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ABSTRACT

Urban  environments  lie  at  the  confluence  of  social,  cultural,  and  economic  activities  and  have  unique  biophysical
characteristics  due  to  continued  infrastructure  development  that  generally  replaces  natural  landscapes  with  built-up
structures. The vast majority of studies on urban perturbation of local weather and climate have been centered on the urban
heat island (UHI) effect,  referring to the higher temperature in cities compared to their  natural  surroundings.  Besides the
UHI  effect  and  heat  waves,  urbanization  also  impacts  atmospheric  moisture,  wind,  boundary  layer  structure,  cloud
formation, dispersion of air pollutants, precipitation, and storms. In this review article, we first introduce the datasets and
methods used in  studying urban areas  and their  impacts  through both observation and modeling and then summarize  the
scientific insights on the impact of urbanization on various aspects of regional climate and extreme weather based on more
than  500  studies.  We  also  highlight  the  major  research  gaps  and  challenges  in  our  understanding  of  the  impacts  of
urbanization and provide our perspective and recommendations for future research priorities and directions.
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Article Highlights:

•  As  urban  areas  expand  and  populations  grow,  we  urgently  need  to  better  understand  cities  and  their  interactions  with
weather and climate.

•  Urbanization  can  impact  heat  waves,  atmospheric  moisture,  clouds,  wind  patterns,  air  pollution,  boundary-layer,
precipitation, and storms.

•  Research gaps due to complexity of urban areas and deficiencies in current methods are identified and future priorities
are highlighted.

 

 
  

1.    Introduction

Cities are the nexus of modern social, cultural, and eco-
nomic activities, and they have unique biophysical, morpholo-
gical, and thermodynamic properties due to the physical pro-
cess of urbanization, where natural landscapes are replaced

by  buildings,  roads,  parking  lots,  etc.  (built-up  structures).
Urban  areas  are  also  centers  of  resource  utilization,  with
high energy and water consumption (Chen and Chen, 2016),
which lead to anthropogenic heat fluxes (Zhang et al., 2013)
and greenhouse gas  and aerosols  emissions  (Fig.  1).  These
characteristics  and  activities  give  rise  to  unique  urban  cli-
mates  from micro  to  regional  scales  (Oke,  1981; Arnfield,
2003; Kalnay  and  Cai,  2003; Rizwan  et  al.,  2008; Feng  et
al.,  2012; Yan et  al.,  2016; Chapman et  al.,  2017a; Oke et
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al.,  2017; Zhou  et  al.,  2017; Chakraborty  and  Lee,  2019;
Sharma et  al.,  2020).  Currently,  over  3.5  billion people,  or
half of the global population, live in urban areas. This percent-
age  is  projected  to  grow  to  around  68%  by  the  middle  of
this  century  (over  89%  for  the  United  States)  (UNDESA,
2018).  More  people  in  cities  increase  the  demand  for  ser-
vices, housing, and utilities, and changes of land cover and
infrastructure  features  modulate  local  and regional  weather
and climate through both biophysical and biogeochemical pro-
cesses (Niyogi et al., 2011; Zhong et al., 2015, 2017, 2018;
Sarangi et al., 2018; Yang et al., 2019a).

The  vast  majority  of  studies  on  urban  perturbation  of
local weather and climate have been centered on the urban
heat island (UHI) effect, i.e., the relatively higher temperat-
ure in cities compared to their surroundings (Fig. 2). This is
one of the oldest and most researched topics in urban climato-
logy,  dating  back  to  the  work  by  Howard  (1833),  which
found that the air temperature in London’s urban center was
distinctly  higher  than  its  surroundings.  Since  this  pioneer-
ing work, studies characterizing UHI intensity have been con-
ducted  using  various  methodologies  for  hundreds  of  cities
(Bornstein, 1968; Oke, 1982a; Douglas, 1983; Wang et al.,
1990; Changnon, 1992; Saitoh et al., 1996; Arnfield, 2003;
Lin  and  Yu,  2005; Ren  et  al.,  2007; Roth,  2007; Hamdi,
2010; Elagib,  2011; Camilloni  and  Barrucand,  2012; Ngie
et al., 2014; Founda et al., 2015; Santamouris, 2015; Torres-
Valcárcel et al., 2015; Sachindra et al., 2016; Deilami et al.,
2018; Wu and Ren, 2019). Besides the UHI effect, urbaniza-
tion  generates  or  modulates  other  meteorological  phenom-
ena  (Miao  and  Chen,  2008; Shao  et  al.,  2013; Han  et  al.,
2014b; Martilli,  2014; Song  et  al.,  2014; Ma  et  al.,  2016;
Liang et al.,  2018; Huang et al.,  2019; Huszar et  al.,  2020;
Hajmohammadi  and  Heydecker,  2021).  These  include  the
urban  moisture  island  (UMI)  or  urban  dry  island  (UDI)
effect,  a  measure  of  the  difference  in  moisture  content

between (for UDI, the generally lower moisture content in)
urban air and the air of the rural background (Kratzer et al.,
1962; Du et  al.,  2019),  effects  on  boundary  layer  structure
and  winds,  cloud  formation  and  storm  characteristics  and
propagation,  dispersion of  air  pollutants  (Giovannini  et  al.,
2014; Zhong  et  al.,  2018),  and  the  potential  urbanization-
induced  modulation  of  precipitation  distribution,  intensity,
and frequency (Lowry, 1998; Liu and Niyogi, 2019).

Studying, understanding, and predicting urban meteoro-
logy and hydrology is particularly pressing in the context of
extreme  weather  and  climate  change.  Urban  environments
are  highly  vulnerable  to  extreme  hydrometeorological
events  (including  flash  floods; Chang and Franczyk,  2008;
Zhang et al., 2014c, 2018), which can result in widespread dis-
ruption to critical physical, social, and institutional systems
(Cho and Chang, 2017) and whose patterns are expected to
be  altered  by  rising  greenhouse  gas  concentrations.  Flood-
ing in urban environments can occur anywhere due to the pre-
valence of impervious surfaces (Jha et al., 2012), and flood-
ing  risks  are  not  limited  to  floodplain  or  coastal  bodies  of
water.  The  recent  devastating  floods  during  July  2021  in
Zhengzhou city in central China, home to 12 million people,
resulted in more than 300 deaths and incalculable dollars in
property  loss.  Similarly,  the  New  York  City  metropolitan
area  was  struck  by  the  remnants  of  Hurricane  Ida  in  early
September 2021, which flooded subways, roads, and homes
and killed at least 52 people across the Northeast. However,
the physical  mechanisms,  including the large-scale  circula-
tions and local-scale urban–atmosphere interactions, that are
responsible  for  these  extreme  events  remain  uncertain  and
poorly understood.

In  this  review article  focusing on interactions  between
urban  areas  and  the  atmosphere,  weather,  and  climate,  we
first introduce the datasets and methodologies used for detect-
ing urban impacts based on observations (section 2) and mod-

 

 

Fig. 1. Representation of inputs to and outputs from an urban ecosystem [Reprinted from Fig. 1.4 in Urban Climates by Oke
et al. (2017), © 2017 Cambridge University Press. Reproduced with permission of The Licensor through PLSclear.].
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eling tools (section 3). Then we summarize the research pro-
gress on the impact of urbanization on temperature and heat
waves,  based  on  observational  evidence  (section  4)  and
model simulations (section 5), on wind, boundary layer struc-
ture,  clouds and air  pollution (section 6),  and on precipita-
tion and extreme events (section 7), based on more than 500
studies. Finally, we highlight the current understanding and
major research gaps and challenges and provide our perspect-
ive  and recommendations  for  future  research  priorities  and
directions (section 8). 

2.    Methodologies  for  isolating  the  urban
impact based on observations

 

2.1.    Datasets

Urban impact on local climate is frequently isolated by
comparative analysis of observations in an urban region and
its  peripheral  rural  regions.  Separation  of  an  urban  region
from  rural  areas  can  be  done  by  analyzing  spatial
urban/rural metadata (Peterson and Vose, 1997; Peterson et
al.,  1999),  satellite-measured  nighttime  lights  data  (Owen,
1998; Gallo et al., 1999; Hansen et al., 2001), population data-
sets at  various scales (Ren et al.,  2008; Fujibe, 2009),  land
cover  data  (Wang and Ge,  2012; Chrysanthou et  al.,  2014;
Wang  et  al.,  2015a; Demuzere  et  al.,  2020; Jiang  et  al.,
2020), etc. The UHI effect is quantified using in situ observa-
tions  of  ambient  air  temperature  or  remotely  sensed estim-
ates of radiometric skin temperature (Voogt, 2007; Stewart,
2011b; Chakraborty and Lee, 2019). However, several vari-
ations exist within each measurement typology. In situ meas-
urements can be from stationary weather stations, including
standard,  research-grade,  and  crowdsourced  observations
(Muller  et  al.,  2013; Chapman  et  al.,  2017b; Venter  et  al.,
2021), or via mobile sensors, either mounted on vehicles or
incorporated  into  smart  devices  (Unger  et  al.,  2001;
Rodríguez et al., 2020; Nazarian et al., 2021). Remote meas-
urements  can  be  retrieved  through  drones,  airplanes,  or

polar orbiting and geostationary satellites (Ngie et al., 2014;
Naughton and McDonald, 2019; Zhou et al., 2019).

Similar to the UHI effect, the UDI effect can be meas-
ured  using  in  situ  observations,  either  stationary  or  mobile
(Hass  et  al.,  2016; Lokoshchenko,  2017).  Unfortunately,
remote  estimates  of  humidity  or  moisture  content  in  urban
areas are columnar estimates, which do not provide ground-
level  estimates  of  humidity  or  its  proxies  without  signific-
ant ancillary information (Hu et al., 2015). The influence of
urbanization on precipitation is usually studied using in situ
rain  gauges  (Golroudbary  et  al.,  2017; Liang  and  Ding,
2017; Sarangi et al., 2018). Although the current spatial and
temporal  resolutions  of  satellites  to  monitor  precipitation
[0.1  degree  spatial  resolution  for  the  Global  Precipitation
Measurement (GPM) satellite] are often not fine enough to
completely  isolate  small  to  medium urban  areas,  they  help
in differentiating the precipitation distribution over the areas
upwind and downwind of cities (Shepherd et al., 2002). Satel-
lite  observations of  urban cloud cover have also been used
as  a  proxy  for  the  propensity  of  urban  precipitation
(Theeuwes  et  al.,  2019).  Satellite  observations  are  also
increasingly  being  used  to  monitor  urban  air  quality  in
terms of overall aerosol loading and separate urban air pollut-
ants  (Engel-Cox  et  al.,  2004, Chakraborty  et  al.,  2021a;
Vohra et al., 2021). 

2.2.    Canopy urban heat islands (CUHI)

Traditionally, the UHI was defined as the difference in
near-surface air temperature between the urban core and its
rural  hinterland. This is  now commonly known as the can-
opy UHI, or CUHI, since air temperature measurements are
usually taken at 1.5 m to 2 m above the surface, well within
the urban canopy (Oke, 1976, 2006).  In situ measurements
from  weather  stations  can  be  used  to  measure  the  CUHI.
For this,  previously established stations set  up for standard
weather monitoring are generally insufficient, since they are
usually at nearby airports, which do not represent the com-
plete urban environment (WMO, 2008; Konstantinov et al.,

 

 

Fig. 2. Schematic picture of the urban heat island effect [https://community.wmo.int/activity-areas/urban/urban-heat-island.
Courtesy of Kamyar Fuladlu. © 2020 World Meteorological Organization (WMO)].
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2018). Even when research-grade sensors are set up within
and  outside  cities  to  measure  the  CUHI  using  urban–rural
site pairs, they focus on the CUHI temporal variability. This
is  because  it  is  difficult  to  set  up  sufficient  observational
points to fully capture the spatial variability of urban micro-
climate  (Hass  et  al.,  2016; Liu  and  Niyogi,  2019;
Chakraborty et al., 2020).

To  determine  the  spatial  characteristics  of  the  CUHI,
one  may  rely  on  networks  of  weather  stations  or  measure-
ments  taken  during  mobile  transects.  The  first  method
requires  significant  logistical  support  and  funding,  with
many past urban meteorological networks no longer opera-
tional (Muller et al., 2013). Recently, crowdsourced measure-
ments from private weather stations have been used to mon-
itor the CUHI (Chapman et al., 2017b; Venter et al., 2021).
These have the advantage of wide spatial coverage within cit-
ies  with  station  maintenance  provided  by  the  private  own-
ers  instead of  by researchers  (Meier  et  al.,  2017; Venter  et
al.,  2021).  The  second  method  can  take  many  forms,  with
the traditional approach involving driving vehicles with met-
eorological  sensors  within  cities  (Chakraborty  et  al.,  2017;
Yokoyama et al., 2018). Several individual and extended stud-
ies  have  now  started  collecting  urban  micro-climate  data
using  sensors  mounted  on bicycles  (Ziter  et  al.,  2019; Cao
et al., 2020; Rodríguez et al., 2020). A few studies have incor-
porated  ambient  measurements  within  smart  devices  (for
instance,  phones  and  wearables)  to  take  advantage  of  the
exponential rise in their use in recent years (Ueberham and
Schlink,  2018; Nazarian et  al.,  2021).  Similar  methods can
also  be  used  to  measure  the  UDI  and  UMI.  For  instance,
Wang et al. (2021b) recently calculated the UMI using abso-
lute  humidity  measurements  from  urban  and  rural  stations
over Hong Kong.

Another  method  to  estimate  urbanization-induced
effects  is  to  compare  the  climatic  trend  at  urban  stations
with  that  at  nearby  rural  stations.  As  it  is  difficult  to  find
records  specifically  from  rural  sites  in  China,  Jones  et  al.
(2008) used sea surface temperature adjacent to east  China
as a  reference and concluded that  the urbanization-induced
warming  over  China  was  about  0.1°C  (10  yr)–1 during
1951–2004. Kalnay and Cai (2003) proposed the “observa-
tion-minus-reanalysis” (OMR)  method  to  estimate  the
impact of urbanization and other land cover changes on tem-
perature changes over the US. The rationale for this method
is that reanalysis datasets are insensitive to land surface prop-
erties and the changes in these properties, since surface (espe-
cially  urban  surface)  observations  are  rarely  assimilated.
Therefore, comparing the temperature trends between observa-
tions  and  reanalysis  can  isolate  the  impact  of  urbanization
and other land use changes.  However,  Wang et  al.  (2013a)
found that  the systematic  bias  in the multidecadal  variabil-
ity  of  the  NCEP–NCAR  reanalysis  data,  used  by Kalnay
and  Cai  (2003),  could  modulate  the  magnitude  of  OMR
trends considerably during different periods. 

2.3.    Surface urban heat islands (SUHI)

The  advent  of  satellite  products  has  allowed  research-

ers to remotely measure the radiometric land surface temperat-
ure  (LST),  or  skin  temperature,  over  urban  areas  (Gallo  et
al., 1995). This has led to a new category of the UHI effect
called  the  surface  UHI  (SUHI),  which  is  the  difference  in
LST between the urban area and its surrounding rural area.
Due to  the  worldwide  coverage  of  polar  orbiting  satellites,
both  intra-  and  inter-urban  variability  in  SUHI  is  much
easier  to  estimate  compared  to  the  same  for  the  CUHI.
Moreover, since an individual satellite uses the same sensor
to “view” all terrestrial surfaces, there are less issues with dif-
ferences  in  sensor  accuracy  and  drift  when  examining  the
SUHI.  As  such,  almost  all  multi-city  comparisons  of  UHI
have  used  satellite-derived  products  (Imhoff  et  al.,  2010;
Peng et al.,  2012; Clinton and Gong, 2013; Li et al.,  2017;
Chakraborty and Lee, 2019). Note that unlike in situ measure-
ments of CUHI using stationary weather stations, only geosta-
tionary  satellites  or  continuous  measurements  of  outgoing
longwave radiation  can  provide  diurnal  examination  of  the
SUHI  (Inamdar  et  al.,  2008; Weng  and  Fu,  2014;
Chakraborty et al., 2017), with polar orbiting satellites provid-
ing  SUHI  estimates  only  during  specific  overpass  times
(Chakraborty  and  Lee,  2019).  Although  less  common,  the
SUHI  and  urban  LST  can  also  be  examined  using  aircraft
and  drones  (Lo  et  al.,  1997; Naughton  and  McDonald,
2019). Similarly, ground-based observations of infrared radi-
ation can also be used to estimate LST and SUHI (Johnson
et al.,  1991; Stoll  and Brazel,  1992; Voogt and Oke, 1998;
Chakraborty et al., 2017). Figure 3 provides an overview of
the advantages and disadvantages of urban temperature meas-
urements from weather stations and satellites. 

2.4.    Other urban islands/ pollution dome

Beyond CUHI and SUHI, UHIs have also been defined
for the boundary layer, or the boundary layer UHI, and for
the sub-surface. The positive SUHI affects both the bound-
ary  layer,  with  higher  and  warmer  boundary  layers  over
urban areas (Oke, 1976, 1995), and urban sub-surfaces (Fer-
guson and Woodbury, 2007; Menberg et al., 2013). Because
of the dearth of simultaneous observations of the boundary
layer  temperature,  which  requires  either  radiosondes  or
ground-based  microwave  radiometers,  most  studies  on  the
boundary layer UHI are based on numerical model simula-
tions (Barlow, 2014; see section 4). Sub-surface UHIs have
been  detected  using  data  from observational  wells  or  from
empirical models based on satellites (Menberg et al., 2013;
Zhan et al., 2014). 

2.5.    Moisture and precipitation

Few studies have simultaneously measured air temperat-
ure  and  humidity  within  cities  and  provided  their  bulk
impact  on  thermal  heat  stress  (for  instance, Harlan  et  al.,
2006; Pantavou  et  al.,  2018).  For  precipitation,  observa-
tional studies are even more rare than studies on CUHI. The
few studies on this quantity can be divided into those using
rain  gauges,  either  using  networks  within  cities  or
urban–rural  pairs,  or  indirect  measurements  from  ground
and  satellite-mounted  radars  (Shepherd  et  al.,  2002; Kisht-
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awal  et  al.,  2010; Yang  et  al.,  2013; Golroudbary  et  al.,
2017; Liang  and  Ding,  2017; Sarangi  et  al.,  2018).
Recently, based on radar and satellite data,  Li et al.  (2021)
developed an hourly precipitation dataset with 4-km spatial
resolution over the US for 2004–17. This dataset can separ-
ate different precipitation types, from mesoscale convective
systems to isolated deep convection to non-convective precip-
itation, which provides an opportunity to quantify the urban
effect on different types of precipitation and weather events. 

3.    An  overview  of  modeling  tools  for  urban
study

 

3.1.    Numerical  urban  modeling  embedded  in  bulk  and
mesoscale models

In the past decades, several urban climate/weather mod-
els  with  either  empirical  or  physics-based  parameteriza-
tions  have  been  developed  to  study  urban  areas  (Fig.  4).
Numerical modeling of urban energy balance has a long his-
tory,  with  the  first  attempts  nearly  half  a  century  ago.
However, most land and/or atmospheric models did not form-
ally include urban parameterizations until  the last  two dec-
ades. Several studies have comprehensively reviewed differ-
ent  aspects  of  urban  modeling  (Brown,  2000; Masson,
2006; Baklanov et  al.,  2009; Garuma,  2018; Krayenhoff  et
al., 2021). Here, we briefly summarize the key features and
advances in urban modeling.

Many  simplified  and  empirical  urban  parameteriza-
tions  were  developed  based  on  observation-derived  statist-

ical relationships (Oke and Cleugh, 1987; Grimmond et al.,
1991; Grimmond and Oke, 2002; Offerle et al., 2003; Hoff-
mann  et  al.,  2012; Yin  et  al.,  2018; Oliveira  et  al.,  2021).
These  models  do  not  solve  physical  equations  and  require
little input forcing data. They have several benefits, includ-
ing computational efficiency, but it is unclear to what extent
these  empirical  parameterizations  can  be  generalized  and
applied across global cities and for different background con-
ditions.

Many  studies  (Myrup,  1969; Bornstein,  1975; Kimura
and Takahashi, 1991; Yoshikado, 1992; Avissar, 1996; Ichin-
ose  et  al.,  1999; Taha,  1999; Kusaka  et  al.,  2000; Best,
2005; Dandou  et  al.,  2005; Liu  et  al.,  2006; Wang  et  al.,
2013c; De  Ridder  et  al.,  2015)  adopted  simplified  bulk
urban parameterizations, or slab urban models embedded in
standard surface-layer schemes, or land surface models to rep-
resent  the  zero-order  effects  of  urban  surfaces.  These
bulk/slab  urban  models  typically  include  (1)  a  surface
energy balance equation, (2) a heat equation to compute sur-
face  and  soil  temperatures,  and  (3)  a  traditional  surface-
layer scheme using the Monin-Obukhov similarity theory to
estimate surface fluxes. The relevant model parameters have
been  further  adapted  to  fit  the  urban  environment,  includ-
ing (1) a prescribed surface roughness length to represent tur-
bulence  generated  by urban roughness  elements  and build-
ing  drags,  (2)  a  low surface  albedo to  represent  solar  radi-
ation trapping in urban canyons, (3) a prescribed heat capa-
city for urban surfaces (e.g., roads, walls, and roofs), (4) a pre-
scribed soil thermal conductivity for urban roads and build-
ings,  and  (5)  a  reduced  vegetation  fraction.  These  models

 

 

Fig. 3. Overview diagram of ground-based versus satellite observations of urban temperatures, their advantages, and
their disadvantages.
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have a high computational efficiency due to their simplified
urban  treatments.  However,  they  do  not  include  specific
urban features (e.g., building structures) and heavily rely on
the  surface-layer  schemes  or  land  surface  models  that
already exist  in  mesoscale  atmospheric  models.  It  is  worth
noting that  some recent  studies  (e.g., Wouters  et  al.,  2016)
proposed a semi-empirical urban canopy parametrization in
order to bridge the gap between the bulk urban models and
more sophisticated urban schemes.

The aforementioned empirical  urban parameterizations
and  simplified  bulk  urban  models  may  arguably  be  useful
for specific applications where key model parameters can be
optimized  or  tuned  based  on  observations.  However,  they
may not  fully  capture  the  fundamental  urban  physical  pro-
cesses,  particularly  the  impact  of  urbanization  on  weather
and climate (Piringer et al.,  2002). This substantially limits
these models’ applicability and thus their suitability for inclu-
sion in mesoscale or global models.

Some studies (e.g., Mills, 1997; Masson, 2000; Kusaka
et  al.,  2001; Oleson  et  al.,  2008; Li  et  al.,  2016)  proposed
more  sophisticated  single-layer  urban  canopy  models

(SLUCMs),  which  generally  consist  of  (1)  a  street  canyon
component  parameterized  to  represent  the  urban  geometry
(including orientation) and artificial surface, (2) a radiation
component  parameterized  to  represent  the  canyon  orienta-
tion,  diurnal  change  of  solar  zenith  angle,  and  shadowing
effects  from  buildings  and  reflection  and  trapping  of  radi-
ation,  (3)  an  urban  canopy  flow  component  [e.g.,  Inoue
(1963)’s model], (4) an energy component including energy
balance  and  heat  equations  for  the  roof,  wall,  and  road
interior  temperatures,  (5)  a  surface  flux  scheme  based  on
the Monin–Obukhov similarity theory, and (6) a thin bucket
model  for  hydrological  processes.  The  SLUCMs  estimate
the energy and momentum exchange between the urban sur-
face  and  the  atmosphere.  Subsequent  studies  (e.g.,  Lem-
onsu  and  Masson,  2002; Chen  et  al.,  2004; Kusaka  and
Kimura,  2004; Kusaka,  2009; Oleson  et  al.,  2011; Trusil-
ova  et  al.,  2013)  have  coupled  SLUCMs  to  mesoscale  or
global atmospheric models to evaluate urban impacts.

Going  beyond  SLUCMs,  more  advanced  multi-layer
urban  canopy  models  (MLUCMs)  have  been  developed  to
resolve vertical building effects (e.g., Ca et al.,  1999; Mar-

 

 

Fig.  4. Urban  representation  models:  (a)  The  slab  model,  where  surface  temperature Ts is
equal to ground temperature Tg,  (b) the single layer urban canopy model (SLUCM), (c) the
multiple-layer urban canopy model, and (d) the building-resolving model [Reproduced from
Garuma (2018), © 2017 Elsevier B.V.].
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tilli,  2002; Dupont et al.,  2004; Otte et al.,  2004; Kondo et
al., 2005; Schubert et al., 2012). One of the most sophistic-
ated  MLUCMs  is  the  BEP  model  (Martilli,  2002),  which
treats the urban surfaces in a three-dimensional (3D) way to
account for the building vertical distribution of sources and
sinks  of  momentum,  heat,  and  moisture  fluxes  across  the
entire urban canopy layers. An urban quarter is represented
by  a  horizontal  building  size,  a  street  canyon  width,  and  a
building  density  as  a  function  of  height.  Thus,  it  includes
the  impact  of  vertical  (walls)  and  horizontal  (streets  and
roofs) surfaces on momentum (drag force approach), poten-
tial temperature, and turbulent kinetic energy (TKE). Other
MLUCMs  (Dupont  et  al.,  2004; Otte  et  al.,  2004)  made
some simplifications by only considering 2D buildings (i.e.,
one  horizontal  dimension  and  one  vertical  dimension)
instead  of  3D  building  volume  like  BEP.  Similar  to
SLUCMs,  MLUCMs  also  account  for  the  street  canyon-
induced solar radiation reflections and shadowing as well as
the  trapping  of  solar  and  longwave  radiation.  To  leverage
the  multilayer  treatment  of  MLUCMs,  multiple  model
levels with high vertical resolution within the urban canopy
are preferred.

However,  most  SLUCMs  and  MLUCMs,  including
BEP (Martilli, 2002), use a constant building internal temper-
ature  by  default,  which  may  not  be  realistic.  Thus,  further
studies (e.g., Ashie et al., 1999; Kikegawa et al., 2003; Sala-
manca  et  al.,  2010; Yaghoobian  and  Kleissl,  2012; Lipson
et  al.,  2018; Zarrella  et  al.,  2020)  have  developed  more
detailed urban building energy models to improve the simula-
tion of energy exchange between the outdoor/ambient atmo-
sphere and the building interior. The urban building energy
models  generally  include  (1)  radiation  exchanged  through
windows, (2) heat diffusion via walls, roofs, and floors, (3)
heat  generated  from  occupants  and  equipment,  (4)  long-
wave radiation exchanged between indoor surfaces, and (5)
indoor  heating,  ventilation,  and  air  conditioning.  For
example,  Salamanca  and  Martilli  (2010)  incorporated  a
simple  building  energy  model  (BEM)  into  BEP.  The
BEP–BEM model also allows the consideration of multiple
building floors with indoor moisture and temperature estim-
ated  for  each  floor.  Pappaccogli  et  al.  (2020)  recently  per-
formed a sensitivity analysis of the BEP–BEM model over
an idealized city. Bueno et al. (2012) integrated an urban can-
opy model with a building energy model to quantify the inter-
actions  between  building  energy  and  urban  climate.  Fer-
rando  et  al.  (2020)  provided  a  more  comprehensive  sum-
mary of the urban building energy modeling.

Recently, some advances have been made toward more
detailed  modeling  of  various  important  urban  features  and
associated  impacts  on  climate/weather.  These  advances
include  a  more  accurate  classification  of  urban  land  types
using local  climate  zone (LCZ) based on the World Urban
Database  and  Access  Portal  Tool  (WUDAPT)  (Martilli  et
al., 2016; Ching et al., 2018; Zonato et al., 2020), rooftop mit-
igation  schemes  like  green  roofs  and  photovoltaic  panels
(Sharma et al., 2016; Zonato et al., 2021), and new building
drag  treatments  (Santiago  and  Martilli,  2010; Gutiérrez  et

al.,  2015),  which  have  been  recently  incorporated  into  the
widely  used  Weather  Research  and  Forecasting  (WRF)
model.  Moreover,  Wang  et  al.  (2013b)  coupled  a  SLUCM
with  an  urban  hydrological  model  to  allow  interactions  of
urban water and energy. Krayenhoff et al. (2020) and Mus-
setti et al. (2020) coupled the multilayer BEP model with a
tree-vegetated model to account for the interactions between
street  trees  and  urban  elements.  Meili  et  al.  (2020)
developed an urban ecohydrological model that combines eco-
system modelling with an urban canopy scheme to account
for  the  biophysical  and eco-physiological  characteristics  of
roof vegetation, ground vegetation, and urban trees. 

3.2.    Small-scale  building  resolving  models  and  their
integration with mesoscale models

In  addition  to  the  aforementioned  urban  models  that
have been generally applied to regional and mesoscale simula-
tions,  several  other  small-scale  (e.g.,  <100  m)  building-
resolved  models  have  also  been  developed  to  explicitly
resolve  urban  building  airflows  at  local/city  scales,  includ-
ing  microscale  urban  transport  and  dispersion  models  and
computational  fluid  dynamics  (CFD)-based  urban  models
(Fernando et al., 2001; Brown, 2004; Coirier et al., 2005; Her-
twig et  al.,  2012; Miao et  al.,  2013; Allegrini  et  al.,  2015).
These fine-scale urban models often require mesoscale atmo-
spheric models to provide meteorological initial and bound-
ary  conditions  (Tewari  et  al.,  2010).  The CFD-urban mod-
els  can  explicitly  resolve  building  structures  and  different
urban aerodynamic features, including street-level flow, chan-
neling,  local  turbulent  mixing,  and  downwash.  Some stud-
ies also adopted large eddy simulations (LES) coupled with
mesoscale atmospheric models to predict airflows and trans-
port in urban areas (e.g., Wyszogrodzki and Smolarkiewicz,
2009; Michioka  et  al.,  2013).  One  of  the  recent  develop-
ments of LES-urban models is the development of the Paral-
lelized  Large-Eddy  Simulation  Model  for  Urban  Applica-
tions (PALM; Maronga et al., 2015; Resler et al., 2017; Wink-
ler et al., 2020), which explicitly resolves the 3D geometry
of buildings, vegetation, and terrain as well as detailed radiat-
ive transfer processes in urban canopy layers and chemical
processes of urban air pollutants. This allows a broad applica-
tion of PALM and its variations in urban climate and pollu-
tion studies.

Moreover,  to  build  a  community  urban  modeling  tool,
Chen  et  al.  (2011b)  developed  an  integrated  urban  model-
ling  system  coupled  with  WRF.  The  WRF/urban  system
includes  (1)  multiple  approaches  for  urban  modeling,  such
as a simplified bulk urban parameterization, a SLUCM, a mul-
tilayer  BEP  model,  and  a  sophisticated  BEP–BEM  model,
(2)  the  capability  of  coupling  to  fine-scale  CFD-urban  and
LES-urban models for transport and dispersion applications,
(3)  a  framework  to  incorporate  high-resolution  urban  land
use,  building  morphology,  and  anthropogenic  heating  data
based  on  the  National  Urban  Database  and  Access  Portal
Tool  (NUDAPT; Ching et  al.,  2009),  and (4)  an  urbanized
high-resolution land data assimilation system. Grimmond et
al.  (2011)  and  Best  and  Grimmond  (2015)  showed  results
from  intercomparison  of  many  existing  urban  models,
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which provided the community with an integrated perspect-
ive of weaknesses and strengths of different urban models. 

3.3.    Urban  representation  in  global  Earth  System
Models

At  larger  scales,  urban  parameterizations  are  rare  and
most Earth System Models do not explicitly represent cities.
Of  note,  the  Community  Land  Model  (Lawrence  et  al.,
2019),  the  land  module  of  the  Community  Earth  System
Model  (Danabasoglu  et  al.,  2020),  includes  an  urban mod-
ule, CLM Urban (CLMU) (Oleson and Feddema, 2020). Dif-
ferent  versions  of  the  model  have  been  used  to  study  the
urban  climate  at  regional  to  global  scales  (Fischer  et  al.,
2012; Oleson,  2012; Zhao  et  al.,  2014, 2017; Cao  et  al.,
2016). However, given its global coverage, it has several sim-
plifications, including, but not limited to, uncertainties emer-
ging from internal variability (Zheng et al., 2021) and biases
in  prescribed  urban  parameters  like  surface  emissivity
(Chakraborty et al., 2021b), which is also a source of uncer-
tainty in regional models, including WRF. 

3.4.    Modeling urban air pollution

In  addition  to  physical  urban  climate/weather  models,
there are also some urban air pollution models developed spe-
cifically to predict urban pollutant transport. The Urban Air-
shed Model  (UAM) is  one common urban pollution model
developed more than three decades ago (McRae et al., 1982;
Scheffe  and  Morris,  1993),  which  simulates  physical  and
chemical  processes  of  air  pollutants  based  on  the  atmo-
spheric diffusion and continuity equations. The UAM gener-
ally accounts for pollutant emissions, transport, chemical reac-
tions, diffusion, and removal processes. Some other urban pol-
lutant  diffusion  models  have  also  been  developed  (e.g.,
Turner, 1964; Berkowicz, 2000; Carruthers et al., 2000; Karp-
pinen et al., 2000; Soulhac et al., 2011) by including the key
vertical  and  horizontal  diffusion/dispersion  and  chemical
reactions to specifically investigate urban air pollutant trans-
port and evolution. Another variation of the urban pollutant
model is the Urban Forest Effects (UFORE) model (Nowak
and  Crane,  2000),  which  accounts  for  detailed  species  and
structure  information  of  urban  vegetation  and  the  interac-
tions with air pollutants (e.g., dry deposition and organic emis-
sions  from  trees).  In  addition,  the  WRF-chemistry  model
(WRF-Chem) coupled with a UCM is used to study the urban-
ization impact on air quality (Zhong et al., 2018). 

4.    Impact  on  temperature  and  heat  waves:
Observational evidence

 

4.1.    City-level and multicity observations

The  urban  climatology  literature  is  vast,  with  poten-
tially  thousands  of  studies  (Oke,  1982b; Douglas,  1983;
Changnon,  1992; Arnfield,  2003; Wienert  and  Kuttler,
2005; Roth,  2007; Zhang  et  al.,  2009c; Robaa,  2013; Wu
and  Yang,  2013; Ngie  et  al.,  2014; Alghamdi  and  Moore,
2015; Santamouris,  2015; Alizadeh-Choobari  et  al.,  2016;
Wang et al., 2016, 2017a, b; Ward et al., 2016; Arsiso et al.,

2018; Bader et al., 2018; Deilami et al., 2018; Salamanca et
al.,  2018; Wu  and  Ren,  2019).  Observational  detection  of
the  UHI  effect  is  one  of  the  most  consistent  results  in  the
field. This has been seen using both direct and remote meas-
urements. The UHI intensity has been quantified for almost
all  major  cities,  particularly  those  in  developed  nations.
Most  cities  in  the  world  show  positive  SUHI  (Fig.  5)  and
CUHI, with the main exception being cities in arid climates
(Rasul et al., 2017). Both observational (Fig. 5) and model-
ing evidence shows that SUHI is generally smaller in drier cli-
mates  and  larger  in  moist  climates  (Zhao  et  al.,  2014;
Chakraborty and Lee, 2019; Manoli et al., 2019). The pres-
ence of the negative UHI, or urban cool island, in arid areas
has  been  seen  for  individual  cities  and  also  in  satellite-
derived multicity estimates (Rasul et al., 2016; Chakraborty
and Lee, 2019; Fig. 5). 

4.2.    Surface versus canopy urban heat islands

It is important to note that LST and air temperature, and
thus SUHI and CUHI, are not identical variables.  This is a
necessary distinction because many of the negative impacts
of the UHI effect,  including heat stress, are due to high air
temperature, not LST (Harlan et al.,  2006; Anderson et al.,
2013; Ho et  al.,  2016).  While  LST and air  temperature are
coupled  on  an  annual  scale,  significant  differences  are
found  between  the  two  on  the  diurnal  and  seasonal  scales
(Garratt,  1995; Jin  et  al.,  1997).  Moreover,  since  urban
areas do not usually have standard weather stations (WMO,
2008),  the  coupling  between  CUHI  and  SUHI  in  urban
micro-climates  has  been  rarely  quantified.  A  majority  of
observational estimates have found that while SUHI is usu-
ally stronger during daytime, the CUHI is stronger at night
(Zhang  et  al.,  2014b; Chakraborty  et  al.,  2017; Hu  et  al.,
2019; Venter et al., 2021). In fact, from 1950 to 2000, urbaniz-
ation-induced  land  use  changes  accounted  for  half  the
decrease in the diurnal temperature range, a consequence of
the higher  nighttime magnitude of  CUHI (Kalnay and Cai,
2003). There are also differences in the SUHI and CUHI on
seasonal time scales, as shown by Chakraborty et al. (2017).
Of note, the SUHI has been found to be higher and more vari-
able during summer and smaller  during winter  across mul-
tiple  large-scale  studies  (Peng  et  al.,  2012; Clinton  and
Gong, 2013; Chakraborty and Lee, 2019; Fig. 5). 

4.3.    Determinants of the urban heat island intensity

Earlier  studies  on the UHI effect  primarily  focused on
simple  observations  of  the  urban–rural  thermal  anomaly,
providing  little  understanding  of  the  mechanisms  dictating
the  phenomenon.  Moreover,  proper  quantification  of  the
factors causing the UHI has been difficult owing to vast differ-
ences in city structure, background climate, and other atmo-
spheric  forcing  (Arnfield,  2003).  Oke  (1969)  suggested  a
need  for  a  proper  rational  understanding  of  the  factors
responsible for the UHI and outlined several possible reas-
ons for the UHI effect (Oke, 1982a). A recent review of 88
papers on the UHI of 101 Asian cities found several major
determinants of the UHI commonly examined in the literat-
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ure, including background climate conditions, city size, rain-
fall, cloud cover, and coastal feedback (Santamouris, 2015).
Moreover, due to the wide variety of fields involved in UHI
research including, but not limited to, geosciences, meteoro-
logy,  climatology,  environmental  science  and  engineering,
geography,  ecology,  urban  planning  and  architecture,  etc.,
there has been an inconsistency in the terminologies used in
the literature (Oke, 2006).

A  few  large-scale  studies  have  investigated  the  pos-
sible causes of the SUHI. A global study of 419 cities found
higher  daytime  values,  with  no  significant  correlation
between  daytime  and  nighttime  surface  UHI  (Peng  et  al.,
2012). They also analyzed the statistical association of differ-
ent  biophysical  parameters  with  the  LST  difference.  The
nighttime SUHI was correlated with urban–rural difference
in  shortwave  reflectivity  (or  albedo)  and  night  light,  while
the daytime values showed associations with urban–rural dif-
ference  in  vegetation  cover.  The  influence  of  this
urban–rural difference in vegetation cover on the SUHI, as
well as CUHI, has also been seen in other large-scale stud-
ies  (Chakraborty  and  Lee,  2019; Paschalis  et  al.,  2021;
Venter et al.,  2021). The aerodynamic smoothness of cities

can also influence the UHI by modulating convective cool-
ing (Zhao et  al.,  2014),  which is  seen during summer days
over  342  urban  clusters  in  Europe  (Venter  et  al.,  2021),
providing observational evidence of previously modeled res-
ults. The coupling between UHI and urban aerosols has also
been  examined  in  observational  studies,  with  various
degrees of control found through the radiative effect of aero-
sols  (Li  et  al.,  2018b; Zheng  et  al.,  2018; Ulpiani,  2020;
Chakraborty  et  al.,  2021a).  More  recently,  studies  have
explored not just the difference in vegetation cover in cities,
but also changes in plant physiological and biophysical char-
acteristics  in  urban  micro-climates  and  how  they  relate  to
local urban thermal anomalies (Meng et al., 2020; Paschalis
et al., 2021). As a bulk control, multiple studies have shown
that the SUHI intensity is associated with the background cli-
mate in which a city exists (Zhao et al., 2014; Chakraborty
and Lee, 2019; Li et al., 2019; Manoli et al., 2019; Fig. 5). 

4.4.    Intra-urban variability in urban temperatures

Due to the spatial continuity of satellite-derived observa-
tions,  it  has  been  easier  to  study  intra-urban  variability  in
urban  LST  (and  thus  the  SUHI).  Large  spatial  variability

 

 

Fig. 5. Distribution of daytime surface urban heat island (SUHI) for (a) summer and (b) winter for
over 10 000 urban clusters across the globe and across different Koppen-Geiger climate zones. Based
on the Yale Center for Earth Observation (YCEO) Surface Urban Heat Island Dataset [modified from
Chakraborty and Lee (2019)].
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has been found, generally controlled by the degree of urbaniz-
ation  and  the  fraction  of  impervious  surfaces  (Hass  et  al.,
2016; Wang et al.,  2017a; Naughton and McDonald, 2019;
Chakraborty  et  al.,  2020).  Of  note,  the  SUHI literature  has
recently focused on systematic disparities in LST and SUHI
intensity  by  race  and  income  across  multiple  cities
(Chakraborty et al.,  2019, 2020; Hoffman et al.,  2020; Hsu
et al., 2021; Benz and Burney, 2021). Although similar mul-
ticity  studies  for  CUHI  and  to  examine  the  overall  heat
stress  across  population  groups  are  difficult,  results  from
single-city studies suggest higher urban heat stress in poorer
neighborhoods,  at  least  in  the  United  States  (Harlan  et  al.,
2006; Voelkel et al., 2018). 

4.5.    Long-term  changes  in  the  urban  heat  island
intensity

Although recent studies have investigated the long-term
changes in the SUHI for individual cities, multicity observa-
tional  estimates  are  still  sparse  (Scott  et  al.,  2018;
Chakraborty and Lee, 2019; Yao et al.,  2019). Of note, for
developed regions,  the  general  trend seems to  be  a  stagna-
tion of the SUHI intensity or a slight reduction. However, cit-
ies in tropical areas in developing countries have shown an
increasing  trend  in  SUHI  intensity,  particularly  at  night
(Chakraborty  and  Lee,  2019).  Though  different  studies  do
not agree on the magnitude of this change (Chakraborty and
Lee, 2019; Yao et al., 2019), it is important to note that differ-
ences  in  both  methodology  and  sample  sizes  (with  Yao  et
al. (2019) focusing on larger cities) could contribute to this.

Regionally,  long-term  air  temperature  observations
over  China have suggested an increase in  the  frequency of
extreme heat events due to urbanization (Yang et al., 2017).
As  also  noted  in  Yang  et  al.  (2017),  estimating  the  actual
long-term  change  in  UHI  (both  SUHI  and  CUHI)  is  diffi-
cult  due  to  the  urban  contamination  of  ‘rural’ sites  due  to
urban expansion, which can also impact regional climate bey-
ond the urban boundary (Zhou et al., 2004; Tao et al., 2015;
Gough, 2020; Güneralp et al., 2020). In fact, long-term clima-
tological  records  can  also  be  affected  by  urban  signatures
(Li  et  al.,  2004; Hua  et  al.,  2008; Hausfather  et  al.,  2013;
Lin et al., 2016). Most long-term studies on the UHI effect
do not consider the effect of the conversion of stations from
rural to urban on local climate, and the class of the stations
remains  fixed  throughout  the  analysis  period.  In  China,
rapid urbanization can lead to a transition of a station from
rural to urban within a short period. Yang et al. (2011) dynam-
ically  categorized  urban  and  rural  stations  in  east  China
based on the DMSP/OLS nighttime light data of 1992–2007
and  found  an  evident  UHI  effect  on  warming  trends.  Fol-
low-up studies dynamically classified the stations into urban
and  rural  types  based  on  the  time-varying  land  use  data
(Liao et al., 2017; Lin et al., 2018, 2020). Using an optimal
fingerprinting technique, Sun et al. (2016a) suggested that urb-
anization effect accounted for about a third of the observed
warming in China. 

5.    Impact  on  temperature  and  heat  waves:
Modeling results

 

5.1.    Urban heat island intensity

Modeling  urban  temperature  and  the  UHI  by  simulat-
ing  their  complex  interplay  at  different  time-space  scales
has  been valuable  in  understanding the  underlying govern-
ing  factors  (Chen  et  al.,  2004; Kusaka  and  Kimura,  2004;
Lo  et  al.,  2007; Lin  et  al.,  2008b; Salamanca  et  al.,  2011;
Rajagopalan et al.,  2014; Sun and Augenbroe, 2014; Magli
et al., 2015; Kim et al., 2016; Zhao et al., 2018; Mughal et
al., 2019; Wang and Li, 2021). Salamanca et al. (2011) com-
pared  all  the  urban  canopy  schemes  in  Houston  and
observed a temperature rise (~2°C) in higher density areas,
indicating  that  the  complex  canopy  schemes  are  critical  in
evaluating  energy  consumption  of  air  conditioning  at  city
scales.  Similar  results  have  also  been  observed  in  China,
where more realistic urban representations are effective in bet-
ter  estimating  temperature  and  wind  speed  (Liao  et  al.,
2014).  However,  some  studies  also  reported  insignificant
improvements when using more complex models due to the
lack of reference data (Karlický et al., 2018). Moreover, the
temporal  and  spatial  scales  of  the  targeted  research  ques-
tion  should  determine  the  sophistication  of  models
employed, given that model approximations are scale depend-
ent. For instance, building energy modules are needed when
UHI interactions are aimed at canyon scale, i.e., ~10 meters
(Sun and Augenbroe, 2014; Magli et al., 2015). Conversely,
only  multilayer  UCM  urban  canopy  models  should  be
employed for representing UHI interactions at the urban can-
opy  scale  (~10  km)  (Kusaka  and  Kimura,  2004; Kondo  et
al., 2005; Holt and Pullen, 2007).

With  advancements  in  computational  capabilities,
large-eddy  simulations  are  also  utilized  to  solve  Computa-
tional Fluid Dynamics and aid in understanding UHI distribu-
tion and associated circulations (Wang and Li, 2016). These
models  are  useful  for  simulating  UHI-induced urban flows
(Catalano et  al.,  2012),  mesoscale  circulations  due  to  hori-
zontal  UHI  heterogeneity  (Zhang  et  al.,  2014a; Zhu  et  al.,
2016), and UHI–sea breeze interactions (Shen et al., 2018).
These  urban  modules  are  often  accompanied  by  a  meso-
scale weather model to simulate the impact of UHI on precip-
itation  intensity  (Lin  et  al.,  2008a, 2011),  local  circulation
(Lo et al., 2007), sea breeze interaction (Shen et al., 2018),
background warming (Chen et al., 2014), etc., at large spati-
otemporal  scales.  In  addition,  statistical  modeling
approaches  are  also  employed  as  an  alternative  to  numer-
ical models for explaining the UHI phenomenon. However,
these approaches have limited ability in explaining the under-
lying  mechanisms,  which  can  be  examined  using  physics-
based models (Su et al., 2012; Doick et al., 2014; Ho et al.,
2014; Ivajnšič  et  al.,  2014; Quan  et  al.,  2014; Guo  et  al.,
2015; Kotharkar et al., 2019).

Overall,  modeling  studies  agree  on  the  diurnal  pattern
of  dominance  of  CUHI  during  nighttime  in  most  cities.
Higher  values  of  ground  heat  fluxes  in  urban  surfaces  are
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responsible  for  strengthening  this  primarily  nocturnal  phe-
nomenon  (Van  Weverberg  et  al.,  2008; Bohnenstengel  et
al.,  2011; Yang  et  al.,  2012).  Similar  results  have  been
found  in  Greece  (Giannaros  et  al.,  2013)  and  Singapore
(Mughal et al., 2019), with an exception in a complex topo-
graphic region where dominating sensible heat fluxes led to
high  daytime  CUHI  (Lin  et  al.,  2008b).  The  diurnal  pat-
terns for  SUHI are also related to those of  CUHI (Yang et
al., 2012; Giannaros et al., 2013). However, the peak-value
timings for SUHI and CUHI are diverse (Yang et al., 2012;
Chakraborty et  al.,  2017; Venter et  al.,  2021).  This finding
is  different  from  that  based  on  satellite  observations  (dis-
cussed above), where SUHI is generally larger during day-
time. Future studies should aim to better understand this dis-
crepancy.

In  terms  of  seasonal  variations,  similar  patterns  for
CUHI  and  SUHI  have  been  found  across  the  seasons  in
China,  but  differences  between  dry  and  wet  seasons  have
been  observed  over  a  subtropical  city  (Chakraborty  et  al.,
2017).  High solar  elevation and extensive vegetation cover
(and  thus,  larger  urban–rural  differential  in  vegetation
cover) resulted in maximum UHI values in summer and min-
imum values in winter (Zhang et  al.,  2010).  However,  sea-
sonal  variations  are  not  dependent  only  on  the  aforemen-
tioned factors.  In Mexico,  the enhancement of atmospheric
stability in the dry season is directly interlinked with high val-
ues of nighttime SUHI. On the other hand, daytime SUHI is
influenced  by  vegetation  fraction  diversity  between  rural
and urban areas. Atmospheric stability has also been found
to influence nighttime CUHI, but daytime values display sea-
sonal consistency, suggesting a lack of dependence on vegeta-
tion fraction (Cui and De Foy, 2012). Similar consistent pat-
terns  of  daytime  CUHI  have  been  observed  in  London
(Wilby, 2003; Zhou et al., 2016). Zhou et al (2016) found a
hysteresis-like  seasonality  in  SUHI,  but  not  in  CUHI,  for
the city of London. 

5.2.    Urban heat stress and extremes

Climate  change  has  increased  the  frequency,  duration,
intensity,  and  spatial  extent  of  extreme  heat  episodes
(Meehl  and  Tebaldi,  2004).  However,  the  extent  to  which
urban warming has affected the extreme temperature trends
remains  an  open  question  (Ren  and  Zhou,  2014).  In  the
United  States,  DeGaetano  and  Allen  (2002)  suggested  that
trends  in  high  maximum  and  minimum  temperature
extremes across the country were strongly influenced by urb-
anization.  The  trends  of  extreme  temperatures  were  more
prominent  over  suburban  stations  that  have  undergone
greater  rates  of  urban  expansion  than  the  steady  metropol-
itan core areas (Sen Roy and Yuan, 2009).  In addition,  the
increasing  trend  of  heatwave  episodes  was  higher  in  more
sprawling,  compared  to  compact,  metropolitan  regions
(Stone et al., 2010). Recent studies have focused on China,
which has experienced rapid economic development and urb-
anization  over  the  past  40  years.  All  these  studies  at
regional  scales  identified  significant  urbanization  contribu-
tion  to  the  increasing  trends  for  both  extreme  temperature

indices (Ren and Zhou, 2014; Luo and Lau, 2017; Yang et
al., 2017; Lin et al., 2018, 2020; Wu et al., 2020, 2021) and
human-perceived  heat  stress  (Luo  and  Lau,  2017, 2021;
Wang et al., 2021a), with the urbanization contributions gener-
ally ranging from 20% to 50%. Based on an optimal finger-
printing  method,  urbanization  contributed  one-third  of  the
increase of nighttime extremes (Sun et al., 2019) and 29.6%
of human-perceived heat wave intensity (Kong et al., 2020).
Moreover,  the  contribution  of  urbanization  to  the  increas-
ing trends of heat waves and extreme heat stress are greater
in wet climates (Liao et al., 2018; Luo and Lau, 2021). Sum-
mertime heat stress increased faster than air temperature in
urban areas across China (Luo and Lau, 2018; Wang et al.,
2021a).

The response of UHI to extreme heat episodes has also
been modeled by many studies. In general, simulated CUHI
values during a heat wave have intensified extensively relat-
ive to pre-heat wave conditions, mostly due to the lower mois-
ture and reduced wind speed in urban areas during the heat
wave.  Moreover,  the  intensity  monitored  during  nighttime
was significantly higher, validating its typical nocturnal pre-
dominance (Li and Bou-Zeid, 2013; Zhao et al., 2018; Ao et
al.,  2019; He  et  al.,  2020).  However,  coastal  cities  where
sea-breeze  circulations  are  dominant  exhibited  higher  day-
time responses of UHI to heat waves. The contrasting trends
observed  during  sea  breezes  and  land  breezes  are  a  prob-
able  explanation  for  this  difference  (Ao  et  al.,  2019).  The
heat wave effect on the enhancement of SUHI has been repor-
ted by Li and Bou-Zeid (2013). Alternatively, a few cities in
the US have not shown any clear association between CUHI
and heat waves. A huge difference in soil moisture between
industrialized  and  suburban  land  cover  during  pre-heat
wave conditions is known. This difference does not change
during heat waves, and as a result, a stable moisture deficit
is  maintained  between  the  urban–suburban  gradient
(Ramamurthy and Bou-Zeid, 2017). No synergistic interac-
tions  between  CUHI  and  heat  waves  were  observed  over
Singapore, suggesting that the associations may be small in
tropical  cities  compared  to  midlatitude  cities  (Chew  et  al.,
2021).  Note  that  positive  correlations  for  SUHI  and  CUHI
during heat wave conditions have been seen in modeling stud-
ies  over  temperate  cities  in  the  US  (Zhao  et  al.,  2018),
China (Chen et al., 2014), and Europe.

UHI-associated  micrometeorological  changes  have
adverse  consequences  on human thermal  comfort  (Yang et
al.,  2019a).  Furthermore,  energy  consumption  has  intensi-
fied with increased UHI in Vienna (Berger et al., 2014), Mod-
ena (Magli et al., 2015), Delhi (Kumari et al., 2021), and mul-
tiple  cities  across  the  US  (Sun  and  Augenbroe,  2014).
Indices such as mean radiant temperature (MRT), physiologic-
ally  equivalent  temperature  (PET),  universal  thermal  cli-
mate index (UTCI), and percentage mean vote (PMV) have
been  employed  for  quantitative  estimation  of  UHI-associ-
ated  heat-  and  energy-stress  in  Colombo,  Phoenix
(Emmanuel  and  Fernando,  2007),  Stuttgart  (Ketterer  and
Matzarakis,  2014),  Rotterdam (Van Hove et  al.,  2015),  De
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Bilt  (Taleghani  et  al.,  2015),  Bahrain  (Radhi  et  al.,  2013,
2015), and Ho Chi Minh City (Doan et al., 2016). 

5.3.    Urban heat mitigation

Several modeling studies have focused on testing the effi-
ciency of different approaches to mitigating the UHI (Sun et
al., 2016b; Zhao et al., 2017). Urban greening (more vegetat-
ive cover) has been found to be quite effective in various cit-
ies (Ambrosini et al., 2014; Ketterer and Matzarakis, 2015;
O’Malley  et  al.,  2015; Sharma  et  al.,  2018; Tsilini  et  al.,
2015; De Munck et al., 2018; Zonato et al., 2021). Specific-
ally,  a  significant  reduction  in  surface  temperature  (5°C)
and  PET  (average  of  2.2°C)  has  been  observed  in  Chania
(Tsilini et al., 2015) and Stuttgart (Ketterer and Matzarakis,
2015), respectively. Tehran has witnessed a reduction in noc-
turnal UHI by 0.92°C due to urban greening (Sodoudi et al.,
2014),  while  a  10%  increment  of  greening  in  Toronto  can
reduce  air  temperature  and  PET  up  to  0.8°C  (Wang  et  al.,
2015c).  A  positive  correlation  of  urban  greening  and  sky
view  factor  (SVF)  has  been  seen  in  Hong  Kong,  where  a
high  SVF  resulted  in  a  reduction  in  air  temperature  by
1.5°C.  On the  other  hand,  surface brightening (use  of  high
albedo materials; also see Akbari et al., 2009; Oleson et al.,
2010; Scherba  et  al.,  2011; Kolokotroni  et  al.,  2013; Li  et
al., 2014; Ma et al., 2014; Santamouris, 2014) has also been
effective in independent case studies over Singapore where
air  temperature  reductions  of  2.5°C  (Priyadarsini  et  al.,
2008) and 1.3°C (Mughal et al., 2020) have been calculated.
The  usage  of  high  albedo roof  and pavement  materials  led
to cooling of 1.7°C and 6.5°C in Venice (Peron et al., 2015)
and Serres (Dimoudi et al., 2014), respectively. However, mit-
igating  the  UHI  through  albedo  management  has  been
found to increase ground-level air pollution in modeling stud-
ies  (Chen  et  al.,  2018; Zhong  et  al.,  2021).  Some  studies
argued  that  the  net  effectiveness  strengthens  when  amal-
gamation of multiple approaches are implemented (Zhao et
al., 2017). For instance, overall cooling effects of 3.0°C (Sod-
oudi  et  al.,  2014)  and  1.1°C  (Peron  et  al.,  2015)  in  their
respective  study  regions  have  supported  these  arguments.
Along with albedo management, building urban water bod-
ies (O’Malley et al.,  2015; Radhi et al.,  2015) and changes
in  urban  forms  (Emmanuel  and  Fernando,  2007; Priy-
adarsini et al., 2008; Taleb and Abu-Hijleh, 2013; Rajagopa-
lan et al., 2014; Zhao et al., 2014; Lai et al., 2019) are also
proposed as UHI-mitigating measures.

Urban  greening,  depending  on  the  species  of  vegeta-
tion  used,  can  be  effective  for  overall  temperatures  and
mildly effective or  not  effective at  all  for  heat  stress (Hass
et  al.,  2016).  Note  that  during  winter,  if  trees  (deciduous)
shed  their  leaves,  they  have  a  lower  cooling  potential  dur-
ing this season, which is better for most cities in colder cli-
mates.  Greening  can  also  effectively  reduce  wind  chill
(Giometto et al., 2017) and provide shading (Armson et al.,
2012),  which  white  roofs  cannot  do.  However,  there  is  a
potentially  higher  cost  of  tree  planting  and  maintenance
plus  water  requirements,  which  would  become  even  more
expensive  in  the  future  due  to  water  stress  in  many  cities

around  the  world  (He  et  al.,  2021).  Moreover,  other  urban
structures  can  also  provide  shade,  with  many  being  more
effective than urban vegetation (Middel et al., 2021). 

6.    Impacts  on  wind,  boundary  layer
structure, clouds, and air pollution

Urbanization’s  impact  on the atmosphere extends bey-
ond the urban canopy layer. Above the canopy layer, the influ-
ence  of  urbanization  remains  important.  As  mentioned
earlier,  another  type  of  UHI  is  the  boundary  layer  UHI
(Oke,  1995),  which describes  the  higher  air  temperature  in
the urban boundary layer compared to its rural counterpart.
This boundary layer (about 1–2 km above the ground) UHI
effect  has  been  observed  (Oke  and  East,  1971)  and  simu-
lated (Uno et al., 1989; Martilli, 2002). However, the urban
boundary  layer  in  general  remains  understudied  (Barlow,
2014), especially when compared to the urban canopy layer,
for  which  there  is  a  wealth  of  weather  station  and  satellite
data. For instance, the urban boundary layer heat budget has
not  been  systematically  quantified  (Wang  and  Li,  2019).
The  impact  of  urbanization  also  goes  beyond  temperature,
as  urbanization  also  affects  wind  patterns  and  circulations,
the boundary layer height, moisture conditions, clouds, and
precipitation. 

6.1.    Urban  wind  patterns  and  interactions  with
mesoscale circulations

Depending  on  the  strength  of  the  ambient  wind,  the
wind  pattern  in  the  urban  boundary  layer  can  be  classified
as  an  urban  dome  (when  the  ambient  wind  is  weak  or
absent)  or  an  urban  plume  (when  the  ambient  wind  is
strong) (Zhu et  al.,  2016; Oke et  al.,  2017; Omidvar  et  al.,
2020; Fig. 6). The wind field in the urban canopy layer and
roughness  sublayer  is  more  complicated  and  is  greatly
affected by the details of building morphology (Louka et al.,
2000; Oke  et  al.,  2017).  As  a  whole,  urban  areas  typically
have larger roughness elements (mostly buildings) than the
surrounding  rural  areas  (Bottema,  1997).  Due  to  this
dynamic  effect,  wind  speed  tends  to  be  reduced  as  the  air
moves towards urban areas (Zhu et al., 2016) or as urbaniza-
tion  continues  (Hou  et  al.,  2013).  However,  urban  areas
often  have  higher  sensible  heat  fluxes  than  rural  areas,
which  may  induce  a  self-contained  UHI  circulation  (i.e.,
urban  dome).  The  UHI  thermal  circulation  might  result  in
an acceleration of air flow as it approaches urban areas. Obser-
vational evidence for both dynamic (roughness-induced reduc-
tion in wind speed) and thermodynamic (thermally-direct cir-
culation driven acceleration of winds) effects on winds over
urban  areas  have  been  presented  in  Bornstein  and  Johnson
(1977).

The  interactions  between  urban-induced  circulations
with  meso-  to  regional-scale  circulations  like  mountain–
plain circulations and land–sea or lake breezes are the sub-
ject of active research. Using radar observations, Keeler and
Kristovich (2012) explored how the UHI effect of Chicago
affects  lake  breezes  and  found  that  deceleration  of  lake-
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breeze  frontal  movement  inland  of  Chicago’s  urban  center
was highly correlated with the maximum nighttime UHI mag-
nitude.  Numerical  models  also  provide  important  insights
on how urban forcing interacts with the broad geographical
features in shaping the wind field. An early study by Yoshik
Ado (1992) investigated the daytime urban effect and its inter-
action  with  the  sea  breeze  using  a  two-dimensional  hydro-
static  model.  Recent  studies  have  extended  these  idealized
investigations  using  three-dimensional  large-eddy  simula-
tion models (Jiang et al., 2017). In terms of weather model-
ing, Miao et al. (2009) investigated the interactions between
the  mountain–valley  flows  and  UHI  circulations  over  the
Beijing area using the WRF model  and observational  data.
Chen et al.  (2011a) and Ribeiro et  al.  (2018) examined the
interactions between the sea breeze and urban forcing in Hous-
ton,  Texas,  US  and  Sao  Paulo,  Brazil,  respectively.  Also
using the WRF model, Miao et al. (2015) studied how urban-
ization, topography, and proximity to the sea together shape
the  wind  field  over  the  Beijing–Tianjin–Hebei  area  in
China. These studies underscore the multiscale nature of the
wind fields over urban areas and demonstrate that the urban
effect  on  air  flows,  while  being  important,  is  compounded

by  the  broad  geographical  features  and  associated  circula-
tions. 

6.2.    Turbulence and mixing

In addition to the mean wind field, the impact of urbaniza-
tion on turbulence and turbulent transport is also important.
Field studies of urban effects on turbulence have relied on air-
craft (Hildebrand and Ackerman, 1984) and sonic anemomet-
ers (Rotach, 1993a, b). Aircraft can provide data across the
entire  urban  boundary  layer  and  beyond  (Zhang  et  al.,
2019b, 2020a, b), while sonic anemometers usually give res-
ults only in the canopy layer and roughness sublayer, except
when  they  are  mounted  on  balloons  (Uno  et  al.,  1988,
1992). Comprehensive reviews of turbulence over cities are
provided by Roth (2000) and Barlow and Coceal (2009), the
latter focusing on turbulence in the roughness sublayer.

Turbulent kinetic energy is generated by both shear and
buoyancy  forces.  Given  that  urban  areas  are  characterized
by increased roughness and sensible heat flux, the turbulent
kinetic  energy,  especially  the  vertical  component,  is  often
higher in cities. The stronger turbulent kinetic energy leads
to stronger mixing in the boundary layer and stronger entrain-

 

 

Fig.  6. Typical  overall  form  of  urban  boundary  layers  at  the  mesoscale:  (a)  urban  “dome ”
when  regional  flow  is  nearly  calm,  and  (b)  urban  internal  boundary  layer  and  downwind
“plume” in moderate regional airflow [Reprinted from Fig. 2.12 in Urban Climates by Oke et
al. (2017), © 2017 Cambridge University Press. Reproduced with permission of The Licensor
through PLSclear.].
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ment,  which  further  results  in  a  faster-growing  and  deeper
boundary  layer  over  urban  areas  during  daytime.  This  has
been  well  observed  and  documented  (Spanton  and  Willi-

ams, 1988; Dupont et al., 1999; Angevine et al., 2003). Inter-
estingly,  the  contrast  of  turbulent  kinetic  energy  and  mix-
ing  between urban and rural  areas  has  stronger  impacts  on

 

 

Fig. 7. (a–f) Airfield-specific relationship between changes in temperature, urban cover, 0700 (LST)
stratus  cloud  base  height,  and  0700  (LST)  fog  frequency.  Each  dot  represents  one  of  24  Coastal
Southern California  (CSCA) airfields,  and dot  colors  indicate  subregion (red:  SB,  blue:  LA,  green:
SD,  and  purple:  Islands).  Bold  black  lines:  regression  lines.  Correlation  significance  values  (P
values)  and  95%  confidence  intervals  around  regression  lines  reflect  uncertainties  due  to  spatial
autocorrelation and measurement errors [Reproduced from Williams et al. (2015). ©2015. American
Geophysical Union.].
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the boundary layer structure (e.g., the inversion strength, the
boundary layer height) at night (Clarke, 1969; Godowitch et
al.,  1985; Dupont  et  al.,  1999)  and/or  in  the  winter  season
(Sang et al., 2000), when the rural land experiences stable con-
ditions while the urban land still generates positive sensible
heat flux (Fig. 7). 

6.3.    Moisture and clouds

Although  the  urban  atmosphere  is  usually  hotter  and
thus has a higher water demand (Zipper et al., 2017), evapo-
transpiration in urban areas is often lower than that in rural
areas because of the lack of soil moisture and vegetation. As
a result, the daytime urban boundary layer often has a lower
amount  of  water  vapor,  especially  in  the  lowest  few  hun-
dred  meters  (Tapper,  1990).  This,  together  with  the  higher
air temperature, results in a lower relative humidity in urban
areas, or the UDI effect. Similar to the UHI, the presence of
the UDI has been seen in  several  studies  (Holmer and Eli-
asson, 1999; Kuttler et al., 2007; Moriwaki et al., 2013; Du
et  al.,  2019; Wang  et  al.,  2021b).  This  has  also  generally
been linked to the lack of urban vegetation and pervious sur-
faces  in  cities.  Of  note,  Hass  et  al.  (2016)  found  that  the
urban areas with trees in Knoxville, Tennessee in the United
States had higher magnitudes of heat index than downtown
areas and areas with less trees, due to the competing impact
of air temperature and relative humidity on heat stress.

Given the relation between the cloud base height (e.g.,
characterized by the lifting condensation level) and the relat-
ive humidity, all else remaining equal, urban areas are expec-
ted  to  have  higher  cloud  bases,  which  has  been  widely
observed  (Semonin,  1981; Williams  et  al.,  2015).  Higher
cloud tops over urban areas are also observed in the MET-
ROMEX campaign (Braham and Wilson, 1978). In terms of
cloud frequency and duration, observational studies suggest
that  low-level  clouds  (like  shallow  cumulus  clouds)  are
more  frequently  formed  over  cities  and  last  longer  during
the  daytime  (Inoue  and  Kimura,  2004; Theeuwes  et  al.,
2019). While this might be counterintuitive considering that
urban surfaces release a lower amount of moisture, it is the
stronger  mixing  caused  by  the  higher  sensible  heat  flux  in
urban  areas  that  leads  to  the  stronger  vertical  transport  of
moisture  and  thus  extended  periods  of  cloud  coverage  and
stronger convection over urban areas (Zhu et al., 2016). 

6.4.    Air pollution

Urban areas are important sources of aerosols and their
corresponding precursor gases [e.g., nitrogen oxides (NOx),
sulfur  dioxide  (SO2),  organic  carbon  (OC),  and  black  car-
bon (BC)] due to intensive human activities and industrial pro-
ductions (Wang et al., 2009; Yu et al., 2012). Urbanization-
induced UHI and aerosols have opposite effects on air qual-
ity.  Using the coupled WRF–Chem–Urban regional model,
Zhong  et  al.  (2018)  investigated  the  individual  and  com-
bined  UHI  and  aerosol  effects  induced  by  urbanization  on
air  quality.  They  found  that  while  the  UHI  effect  destabil-
izes the lower atmosphere and increases ventilation over the
urban area  (thus  favoring the  dispersion of  pollutants  from
urbanized areas to their immediate vicinities), increased aero-

sol emissions from cities outweigh the UHI effect, resulting
in  a  net  increase  (i.e.,  accumulation)  in  surface  pollutants.
Since urban areas  can have higher  pollutant  concentrations
than  their  surroundings  (Han  et  al.,  2020),  several  studies
have examined the interactions between the urban pollution
island (UPI) and the UHI intensity (Ulpiani, 2021). Li et al.
(2018b) found a negative relationship between the UHI and
the UPI at nighttime for Berlin. Similarly, for Delhi, Pandey
et  al.  (2014)  found  strong  negative  relationships  between
UHI and aerosol optical depth (AOD) at the monthly scale.
Cao  et  al.  (2016)  showed  that  the  background  climate  had
an  influence  on  the  interactions  between  air  pollution  and
the SUHI, with nighttime SUHI increasing with higher aero-
sol loading for arid cities due to the longwave radiative for-
cing  of  coarser  mineral  dust  aerosols.  Recently,  Chakra-
borty  et  al.  (2021a)  tested  the  impact  of  decreased  aerosol
loading  during  COVID-19  lockdowns  over  north  India  on
the SUHI intensity and found the impact to be negligible com-
pared  to  the  contribution  from  changes  in  surface  vegeta-
tion. 

7.    Impact  on  precipitation  and  extreme
storms

Since  the  pioneering  work  of  Horton  (1921),  which
noticed a tendency for thunderstorm generation over some cit-
ies rather than their immediate surrounding country in 1921,
great efforts have been made to investigate the impact of urb-
anization on precipitation, or the so-called urban rain effect
(URE),  such  as  the  investigation  of  the  controversial  “La
Porte  Anomaly” in northwestern Indiana about  50 km east
of  the  Chicago–Gary  industrial  region  (Changnon,  1968;
Ogden,  1969; Landsberg,  1970; Ashby  and  Fritts,  1972;
Changnon, 1973, 1980) and the famous Metropolitan Meteor-
ological  Experiment  (METROMEX)  undertaken  at  St.
Louis, Missouri in the 1970s (Changnon et al., 1971, 1976;
Huff and Changnon, 1972; Schickedanz, 1974; Huff, 1975).
Due to the availability of more completed and advanced obser-
vation  systems  (e.g.,  radar  and  satellite)  and  the  develop-
ment and popularity of more sophisticated models, more stud-
ies  have  been  carried  out  to  investigate  URE  theoretically
and practically for cities around the globe in the recent dec-
ades  (Shepherd et  al.,  2002; Chen et  al.,  2007; Simpson et
al.,  2008; Halfon  et  al.,  2009; Hand  and  Shepherd,  2009;
Shem  and  Shepherd,  2009; Niyogi  et  al.,  2011; Ashley  et
al.,  2012; Kusaka  et  al.,  2014; Zhong  et  al.,  2015, 2017;
Yang et  al.,  2016; Liang and Ding,  2017; Wu et  al.,  2019;
Fan  et  al.,  2020; Marelle  et  al.,  2020; Georgescu  et  al.,
2021).  However,  unlike the UHI effect,  which is  relatively
well  studied  and  understood,  the  knowledge  about  URE is
still evolving due to the involvement of many dynamic, ther-
modynamic, and microphysical processes and the temporospa-
tial  discontinuity  of  precipitation.  Currently,  the  following
four  major  mechanisms  are  believed  to  be  associated  with
URE (Huff  and  Changnon,  1973; Han  et  al.,  2014a; Mitra
and Shepherd, 2015; Liu and Niyogi, 2019). 
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7.1.    UHI–thermal perturbation of the boundary layer

UHI acts as a low-level heat source and induces conver-
gence at  low levels  and divergence aloft  in  the urban area,
forming a “dome-shaped” upper boundary, which is named
the  UHI  circulation  (UHIC)  (Fan  et  al.,  2017).  Under  the
effect of environmental wind advection, the convergence cen-
ter  is  diverted  to  downwind  areas  (Han  and  Baik,  2008).
The upward motion associated with the downwind conver-
gence may facilitate the initiation of moist convection under
favorable  conditions  and  thus  enhance  precipitation  down-
wind of a city (Baik et al., 2001; Han and Baik, 2008). The
UHI-associated boundary layer perturbation is thought to be
the dominant factor for precipitation enhancement in urban
downwind  areas  in  some  studies  (Thielen  et  al.,  2000;
Rozoff et al., 2003; Shem and Shepherd, 2009). However, it
is  noteworthy  that  URE is  not  only  related  to  the  intensity
and horizontal structure of UHI (Han and Baik, 2008; Miao
et al., 2011) but is also influenced by environmental condi-
tions. Stronger downwind updrafts are necessary for convect-
ive storm initiation under less favorable thermodynamic con-
ditions  (Baik  et  al.,  2001).  In  addition,  UHIC itself  is  also
influenced  by  environmental  factors.  By  conducting  2D
numerical experiments, Baik et al. (2001) found that down-
wind  updrafts  decreased  as  environmental  wind  speed
increased, thus suppressing convection initiation and enhan-
cing  downwind precipitation.  Moreover,  Baik  et  al.  (2007)
showed that when the boundary layer was more stable, both
the strength and the vertical extent of UHIC-induced down-
wind  updrafts  decreased.  Therefore,  further  investigations
under  various  environmental  conditions  are  necessary  to
fully understand the effect of UHIC on URE. 

7.2.    Enhanced  convergence  due  to  increased  urban
surface roughness

The urban vertical structure of cities generally increases
their  aerodynamic  roughness,  resulting  in  the  enhancement
of surface drag and wake turbulence. Urban-increased drag
and turbulence reduce wind speeds more significantly than
the drag and turbulence found in surrounding rural areas. If
these  effects  occur  at  a  large  spatial  scale,  a  local  conver-
gent  wind  field  may  be  generated  under  the  impact  of  the
Coriolis  force  (Collier,  2006; Shem  and  Shepherd,  2009).
Convergence causes the rise of the inflowing air, and when
the  inflow  possibly  reaches  the  level  of  free  convection
(LFC), deep convection is triggered. Therefore, enhanced con-
vergence  due  to  increased  urban  surface  roughness  can
enhance precipitation in some areas of a city. Thielen et al.
(2000) suggested a positive relationship between urban rough-
ness length and downwind precipitation based on 2D simula-
tion experiments. Escourrou (1991) estimated that the effect
of roughness enhanced precipitation downwind of the Paris
downtown area by 10%. However, through sensitivity simula-
tions  of  a  deep  convection  event  over  St.  Louis,  Missouri,
Rozoff  et  al.  (2003)  demonstrated  that  the  surface  rough-
ness-induced  convergence  zone  was  on  the  windward  side
of  the  city  and was  insufficient  to  invigorate  deep  convec-

tion.  In  contrast,  it  slowed  wind  and  dampened  downwind
convergence caused by UHIC. Due to the lack of extensive
studies quantifying the isolated contribution of surface rough-
ness on URE, we cannot make any robust conclusions about
the  relative  importance  of  this  mechanism  compared  to
other pathways. Further studies are necessary to investigate
the details. 

7.3.    Modification of existing precipitating systems by the
urban landscape

The presence of buildings and the generation of UHIC
over  urban  areas  may  act  as  barriers  altering  the  structure
and  propagation  of  precipitating  systems  passing  over  a
city. Based on high-resolution WRF simulations of a heavy
summer rainfall event in Beijing, China, Miao et al. (2011)
demonstrated  that  urban  land  cover  might  cause  a  squall
line  to  split  into  convective  cells  over  the  urban area.  This
does  not  necessarily  lead  to  reduced  precipitation  but  may
increase  it  if  the  water  vapor  availability  is  high.  The
increase in average precipitation downwind of cities as well
as extreme precipitation around cities are found from in situ
measurements (Huff and Changnon, 1973; Kishtawal et al.,
2010).  By  analyzing  radar  characteristics  of  91  summer-
time thunderstorms around Indianapolis, Indiana, Niyogi et
al. (2011) found that some storms bifurcated when approach-
ing the urban region and remerged downwind of the city. In
comparison,  Lin  et  al.  (2021)  and  Ganeshan  and  Mur-
tugudde (2015) argued that enhanced urban-induced conver-
gence in the urban area and around the urban–rural boundar-
ies could attract convective storms towards a city. It is appar-
ent that the alteration of the structure and propagation of exist-
ing  precipitating  systems  affect  rainfall  over  urban  areas
(Bornstein  and  Lin,  2000; Burian  et  al.,  2004,  Dou  et  al.,
2015); however, few studies have tried to quantify whether
this causes decreased or increased precipitation. A previous
satellite-based estimate found increases in monthly warm-sea-
son rainfall both downwind and over cities in the US (Shep-
herd et al., 2002). 

7.4.    Urban aerosol effect on local precipitation

Urban aerosols can affect precipitation through two differ-
ent pathways. The first is through the alteration of urban radi-
ation balance (aerosol–radiation interaction). Aerosols scat-
ter and absorb radiation and thus cool and stabilize the atmo-
sphere, somewhat opposing the thermodynamic influence of
the UHI (Jin et al.,  2010). It is important to note that aero-
sol-induced  cooling  may  suppress  UHI-induced  URE.  The
second pathway is based on the role of aerosol particles as
cloud condensation nuclei (CCN) in cloud formation (aero-
sol–cloud  interaction).  However,  whether  urban  aerosols
inhibit  or  enhance  precipitation  depends  on  many  factors
(e.g.,  cloud  type,  aerosol  size,  aerosol  concentrations,  and
environmental  conditions),  and  the  involved  mechanisms
are  still  being  debated  (Rosenfeld,  2000; Soriano  and  de
Pablo, 2002; Borys et al., 2003; Givati and Rosenfeld, 2004;
Rosenfeld  and  Givati,  2006; Lynn  et  al.,  2007; Bell  et  al.,
2008; Choi et al., 2008; Khain et al., 2008; Rosenfeld et al.,
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2008; Lacke et al., 2009; Ntelekos et al., 2009; Svoma and
Balling, 2009; Han et al., 2012; Fan et al., 2020; Lin et al.,
2021).  For  example,  Svoma and  Balling  (2009)  found  that
winter  precipitation  frequency  in  the  Phoenix  metropolitan
area was inversely related to aerosol concentrations. Bell et
al. (2008) found enhanced precipitation on high aerosol con-
centration  days  in  summer  in  the  southeast  United  States.
Carrió  and  Cotton  (2011)  and  Carrió  et  al.  (2010)  showed
that  downwind  precipitation  efficiency  first  increased  and
then decreased with increasing aerosol concentrations in Hou-
ston. However, Jin et al. (2005) observed no clear relation-
ships between aerosol concentrations and summertime rain-
fall  in  New  York  and  Houston.  Anthropogenic  aerosols
have been shown to increase peak precipitation rate and fre-
quency  of  large  rainfall  events  over  Houston  (Fan  et  al.,
2020).  Using  the  coupled  WRF–Chem–Urban  regional
model  at  convection-permitting  resolution,  Zhong  et  al.
(2015) and Zhong et al. (2017) simulated the individual and
combined UHI and aerosol effects induced by urbanization
on summer storms in two megacity clusters of China. While
the UHI effect increases heat stress and storm frequency in
summer, urbanization-induced aerosols, depending on the syn-
optic  conditions  of  the  storm  event,  tend  to  suppress  the
UHI  effect  on  precipitation,  leading  to  an  overall  suppres-
sion effect of urbanization on precipitation. These controver-
sial results urge further studies for a comprehensive under-
standing  of  cloud–aerosol  interactions,  particularly  over
urban areas.

The above four pathways do not work alone but gener-
ally  take  effect  simultaneously.  A  conceptual  schematic
based  on  previous  studies  is  shown  in Fig.  8,  which  high-
lights  the  roles  of  each  process  in  URE  and  their  interac-
tions with other factors. However, the schematic will evolve
as the understanding of URE improves with further studies

in the future.
Due to the synergistic impact of the above mechanisms

(Shepherd,  2013)  and  their  uncertainties  and  interactions
with various environmental factors (e.g., moisture availabil-
ity, topography, and sea breezes) (Chen et al., 2007; Lin et
al., 2008a; Simpson et al., 2008; Kusaka et al., 2014; Wang
et al., 2015b; Freitag et al., 2018; Fan et al., 2020), compre-
hensive quantification of URE is challenging. Since the begin-
ning, the research focus has been on verifying whether there
is  a  general  precipitation  enhancement  downwind of  urban
areas.  Based  on  various  observations  and  model  simula-
tions,  many studies found an enhancement in precipitation,
precipitation  intensity,  or  extreme  precipitation  in  urban
downwind areas, on the periphery of the urban core, or over
the urban areas (Huff and Changnon, 1973; Shepherd et al.,
2002; Burian and Shepherd, 2005; Chen et al.,  2007; Mote
et al., 2007; Van Den Heever and Cotton, 2007; Simpson et
al., 2008; Carrió et al., 2010; Schlünzen et al., 2010; Shep-
herd  et  al.,  2010; Yang  et  al.,  2012, 2014; Kusaka  et  al.,
2014; Dou  et  al.,  2015; Haberlie  et  al.,  2015; Yu  and  Liu,
2015; Daniels  et  al.,  2016; Ryu  et  al.,  2016b; Liang  and
Ding,  2017; McLeod  et  al.,  2017; Niyogi  et  al.,  2017;
Schmid  and  Niyogi,  2017; Sarangi  et  al.,  2018; Wu  et  al.,
2019; Fan  et  al.,  2020; Kremer,  2020; Li  et  al.,  2020b;
Marelle et al., 2020; Singh et al., 2020; Lin et al., 2021).

Meanwhile many other studies argued that the enhance-
ment  in  urban  or  downwind  precipitation  or  precipitation
intensity was insignificant, and some studies even showed a
reduction in precipitation over or downwind of urban areas,
possibly  due  to  evaporation  inhibition  and  moisture  deficit
(Block et al., 2004; Guo et al., 2006; Kaufmann et al., 2007;
Zhang et al., 2009; Miao et al., 2011; Wang et al., 2012; Gane-
shan and Murtugudde, 2015; Yang et al., 2016; Wang et al.,
2018). Moreover, Li et al. (2011) found that the Pearl River

 

 

Fig. 8. Conceptual understanding of urban rain effect (URE).
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Delta  metropolitan  regions  of  China  experienced  more
strong precipitation but less weak precipitation than surround-
ing non-urban areas.  There is  no doubt  that  spatiotemporal
variations  in  climatology,  meteorology,  topography,  the
degree of urbanization, and aerosol emissions can cause differ-
ent  URE in  different  studies.  However,  the  different  meth-
ods used in previous studies can also lead to discrepancies.

Three approaches are widely used to examine URE. a)
The first is based on the comparison of two numerical simula-
tions with and without urbanization (Chen et al., 2016; Fan
et al., 2020; Lin et al., 2021); b) The second is through the
comparison of precipitation over urban areas and surround-
ing  non-urban  areas  (Mote  et  al.,  2007; Haberlie  et  al.,
2015; Daniels et al., 2016); c) The third is to compare precipit-
ation during pre-urbanization periods and post-urbanization
periods  (Huff  and  Changnon,  1973; Burian  and  Shepherd,
2005; Niyogi  et  al.,  2017).  Comparison between weekdays
and  weekends  is  also  used  in  some  studies  to  examine  the
potential  impact  of  human  activity  on  urban  precipitation
(Jin  et  al.,  2005; Gong  et  al.,  2007; Haberlie  et  al.,  2015).
Strictly speaking, these methods reflect different aspects of
URE. Lowry (1977) empirically discussed the limitations of
these methods and recommended further substantial examina-
tions  of  URE for  different  synoptic  weather  systems,  peri-
ods,  and  urban  regions,  highlighting  the  importance  of  the
aforementioned  studies  to  investigate  URE  around  the
globe. Although previous studies have shown inconsistent res-
ults,  a  meta-analysis  conducted  by  Liu  and  Niyogi  (2019)
demonstrated  a  robust  conclusion  about  the  existence  of
URE. Following the suggestion of Lowry (1977), more stud-
ies are necessary to thoroughly understand the impact of urb-
anization on precipitation. 

8.    Summary and future direction
 

8.1.    Summary of current understanding

Below we provide a summary of our current understand-
ing  of  different  aspects  of  the  impact  of  urbanization  on
regional  climate  and  extreme  weather  based  on  observa-
tions and modeling (Fig. 9). 

8.1.1.    Impact on temperature and heat waves

Observations across cities show that urban areas are gen-
erally  warmer  than  their  surroundings,  particularly  during
summer  nights.  The  magnitude  of  this  thermal  anomaly
depends on the biophysical and morphological properties of
the city, including fraction of urban green space, the reflectiv-
ity  of  urban surfaces,  and the  vertical  structure  of  the  city,
but also on the land use/land cover (LULC) of the reference
rural area. Notably, the magnitude of the UHI is quite differ-
ent  depending on how it  is  measured,  using in situ sensors
(CUHI)  or  satellite  observations  (SUHI).  The  diurnality  of
the SUHI and CUHI also seems to flip in most cities,  with
the  CUHI  higher  at  night  and  the  SUHI  higher  during  the
day.  Satellite  observations,  unlike  observations  from
ground-based sensors,  can detect the intra-urban variability

of the thermal environment. The long-term trends in the clima-
tological mean SUHI and CUHI have not increased substan-
tially  over  the  last  few  decades,  except  for  in  regions  of
Asia and Africa, with increasing urbanization. However, the
trend in extreme heat events in cities is more uncertain due
to the possibility of compound events (Argüeso et al., 2014;
Founda and Santamouris, 2017). 

8.1.2.    Impact on PBL, clouds, and air pollution

The UHI  effect  tends  to  induce  self-contained  circula-
tions  (urban  dome)  centered  around  urban  areas  when  the
ambient  wind is  weak.  On the other hand,  the flow pattern
resembles a plume (urban plume) when the ambient wind is
strong.  When  cities  are  located  in  coastal  or  mountainous
regions,  the  wind  pattern  is  more  complex.  Not  only  does
the urban land affect the mean wind field, turbulence and tur-
bulent transport in the boundary layer are also strongly modu-
lated  by  the  enhanced  roughness  and  stronger  buoyancy
flux over urban areas, yielding a faster-growing and higher
boundary  layer  under  daytime  conditions.  Recent  studies
also suggest that the stronger turbulent transport is respons-
ible for the extended periods of low-level clouds over cities.
The UHI effect favors the dispersion of pollutants from urban-
ized areas to their immediate vicinities by destabilizing the
lower atmosphere and increasing ventilation over the urban
area. 

8.1.3.    Precipitation and storms

Substantial evidence shows that urbanization can affect
precipitation; urban areas are generally drier than their sur-
roundings, with the exception of cities in arid environments.
However,  how  urbanization  affects  precipitation  is  still
under  debate  due  to  the  involvement  of  various  dynamical
and thermodynamic processes.  Four major mechanisms are
proposed to explain the observed or simulated URE for cit-
ies  around  the  globe:  1)  UHI–thermal  perturbation  of  the
boundary  layer;  2)  enhanced convergence  due  to  increased
urban surface roughness; 3) modification of propagating pre-
cipitating systems by the urban landscape; 4) urban aerosol
effect  on  local  precipitation.  These  mechanisms  generally
occur simultaneously and interact with many other environ-
mental factors, impeding a comprehensive qualification and
quantification of URE and urging further studies to improve
our understanding of URE. 

8.2.    Uncertainties and challenges

Substantial scientific advances have been made in under-
standing  and  modeling  the  impacts  of  urbanization  on
regional and global weather and climate in the past few dec-
ades.  However,  important  uncertainties  and challenges  still
exist in the current knowledge, observations, and modeling
capabilities.  Our  current  understanding  of  urban  physical,
hydrological,  and biogeochemical  processes  and associated
interactions with other Earth system components is still lim-
ited. Most previous studies have focused on urban thermody-
namic processes and impacts on the mean state and trend of
temperature  and  precipitation,  whereas  few  efforts  have
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been put  into other  important  aspects  like urban hydrology
(e.g.,  groundwater,  flooding, drought,  water quality),  urban
biogeochemical cycle, spatial heterogeneity in urban morpho-
logy,  impact  of  detailed  urban  energy  and  building  struc-
tures, complex feedbacks to regional and large-scale hydrocli-
mate, urban vegetation, urban heat stress, and urban mitiga-
tion and adaption to climate change. It is worth noting that
some recent studies have begun to look at urbanization and
its  relationship  with  extreme  precipitation  and  heat  waves,
which is a good start for improving our understanding of the
mechanisms  involved.  The  uncertainties  and  insufficiency
in observations and modeling capabilities are important con-
tributors to the limitations in the current knowledge. 

8.2.1.    Limitations in measurements

The  types  of  datasets  used  to  study  the  urban  climate
have their own weaknesses. For example, land cover data con-
vey little information on surface geometry. The use of popula-
tion metadata may lead to biased results  because they may
not  be  representative  of  the  immediate  vicinity  of  the  sta-
tions.  In  addition,  cultural  and  regional  discrepancies  in
urban–rural  threshold  values  for  population  and  nighttime
lights further undermine their appropriateness for station clas-
sification (Stewart, 2011a). Although more and more measure-
ments  over  urban  areas  have  become  available,  measure-
ments  focusing  on  specific  urban  processes  are  still  scarce
or without enough spatiotemporal details.

There  are  numerous  regularly  maintained  meteorolo-
gical stations in urban areas around the world, but they have
some key limitations.

(1) Most observations are traditional, near-surface meas-
urements without vertical profiles across the urban column.
Vertical profiles are particularly useful in areas of tall build-
ings  or  significantly  varying building heights.  Some recent
efforts (e.g., Nadeau et al., 2009) expand the ability of atmo-
spheric profiling.

(2) Few urban stations include observations with long-
term records (e.g., precipitation and pollutants), limiting the
investigations  of  the  long-term  urbanization  impact  on
weather/climate, pollution, and extreme events.

(3)  Many  urban  stations  are  sited  for  easy  access  but
not  necessarily  to  capture  the  spatial  heterogeneity  of  the
entire urban region. For instance, Peterson (2003) found no
statistically significant difference between temperature meas-
urements from urban and rural weather stations in the contigu-
ous  US  at  the  annual  scale,  which  he  postulated  was
because urban stations were more likely in urban parks, not
over warmer industrial regions.

(4) Traditional urban measurements only include a few
common meteorological variables (e.g., temperature, precipit-
ation, and humidity) often without a full suite of other comple-
mentary observations (e.g., air pollutants and urban-bound-
ary layer exchange flux), which makes a better understand-
ing of urban-climate/weather/pollution interactions and feed-
backs particularly challenging.

(5)  Recently,  some new urban observations  (e.g.,  lidar
and aircraft campaign) are becoming available, but they are

still limited in terms of spatiotemporal coverage. Compared
with ground-based measurements, satellite observations are
especially useful due to the large spatial coverage, but often
they do not  have  sufficient  high  spatial  resolution  or  long-
term records for urban studies. The challenges and uncertain-
ties  in observations also partially limit  the improvement  of
urban modeling capabilities.

(6) Time-space completeness:  While in situ,  stationary
measurements  inform  us  on  temporal  variability,  mobile
observations  and  polar  orbiting  satellites  contribute  spatial
information from local to regional scales. Geostationary satel-
lites and crowd sourcing approaches provide optimal observa-
tions at both spatial and temporal scales. However, geostation-
ary satellites can provide observations of SUHI only, while
crowd  sourcing  approaches  provide  observations  of  CUHI
only.

(7)  When  dealing  with  in  situ  observations,  another
major limitation has been consistency in the choice of urban
and rural weather stations and their placements when trying
to  quantify  the  CUHI  (Stewart,  2011a).  Stewart  (2011b)
provided a systematic  critique of  the literature and sugges-
ted  that  approximately  half  of  the  reported  CUHI  mag-
nitudes  lacked robustness.  Many studies  do  not  control  for
weather  factors  and  do  not  provide  sufficient  metadata
about  the  instrumentation  and  field  characteristics  during
the study period, thus indicating poor scientific practice. In
the  same  vein,  Peterson  and  Owen  (2005)  emphasized  the
importance  of  the  metadata  used  in  UHI  studies.  Stewart
and  Oke  (2012)  created  the  LCZ classification  framework,
which was designed to standardize the description of observa-
tion sites and thereby ease the process of station selection in
UHI studies.

(8)  The  lack  of  metadata  for  in  situ  stations  is  even
more apparent for crowd sourced data (Muller et al., 2015).
Many  private  weather  stations  do  not  include  radiation
shields  in  the  default  sensor  configuration  (Venter  et  al.,
2021).  All  else  remaining  equal,  the  lack  of  a  radiation
shield would cause sensors  to  overestimate air  temperature
and  underestimate  relative  humidity  (Da  Cunha,  2015).
Although  quality  control  procedures  have  been  developed
for  some  of  these  crowd  sourced  datasets,  particularly  for
air temperature, they generally rely on statistical tests and can-
not  account  for  systematic  biases  due  to  the  lack  of  radi-
ation shields (Napoly et  al.,  2018).  Moreover,  these statist-
ical tests are meant to improve estimates of overall air temper-
ature, not the urban–rural differential in air temperature (or
CUHI), which is a much smaller signal.

(9) Since mobile measurements do not necessarily take
simultaneous  measurements  at  multiple  points,  the  tem-
poral  variation  of  temperature  needs  to  be  accounted  for
when  using  them  to  estimate  the  spatial  patterns  of  CUHI
(Stewart,  2011a).  Moreover,  measurements  using  sensors
mounted  on  vehicles  are  restricted  to  ambient  temperature
over roads. This issue is mitigated somewhat when using met-
eorological sensors in smart devices, which can also be act-
ive  over  urban  non-road  surfaces.  However,  uncertainties

JUNE 2022 QIAN ET AL. 837

 

  



arise from contamination by radiated body heat, though this
may be frequently intended (Nazarian et al., 2021).

(10) Similarly, there are several uncertainties in remote
estimates of the SUHI, and multiple methods have been pro-
posed to estimate the SUHI intensity at various scales (Rozen-
feld  et  al.,  2008; Peng  et  al.,  2012; Li  et  al.,  2018a;
Chakraborty and Lee, 2019; Zhou et al., 2019; Chakraborty
et al., 2021b). How to define the rural background temperat-
ure has been a point of contention in the literature (Martin-
Vide et  al.,  2015; Zhang et  al.,  2019a).  In  many cases,  the
rural  background is  defined using a constant  buffer  around
the  urban  boundary  (Clinton  and  Gong,  2013).  More
recently, Chakraborty et al. (2021a) defined the rural refer-
ence using a normalized buffer weighted by the area of the
urban cluster.  However,  studies  have  shown that  there  is  a
footprint  of  the  SUHI  that  can  extend  well  into  these  buf-
fers (Zhou et al.,  2015a; Yang et al.,  2019b). This is relev-
ant because, due to its traditional definition, the SUHI intens-
ity  is  modulated  by  changes  in  both  urban  and  rural  land
cover  (Chakraborty  et  al.,  2017; Kumar  et  al.,  2017; Mar-
tilli et al., 2020; Chakraborty et al., 2021a). Among many oth-
ers, Chakraborty and Lee (2019) have argued for the use of

physical  urban clusters  when defining the  SUHI instead of
the administrative boundaries of cities. However, this solu-
tion is not trivial to implement. Even with the availability of
several  global  urban  extent  datasets  (Zhou  et  al.,  2015b;
Esch et al.,  2017; Melchiorri et al.,  2018; Li et al.,  2020a),
an  order  of  magnitude  difference  has  been  seen  between
them (Potere and Schneider, 2007).

(11)  The  methods  of  temporal  compositing  and  LST-
retrieval algorithm used to derive the SUHI have also both
been  shown  to  influence  the  estimates  (Hu  and  Brunsell,
2013; Yao et al., 2020; Chakraborty et al., 2020). Benz et al.
(2021) recently derived global anomalies in LST due to urban-
ization  on  continuous  surfaces  rather  than  by  using  pre-
defined  urban  geometries,  though  this  definition  makes  it
harder to compare the LST of adjacent pixels. On a more fun-
damental  note,  LST-retrieval  methods  are  constrained  by
assumptions of surface emissivity (ε) since LST and ε can-
not  be  simultaneously  solved  for  using  analytical  methods
(Dash  et  al.,  2002).  Methods  used  to  prescribe ε are  fre-
quently used over urban areas even though the original empir-
ical  methods  were  intended  for  natural  surfaces
(Chakraborty et al.,  2021b). Estimating the bulk ε over cit-

 

 

Fig. 9. Schematic picture of urban impact on weather and climate.
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ies is confounded by several factors, from the variability in
building material to the presence of urban vegetation to sur-
face  morphology  (Voogt  and  Oke,  1998).  Thermal  aniso-
tropy due to the vertical structure of urban areas also contrib-
utes  to  large  uncertainties  in  satellite-observed  LST  and
SUHI (Hu et al., 2016). As a general note, satellite-derived
LST and SUHI are only valid for clear-sky conditions. 

8.2.2.    Uncertainties in modeling

Many urban parameterizations  and their  coupling with
weather/climate  models  have  been  developed  for  various
applications in the past decades, and they are generally able
to  capture  the  major  surface–atmosphere  exchange  pro-
cesses  in  urban areas.  However,  important  urban modeling
challenges remain.

(1) Most existing urban models only represent the thermo-
dynamic  and  dynamical  effects  of  buildings  on  the  turbu-
lent fluxes and mean flows, whereas few include the expli-
cit  treatment  of  urban  vegetation  and  its  interactions  with
buildings and street canyons (Lee et al., 2016). The lack of
urban vegetation, which plays an important role in modulat-
ing urban radiation, heat fluxes, and the hydrological cycle,
could lead to uncertainties in urban climate/weather model-
ing.

(2) Uncertainties also exist in various urban model para-
meters (Chen et al., 2021), including those related to anthropo-
genic heat (e.g., air conditioning; De Munck et al., 2013; Xu
et  al.,  2018),  landscape  irrigation,  building  wall  function
(determining indoor–outdoor heat exchange), and urban spa-
tial heterogeneity (e.g., building/vegetation horizontal and ver-

tical distribution). Recent efforts in developing high-resolu-
tion  urban-model  parameters  such  as  LCZ  (Stewart  et  al.,
2014)  and  WUDAPT (Ching  et  al.,  2019)  are  an  excellent
step forward. However, many of the critical urban morpholo-
gical parameters are not well represented for developing cit-
ies in these models (Sun et al., 2021), which is an important
area for future research.

(3)  Many  important  urban  processes  and  associated
mutual interactions are still missing in most models, such as
urban hydrology and inundation, biogeochemistry, and inter-
actions between pollution and hydroclimate, which are key
to  improved water  resource  management  and public  health
maintenance.  An  integrated  urban  system  model  will
include  many  processes  associated  with  natural  earth  sys-
tem and human activities and their interactions (Fig. 10).

(4) As urban modeling is applied to multiple scales in dif-
ferent applications,  the scale-dependence nature of existing
urban parameterizations has yet to be explored.

(5)  The  coupling  of  urban  models  with  mesoscale  or
global  weather/climate  models  poses  another  challenge,
where efficient techniques are needed to optimize the integra-
tion  of  detailed  3D  urban-surface  heterogeneity  and  large-
scale  boundary  layer  at  coarse  resolution.  The  coupling
between urban atmosphere and its surrounding rural counter-
part  is  also  critical,  and  their  uncertainties  are  often
entangled with each other. The compatibility of urban phys-
ics with other model physics (particularly surface and bound-
ary layer physics) during coupling could also introduce uncer-
tainty.

(6)  Comprehensive  urban  model  evaluation  remains  a

 

 

Fig. 10. A schematic figure of an integrated urban system model.
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challenge,  partially  due  to  the  lack  of  necessary  measure-
ments. Existing urban model assessments are limited in spe-
cific areas and applications, which leave questions about the
applicability of these models. 

8.2.3.    Model–observation integration

Urban observational and modeling communities have tra-
ditionally  lacked  sufficient  communications  and  collabora-
tions,  which  prevents  an  improved  understanding  in  this
field.  Discussions  between  scientists  focusing  on  measure-
ments and modeling can offer mutual benefits. For example,
modeling  studies  can  provide  information  for  urban  hot-
spots  and  potentially  best  places  to  employ  measurements,
while measurements can guide the development and improve-
ment of urban model parameterizations. Better observation–
model integration is needed to make progress in urban stud-
ies. 

8.2.4.    Researchers–stakeholder  communication  and
crowd sourcing campaigns/public participation

Finally,  a  lack  of  connections  between  end  users  and
researchers  also  slows  down the  progress  in  urban  studies.
End  users  and  stakeholders  often  can  provide  important
information  regarding  the  urgent  direction  and  application
of  urban  investigations,  while  the  scientific  community
offers  guidance  for  users  to  better  tackle  urban  impacts  on
public health and adaptation to extreme weather. Without a
mutual understanding from both groups, the effectiveness of
urban studies will be significantly reduced. Currently, find-
ing an effective platform or framework for a close collabora-
tion  between  end  users  and  the  scientific  community
remains  a  challenge,  but  efforts  are  being  made  along  this
line.  In  the  future,  co-production  of  knowledge  that  takes
into account the perspectives of the end users would be relev-
ant to effective design of urban heat mitigation strategies 

8.3.    Recommendation  of  future  research  priorities  and
directions

Some  thoughts  about  future  urban  research  priorities
were  identified  in  Chen  et  al.  (2012)  and  Sharma  et  al.
(2020).  Hu et  al.  (2020) used big data  analytics  to  identify
emerging  fields  in  urban  climatology.  Here,  we  provide  a
short summary of these findings and our perspectives regard-
ing future research directions and priorities.

(1) Establish a coordinated network of long-term compre-
hensive urban observations

Improving knowledge of different urban processes, pa-
rticularly  their  interactions  and  feedbacks,  requires  urban
measurements  to  have  relatively  long-term  (e.g.,  multiple
years that allow a climatological signal to emerge from back-
ground noise) records and be well characterized in terms of
meteorology,  air  pollution,  and  biogeochemical  cycles.
Such long-term comprehensive urban measurements can be
built  on  existing  urban  observations  and  networks.  Areas
that  are  associated  with  strong  urban  impact  and  interac-
tions  with  weather,  climate,  and  pollution  (i.e.,  urban  hot-
spots),  or  urban  regions  that  are  historically  under-studied

should  be  prioritized  for  future  measurements.  It  is  also
important to leverage aircraft campaigns and satellite observa-
tions along with ground-based measurements, which can com-
plement  site  measurements  by  offering  global  and  large-
scale constraints for urban processes.

(2)  Synthesize,  quality  control,  and  publicize  existing
urban datasets

Advancing  process-based  urban  knowledge  requires
accessible standardized data across different sites and quanti-
fication of  data uncertainty.  Although a substantial  volume
of urban data has been generated by previous observational
studies, the data often go through different data quality con-
trol  procedures,  are  scattered  across  different  platforms,  or
are  not  accessible  online.  Future  efforts  are  needed  to  col-
lect and synthesize existing urban datasets, conduct consist-
ent data quality control and uncertainty quantification proced-
ures  following  a  standard  data  protocol  (e.g.,  data  format-
ting,  filtering,  and  correction),  and  make  the  datasets  pub-
licly available with sufficient metadata. Crowdsourced meas-
urements,  both  from  private  weather  stations  and  smart
devices, can contribute to better monitoring of urban areas,
though there is much work to be done to establish quality con-
trol procedures for these emerging data sources.

(3) Reduce uncertainties in cross-scale modeling of key
urban processes and coupling with climate models

Several  key  urban  processes  and  components,  like
urban  hydrology  and  vegetation,  and  their  interactions  and
feedbacks to urban weather and climate are still missing or
simplistic  in  current  models.  Improving  the  description  of
urban  landscapes  and  urban  model  parameters  are  import-
ant  for  mitigating  urban  modeling  uncertainties.  Develop-
ing  or  improving  scale-aware  urban  parameterizations  will
also  be  helpful  to  more  accurately  predict  urban  impacts
across scales. In the last few years, several attempts at incor-
porating vegetation and hydrology in urban canopy models
have shown promising results (Lee and Park, 2008; Yang et
al.,  2015; Ryu  et  al.,  2016a; Liu  et  al.,  2017; Meili  et  al.,
2020; Mussetti et al., 2020; Krayenhoff et al., 2020; Redon
et  al.,  2020; Li  and  Liu,  2021).  Since  model  selection
depends heavily on science and application purposes, the con-
tinued development of simple urban models that fit specific
engineering  and  urban-planning  applications  should  be
encouraged.

(4)  Evaluate  coupled  atmosphere–urban  modeling  sys-
tems for extreme conditions

Most urban models coupled to weather and climate mod-
els were developed and evaluated with measurements of cli-
matological conditions and may not work for extreme condi-
tions.  Therefore,  a  systematic  assessment  of  these  coupled
models  in  extreme  conditions  (extreme  heat,  hurricane,
extreme precipitation, etc.) is necessary. When trying to isol-
ate the urban signal, it is also important to specifically evalu-
ate the magnitude of the signal (i.e., the difference in the vari-
able of interest in the urban area and that in its background
climate) instead of evaluating the overall variables (as in, eval-
uating the UHI versus the urban temperature).
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(5) Better integration of urban observations and model-
ing

Future  efforts  on  better  combining  urban  measure-
ments  and  models  to  facilitate  process-level  understanding
of urban physics, chemistry, and impacts on other earth sys-
tem components are needed. For example, current urban mod-
els are associated with nontrivial uncertainties. How to lever-
age suitable measurements to pinpoint urban model deficien-
cies  and  reduce  uncertainties  in  related  urban  parameters
and physics will be extremely helpful. The modeling groups
also need to inform observational groups with specific require-
ments  to  facilitate  the  model–observation  synthesis.  Over-
all, close collaborations between urban modeling and meas-
urement  groups  are  strongly  encouraged,  which  will  help
advance  the  knowledge  transfer  between  observations  and
urban modeling. Satellite observations can be particularly use-
ful  in  this  regard  since  they  provide  spatially  continuous
estimates of the radiative and thermodynamic properties of
the urban surface, which are currently poorly constrained in
models.

(6) Application of machine learning (ML) and data assim-
ilation techniques

Future  studies  can adopt  machine learning (ML) as  an
efficient tool for studying and understanding the complexit-
ies of the urban environment. With the data currently avail-
able  from  satellites,  existing  weather  stations,  and  crowd-
sourced  measurements,  these  methods  can  be  leveraged  to
emulate  the  spatial  variability  of  the  urban  environment,
detect  relevant  morphological  features  within cities,  isolate
the urban contribution to local meteorological variables, and
classify  urban LULC into further  subcategories.  Moreover,
ML can be combined with existing physics-based models to
both  downscale  model  results  at  coarse  resolutions  and
develop  new  data-driven  parameterizations  to  capture  cur-
rently  unresolved  urban  interactions.  As  more  and  more
urban  observations  become  available,  urban  data  assimila-
tion is also a promising way to constrain estimates of urban
pollution,  weather,  and  climate.  Only  a  handful  of  studies
have  focused  on  urban-specific  data  assimilation,  which
should be explored more in the future. Given the large uncer-
tainties in urban-scale observations due to station inhomogen-
eities,  sampling  biases,  and  urban  surface  anisotropy,  ML
techniques  can  be  indispensable  tools  for  bias  correcting,
gap filling, and quality controlling these observations.

(7)  Facilitate  connections  and  collaborations  between
scientists and end users

Meaningful  collaborations  between  scientists  and  end
users (e.g., stakeholders and policymakers) can inspire new
research  needs  and  directions  and  lead  to  evidence-based
decision  making  related  to  urban  problems,  including  pub-
lic heath, climate adaptation, mitigation to extreme weather,
and urban water  and energy resource  management.  Mutual
understanding between scientists and end users is also benefi-
cial for developing or improving urban application tools and
ultimately  fostering  actionable  urban  science.  Thus,  plat-
forms and opportunities that promote connections between sci-

entists and end users are needed.
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