
promote healthy recovery of regional ecology and balanced economic development in
traditional animal husbandry banners. These traditional grazing banners were known
for their rich mineral resources. In economic transformation, industrial development and
mining activities were the main streams. The newly established industrial and mining
parks and subsequent expansion of cities and towns further damaged grassland resources.
They generated a severe negative impact on the sustainable utilization of grassland and
other natural resources (Liu et al., 2021 [86]). Over the past three decades, but especially in
the past 10 years, the development of coal mines in the Inner Mongolia Autonomous Region
has contributed to economic growth, grassland destruction, and ecological deterioration.

The top five cities and banners that often fell within PFs are analyzed below to illustrate
sustainable urban growth in IMAR. The most frequent city in PFs is Baotou City, located
in the western part of the Inner Mongolia Autonomous Region, bordering Mongolia to the
north, the Yellow River to the south, the Tumochuan Plain to the east, and the Hetao Plain
to the west. In 2005, Baotou became the first batch of civilized cities in China. Baotou is an
important hub connecting North China and Northwest China, a key development area for
the country and Inner Mongolia to open up to the outside world. Along with Hohhot and
Ordos, Baotou constitutes the most vigorous development area in Inner Mongolia. Baotou
has won many awards and titles, including the United Nations Habitat Award, the Chinese
Living Environment Model Award, the National Forest City, the National Garden City, the
National Sanitary City, the Third China Environment Award, the National Soil and Water
Conservation and Ecological Environment Construction Demonstration City, and the China
Excellent Tourism City. Baotou has the largest steel, aluminum, equipment manufacturing,
and rare earth processing enterprises in Inner Mongolia. It is a vital energy, raw material,
rare earth, new coal chemical and equipment manufacturing base in the country and Inner
Mongolia. It is also one of the 20 most suitable cities for industrial development and one of
the 50 best cities in the national investment priorities. Baotou is the leader in sustainable
urban development in IMAR, because Baotou is notable in terms of industrial development,
environmental governance, and per capita income.

The second most frequent city in PFs is Chifeng City. Since 2000, GP, AP, and USI
have displayed continuous increases. However, GR declined, and as a result, SLS increased.
Chifeng City is the most populous city in IMAR. The grassland reclamation areas in Chifeng
from 2000 to 2009 were the largest in the region. The number of livestock has also shown
an increasing trend since 2000; urban expansion was dramatic, and industrial development
was at the autonomous region’s forefront. Clearly, GP was the primary function that placed
Chifeng City in PFs numerous years since 2001. On the other hand, according to the
indicators of GR and SLS, there are questions regarding the urban sustainability in Chifeng,
which will be discussed below.

Jining District, the third most frequent city in PFs, is the capital city of Wulanchabu
League. It is located in “the Golden Triangle” junction between the Bohai Rim Economic
Circle, the “Hubao’e” Economic Zone, and the “Wudazhang” Great Wall Economic Belt.
Among the 12 league cities of IMAR, Jining is the closest one to the national capital Beijing.
As a result, Jining is the transportation hub that connects the three major economic zones
of North China, Northeast China, and Northwest China. It is also an essential passage to
Mongolia, Russia, and Eastern European countries. Thus, it is an important node city of
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the national “Belt and Road” strategic planning initiative and the China-Russia-Mongolia
Economic Corridor. Jining has made rigorous progress in sustainable urban development. It
has been described variously as a “National Greening Model County (District)”, “National
Garden City”, and “National Sanitary City”. It is also known as the “Beautiful Garden City
Built on Basalt”. In particular, with the strategic opportunity of the integrated development
of Beijing-Tianjin-Hebei and the active construction of the inland port by connecting
the Tianjin Port, Jining has reached the forefront of undertaking industrial transfer from
developed areas such as Beijing-Tianjin-Hebei to China’s hinterland. Therefore, Jining
enjoys the preferential policies of the development of the western region, regional autonomy
for ethnic minorities, and support for the development of deeply impoverished areas. Jinin
City was constantly ranked high in the Urban Sustainability Index (USI), which was the
most important driving function to place it in PFs.

Ejinna Banner is the fourth most frequent county in PFs. However, Ejinna is a small
banner with a permanent population of 20,000–30,000 people and therefore has a small
urban area. Ejinna has a mixed agriculture and grazing economy. Its natural grassland
area is about 120 million mu, which is the largest grassland area among the three banners
in the Alxa League. Agriculture is mainly concentrated in the areas with irrigation, and
the main products are cantaloupe and cotton. In addition, Ejinna has a border port, called
Ceke. This port is the third largest inland port between China and Mongolia and also plays
a positive role in promoting its economic development. In recent years, tourism around the
“Euphrates Forest, Juyanhai Lake, and Black City” has flourished, which has promoted the
popularity of Ejinna and driven the development of the surrounding economy. The entry
of Ejinna into PFs were mainly driven by its good values in GR and USI.

The East Ujimqin Banner boasts a large natural grassland area of 59.41 million mu.
Grassland vegetation cover there is better than the adjacent West Wuzhu Muqin Banner
(many open-pit coal mines, including the famous Baiyinhua Coal Mine). East Ujimqin
is a premium animal husbandry banner that manages its natural grasslands well. The
number of livestock in the stock has consistently ranked among the top five banners in
IMAR. In recent years, the number of horses raised has gradually increased. The per capita
net income of farmers and herders has been on the top banner in IMAR. On the other hand,
urban expansion in East Ujimqin is not apparent overall. At the same time, the economic
growth rate is relatively stable compared with other banners in IMAR, which have sought
fast economic growth rates. GR has been the factor contributing most to its entry into PFs.

5. Implications of the Study

The study area of IMAR is located on the southern portion of the Mongolian Plateau,
which faces many problems in terms of the environment and sustainable development.
For example, rapid urbanization, fast population growth, grassland degradation and
desertification, over-grazing, unplanned and uncontrolled mining, soil erosion, and water
pollution have caused severe environmental and social consequences in IMAR (Brown et al.
2013 [80]; Wu et al. 2015 [87]). IMAR has faced a constant increase in urban construction,
cultivated land, and rural residential land and a decrease in grasslands and water bodies
(Xie et al., 2021 [88]). Therefore, IMAR is an excellent site for measuring SUS. Our case
study confirmed this finding. Especially since 2010, the SUS status has dramatically
worsened. Ironically, 2010 marked a significant policy change in the study area, as the
ecological compensation policy was enacted (Deng et al., 2017 [85]). Unfortunately, between
1987 and 2015, water resource use in IMAR increased four-fold, energy consumption
increased approximately seven-fold, and large areas of natural grasslands were converted
to agricultural, industrial, and urban land use (Shang et al.,2019 [89]). These trends have
continued, even after implementation of the eco-compensation policy in 2010.

Moreover, the IMAR case study identified two types of SUS systems. The first group
includes large cities such as Baotou, Chifeng, Jining, Wuhai, and Hohhot. They boast
certain common characteristics, including a well-developed economy, diversified industrial
sectors, vital transportation location, good living conditions, and a clean environment. They
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represent successful modern urban growth and development. The second group consists of
small counties such as Ejinna Banner and East Ujimqin Banner. These counties have a small
population, small urban construction area, large natural grassland stretches, and a primary
grazing economy. They are largely traditional rural economic counties with little industrial
growth. This type of sustainable urban development aligns well with the conservation point
view of sustainable urban development (Kowarik et al., 2020 [90]). In short, the integrated
ISL-DM-MOA framework identifies what cities and counties display sustainable urban
growth and can examine comprehensive trade-offs among several critical sustainability
dimensions that available data can support. Therefore, this analytical framework can
analyze SUS involving many integrated ecological, environmental, and socioeconomic
variables. ISL-DM-MOA strongly recommends that urban sustainability should be assessed
based on local or regional conditions (Tanguay et al., 2010 [91]). Only at a fine geographical
scale is the SUS assessment meaningful to guide policy decisions.

As shown above, the analytical framework is shown to be of value for effectively
assessing SUS, as it involves many variables from the perspectives of ecology, he environ-
ment, and even socioeconomics. What are the next steps? Logically, we would like to see
our cities or communities become more sustainable or more livable. So far, this study has
not offered a solution or direction regarding how the cities should be developed, despite its
effectiveness in assessing SUS. This observation adds a potential limitation of the study or
this kind of analytical study in general. This kind of analytical study is developed according
to the present sustainable paradigm, the one-sided technical notion of sustainability, which
may sound technically good on one hand but is very one-sided on the other, according to
Alexander (2004) [92]. There is an alternative, perhaps better, sustainable paradigm based
on morphogenesis or living structure (Alexander 2004 [92], Alexander 2002–2005 [93])
under which our interaction with the land or the Earth’s surface is treated as a sacrament.

Living structure is a physical phenomenon that exists pervasively in surroundings
such as rooms, buildings, gardens, streets, and cities. It consists of numerous recursively
defined substructures with an inherent hierarchy. Across different levels of the hierarchy,
there are far more small substructures than large ones, yet on each level of the hierarchy,
substructures are more or less similar in size. Living structure is conceived under the
third view of space: space is neither lifeless nor neutral, but a living structure capable of
being more living or less living (Alexander 2002–2005 [93]). Seen from the perspective
of a living structure, sustainability is about making the Earth’s surface living or more
living. Note that the notion of livingness can be objectively or structurally measured and
quantified (Jiang and de Rijke 2022 [94]), assessed from a holistic point of view of space.
Under the notion of living structure, many urban issues, such as sprawl, traffic, and social
segregation, are inevitable outcomes of the underlying living structure. In other words,
the underlying living structure needs to be developed further. Under the notion of living
structure or the third view of space, we no longer fragmentedly consider individual issues
or parameters but holistically make and remake the Earth’s surface living or more living.
This is a new kind of city science (Jiang 2022 [95]), a sort of generative science that deals
with not only the understanding of city structure and dynamics, but also—probably more
importantly—sustainable urban planning and design towards a sustainable society. This
speculation points to our future work on urban sustainability.

6. Conclusions

The new urban sustainability framework, ISL-DM-MOA, innovatively synthesizes cur-
rently available socioeconomic statistics and environmental data as a unified dataset to as-
sess urban sustainability as a coupled human–nature system or a total socio-environmental
system (Xie et al., 2019 [96]). ISL-DM-MOA uses socioeconomic statistics that are officially
published annually by census bureaus or statistical bureaus and integrates them with envi-
ronmental data extracted from remotely sensed images. ISL-DM-MOA breaks the strict def-
initions of current comprehensive SUS indicators. It acknowledges that urban sustainability
is not a universal measurement; it varies at different geographical scales. It varies between
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continents, nations, regions, and communities. The ISL-DM-MOA framework adopts PCA’s
data mining technique to derive underlying urban sustainable development or economic
growth dimensions based on available coupled regional economic-environmental dataset.
These PCA-derived dimensions approximate the current comprehensive SUS indicators
and add additional aspects of sustainable urban growth. In addition, this framework
integrates two dominant SUS research approaches: the comprehensive indicators and
the ecosystem services. Therefore, this framework extends the current evaluation of SUS
from the national scale to a regional scale by bridging the data gaps required to calculate
SUS indicators.

Furthermore, the ISL-DM-MOA framework promotes a new vision of urban sustain-
ability. Urban sustainability is a complex and dynamic state of urban development (Batty,
2013 [97]). Urban systems as complex human-natural systems consist of numerous demo-
graphic, ecological, environmental, socioeconomic, and political (policy) processes that
form various levels of reaction chains. These interconnected chains determine why some
subsystems correspond to other subsystem changes, because these subsystems coexist and
interact together to create causal structures to determine positive or negative trade-offs
between them. Therefore, the SUS measurement is neither a precise value nor a single
modeling function. A meaningful SUS evaluation involves assessing trade-offs among a
set of urban sustainability factors, goals, or targets. In other words, urban sustainability
involves a set of choice candidates that are derived from an integrated socioeconomic and
environmental dataset, which is available in a study area. As a result, ISL-DM-MOA advo-
cates that the perception and acceptance of urban sustainability differs among different
political, administrative, historical, and cultural systems. The paper has made an excellent
empirical case study of the ISL-DM-MOA framework in IMAR.

However, the ISL-DM-MOA framework is the first experiment of this type of urban
sustainability assessment. Due to the data availability and the complexity of urban sustain-
ability, many elements of urban sustainability, such as the cultural dimension and renewal
energy, are not examined by the current framework. Although this framework is open to
all available data and information by its design, the next steps are more tests and validation
studies. Moreover, since this approach breaks with two currently popular practices of using
indicators and comprehensive scoring methods, it is currently challenging to compare this
framework with other similar urban sustainability studies.
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