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ABSTRACT  29 

Freshwater ecosystems are not closed or sterile environments. They support complex and highly 30 

dynamic microbiological communities strongly structured by their local environment. Growing city 31 

populations and the process of urbanization is predicted to strongly alter freshwater environments. To 32 

determine the changes in freshwater microbial communities associated with urbanization, full-length 33 

16S rRNA gene PacBio sequencing was performed on DNA from surface water and sediments from 34 

five lakes and a wastewater treatment plant in the Berlin-Brandenburg region of Germany. Water 35 

samples exhibited highly environment specific bacterial communities with multiple genera showing 36 

clear urban signatures. We identified potential harmful bacterial groups that were strongly associated 37 

with environmental parameters specific to urban environments such as Clostridium, Neisseria, 38 

Streptococcus, Yersinia and the toxic cyanobacterial genus Microcystis. We demonstrate that 39 

urbanization can alter natural microbial communities in lakes and promote specific bacterial genera 40 

which include potential pathogens. Urbanization, creates favourable conditions for pathogens that 41 

might be introduced by sporadic events or shift their proportions within the ecosystem. Our findings 42 

are of global relevance representing a long-term health risk in urbanized waterbodies at a time of 43 

global increase in urbanization.   44 

 45 
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INTRODUCTION 54 

The process of urbanization leads to changes in land-cover and -use, hydrological systems, local 55 

climate and biodiversity [1]. Urbanization is predicted to continue to strongly increase over the 56 

coming decades [2, 3]. Expansion rates of urban land area are higher than or equal to population 57 

growth rates resulting in more expansive than compact urban growth [3]. While urban land area 58 

increased 58,000 km2 worldwide from 1970 to 2000, an increase of an average of 1,527,000 km2 urban 59 

land cover is predicted by 2030 [3]. Massive concentrations of people challenge freshwater hygiene 60 

and as a consequence human health [4–6]. Anthropogenic activities, such as introducing faecal 61 

bacteria into water systems, causing eutrophication and introducing other forms of pollution, have the 62 

potential to alter the natural microbial community composition of freshwater. This could create new 63 

communities that are favourable to proliferation of pathogens that enter water bodies sporadically, 64 

whereas natural communities may restrict pathogen growth [7]. For example, the increasing frequency 65 

and dominance of toxic cyanobacterial blooms and other pathogens are of particular concern since 66 

they directly affect human and animal health and are found to be associated with anthropogenic 67 

pollution resulting in eutrophication [5, 8, 9]. Yet, how and to what extent human activities impact the 68 

general microbial community structure of freshwater systems remains largely unknown [6, 10–13].  69 

Wastewater treatment plants (WWTPs) serve the principle function of maintaining water hygiene by 70 

reducing nutrients and pathogenic microorganisms [14–17]. However, they represent one of the major 71 

sources of environmental freshwater pollution including pathogenic microorganisms and antibiotic 72 

resistant microbes or pharmaceuticals. Wastewater effluents strongly contribute to the humanization of 73 

natural microbial communities, creating water communities that can “resemble” enteric bacterial 74 

communities [6, 13, 16]. Urban lakes that otherwise are not affected by treated wastewater, remain 75 

susceptible to anthropogenic influence associated with intense recreational activity and urban storm 76 

water inflow [18, 19]. Rural lakes, when not influenced by agricultural activities and other land-use, 77 

should exhibit natural bacterial communities, where most spatio-temporal variability may be in 78 

response to environmental factors such as pH, calcium carbonate and nutrient content, organic matter 79 

availability and temperature differences [18–23]. 80 
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Urbanization can cause multiple simultaneous disturbances of microbial communities, which in some 81 

cases, may favour the proliferation of pathogenic microbes. For example, human-introduced 82 

microplastics can serve as a preferential habitat for pathogens by enabling biofilm formation in 83 

freshwater [24, 25]. In addition, urban areas have higher temperatures than their rural surrounding 84 

landscapes, e.g. 4.6 °C difference in the mean air temperature in Beijing [26–28] and increasing water 85 

temperatures are known to stimulate growth of some pathogenic species [29–31]. Alterations in 86 

microbial communities that favour groups of bacteria containing pathogenic species increases the 87 

likelihood that such pathogens may emerge [31–33]. In urban areas, water can be easily contaminated 88 

with pathogens by humans and pets during recreational activity [34–36], wildlife [37, 38], storm 89 

water/runoffs [39–41], agriculture [5, 42] and wastewater effluent [17, 43, 44]. Although there are 90 

hints that lake trophy and anthropogenic activity drive microbial community composition and function 91 

[45], it remains unclear which bacterial phyla are indicative for increasing urbanization and hence are 92 

indicators for human health risks. 93 

Best practice for identifying pathogenic organisms in aquatic environments remains the utilisation of 94 

selective culture media, or molecular detection by qPCR targeting specific markers of pathogenicity 95 

[46, 47]. Such approaches are typically laborious, requiring multiple assays targeting distinct 96 

pathogens. Furthermore, these techniques presume a specific target and are not convenient, if one 97 

wants an overview of what bacteria are present. In contrast, while amplicon sequencing has been 98 

proposed as a more cost-effective method for profiling microbial communities for the presence of 99 

potentially pathogenic organisms, short-read sequencing often falls short of classification to a family 100 

or genus level [48]. Several studies have proposed specific primer pairs, or increasing the number of 101 

targeted variable regions [49] for bacterial community structure determination, but these suffer from 102 

the same pitfalls. Full-length sequencing of the entire 16S ribosomal RNA gene can provide a 103 

comprehensive profile of the entire microbial community with taxonomic resolution to the species 104 

level in many cases [48, 50]. 105 

To compare urban and rural bacterial communities we investigated five lakes and a wastewater 106 

treatment plant at four time points over one year in the Berlin-Brandenburg region. The Berlin-107 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.26.173328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173328


5 

 

Brandenburg area serves as a model region with steep gradients of urbanization from a densely 108 

populated and rapidly growing city (ca. 3.7 Mio. inhabitants) to a hinterland with one of the lowest 109 

population density in Germany (85 people per km2). Therefore, we expected a clear impact of 110 

increasing urbanization on microbial community structure of the studied aquatic systems greatly 111 

differing in anthropogenic influence. To improve the phylogenetic resolution and better characterize 112 

community composition, we sequenced the full-length 16S rRNA gene by high throughput long read 113 

sequencing on the PacBio Sequel I platform [51].  114 

 115 

MATERIALS AND METHODS 116 

Sampling 117 

Berlin, the capital of Germany was selected to study urban lakes and a wastewater treatment plant. 118 

Berlin is a metropole with an area of 891.1 km2 and 3.7 Mio inhabitants. In addition, a lake in the 119 

smaller city Feldberg in Mecklenburg-Vorpommern with 4,000 inhabitants was selected as another 120 

urban lake since it shows a pronounced anthropogenic impact due to previous wastewater input and 121 

thus is comparable to lakes in bigger cities. The rural lakes are located in a forested natural reserve 122 

area in Northern Brandenburg and have little anthropogenic impact, surrounded by only 1,200 123 

inhabitants in total. All lakes originate from the last ice age, but vary in their present environmental 124 

status. Characteristics of all five lakes and the wastewater treatment plant are shown in Suppl. Table 125 

S1. 126 

Surface water and sediment samples were taken every three months in 2016 from two (small lake 127 

‘Weißer See’) to three different locations in each lake of in total five lakes in Northeast Germany 128 

(Suppl. Fig. S1). Water was collected in 2 L bottles and filtered through 0.22 µm Sterivex® filters 129 

(EMD Millipore, Darmstadt, Germany) connected to a peristaltic pump (Model XX8200115 6-600 130 

with XX80EL004 head, EMD Millipore, Germany) to collect bacteria. In addition, the first centimetre 131 

of sediment was sampled using a plexiglas tube (length 50 cm, Ø 44 mm) and a ruler as a sediment 132 
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corer. After slicing the cores, samples were frozen immediately at -20°C until DNA extraction in the 133 

lab.  134 

Measurement of nutrients and dissolved organic carbon 135 

For measurement of orthophosphate, nitrate, nitrite, ammonium and dissolved organic carbon (DOC) 136 

200 mL water was filtered through 0.45 µm cellulose acetate filters (Sartorius Stedim Biotech GmbH, 137 

Göttingen, Germany) after pre-flushing. The filtrate was frozen at -20°C prior to analyses. Dissolved 138 

nutrients were analysed spectrophotometrically using a flow injection analyzer (FOSS, Hilleroed, 139 

Denmark), while DOC was analysed with a Shimadzu TOC-5050 total organic carbon analyser 140 

(Duisburg, Germany). All analyses were conducted according to Wetzel and Likens [52]. 141 

DNA extraction 142 

The QIAamp DNA mini kit (Qiagen, Hilden, Germany) was used for DNA extraction from Sterivex® 143 

filters (EMD Millipore, Darmstadt, Germany) following the protocol for tissue with some 144 

modifications. Prior to extraction the filters were cut into small pieces and placed into a 2 mL tube. 145 

After the addition of 200 µm low binding zirconium glass beads (OPS Diagnostics, NJ, USA) and 360 146 

µL of buffer ATL, the samples were vortexed for 5 min at 3,000 rpm with an Eppendorf MixMate® 147 

(Eppendorf, Hamburg, Germany). For lysis, 40 µL of proteinase K was added and incubated at 57°C 148 

for 1 h. Then, the samples were centrifuged for 1 min at 11,000 rpm and the supernatant was 149 

transferred to a new 2 mL tube. The extraction was then continued following the manufacturer’s 150 

protocol. DNA from sediment samples was extracted using the NucleoSpin® Soil kit (Macherey 151 

Nagel, Düren, Germany), according to the manufacturer’s instructions. 152 

Amplification of the full-length 16S rRNA genes 153 

For each sample a unique symmetric set of 16 bp barcodes designed by Pacific Biosciences (CA, 154 

USA) was coupled with the primers (27F: 5’-AGRGTTYGATYMTGGCTCAG-3’ and 1492R: 5’-155 

RGYTACCTTGTTACGACTT-3’). PCR was performed in a total volume of 25 µL containing 12.5 156 

µL MyFiTM Mix (Bioline, London, UK), 9.3 µL water, 0.7 µL of 20 mg mL-1 bovine serum albumin 157 

(New England Biolabs, MA, USA), 0.75 µL of each primer (10 µM) and 1 µL of DNA. Denaturation 158 
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occurred at the following steps: 95°C for 3 min, 25 cycles of 95°C for 30 s, 57°C for 30 s and 72°C for 159 

60 s with a final elongation step at 72°C for 3 min. The concentration and quality of 16S rRNA gene 160 

amplicons were measured using a TapeStation 4200 system with D5000 tapes and reagents (Agilent 161 

Technologies, CA, USA). Equimolar pools of samples were generated before sequencing.  162 

Library building, purification and sequencing 163 

Samples were purified with an Agencourt AMPure XP kit (Beckman Coulter, USA) and sequencing 164 

libraries including DNA damage repair, end-repair and ligation of hairpin adapters were built using the 165 

SMRTbell Template Prep Kit 1.0‐SPv3 following the instructions in the amplicon template protocol 166 

(Pacific Biosciences, USA). The Sequel Binding Kit 2.0 (Pacific Biosciences, USA) was used to bind 167 

DNA template libraries to the Sequel polymerase 2.0. The data were collected in a single Sequel 168 

SMRT Cell 1M v2 with 600 min movie time on the Sequel system I (Pacific Biosciences, USA). The 169 

Diffusion Loading mode was used in combination with a 5 pM on-plate loading concentration on the 170 

Sequel Sequencing Plate 2.0 (Pacific Biosciences, USA). The SMRT Analysis Software (Pacific 171 

Biosciences, USA) generated Circular Consensus Sequences (CCS) for each multiplexed sample that 172 

was used for further downstream analyses.  173 

Bioinformatics and statistics 174 

We obtained an average of 7 Gb total output per SMRT cell. The average CCS read length was 17 kb 175 

with a mean amplicon lengths of 1,500 bp. Circular consensus sequences (CCS) for each multiplexed 176 

sample were generated from the raw reads using the SMRT Analysis Software (Pacific Biosciences, 177 

USA) setting subhead length range to 1400-1600 and stringent accuracy to 0.999. Quality scores of the 178 

CCS were scaled with the function reformat.sh in bbmap (BBMap - Bushnell B. - 179 

sourceforge.net/projects/bbmap/). De-replicated and sorted sequences were de-noised by mean of the 180 

UNOISE3 algorithms built into USEARCH v11 [53]. A de-novo chimera detection step was 181 

implemented in the de-noising algorithm and also in the following OTU clustering step at 99% 182 

sequence similarity (best threshold that approximates species for full-length sequences; [54]). An OTU 183 

table (Suppl. Table S2) was generated mapping the CCS to the OTU centroid sequences and the 184 
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taxonomic classification was performed with SINA v1.6 against the SILVA reference database (SSU 185 

NR 99 v138) [55–57]. Downstream analyses were performed in R [58].  186 

Weighted correlation network analysis (WGCNA package  [59]) was carried out to identify modules 187 

of bacterial community OTUs associated with the presence of potential pathogenic taxa. Briefly, noisy 188 

signal from rare OTUs was removed from the OTU table retaining only OTUs which occurred with 10 189 

or more sequences in at least 3 samples. An adjacency matrix was computed using the function 190 

adjacency on the centred log-ratio transformed OTU sequence counts (clr function, package 191 

compositions;  [60]) to ensure sub-compositional coherence. The function infers OTUs connectivity 192 

by calculating an OTU similarity matrix (based on Pearson correlation) and apply soft thresh-holding 193 

to empathize the strongest correlations. The soft threshold value 6 was picked with the function 194 

pickSoftThreshold as it was the smallest values achieving a R2 > 0.9 for a scale-free topology fit. 195 

Topological overlap dissimilarity was calculated with the function TOMdist on the adjacency matrix 196 

and fed into a hierarchical clustering (hclust function, ward.D2 agglomeration method). OTU modules 197 

were automatically identified on the clustering by mean of the function cutreeDynamic to identify 198 

branch boundaries for modules (deepSplit = 4 and minClusterSize = 20). The OTU modules were 199 

summarized by their first principal component (function moduleEigengenes) which was correlated 200 

against vectors of relative abundance of the potential pathogenic groups. The latter were obtained 201 

summing the sequence counts of the OTUs classified as belonging to either one of the potential 202 

pathogenic taxa across all samples; these relative abundance vectors were then centred log-ratio 203 

transformed. Correlations and p-values were obtained from a univariate regression model between 204 

each module principal component and each vector of potential pathogens and results were visualized 205 

as heatmaps using the package ComplexHeatmap [61]. 206 

For the ternary plots, the probability of the presence of each OTU in the different habitats was 207 

calculated with the function multipatt (func = "IndVal.g", duleg = F, max.order = 3; package vegan;  208 

[62]) and only OTUs with a p-value < 0.05 from a permutation test (n=1000) were displayed. Ternary 209 

plots were plotted using the function ggtern (package ggtern; [63]).  210 
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Non-metric multidimensional scaling analyses were performed by using package vegan in R version 211 

3.5 and Bray-Curtis as dissimilarity index. Constrained correspondence analysis (CCA) was also 212 

performed in R using the package vegan and the function cca followed by an one-way analysis of 213 

variance (ANOVA) with the function anova and ‘n perm=999’ [58, 62, 64].  214 

 215 

RESULTS 216 

Between and among lake bacterial community heterogeneity  217 

Sediment samples had a significantly higher bacterial diversity than water samples with an average 218 

Shannon-Wiener index of 5.08 for water and 7.35 for sediment samples. The five most abundant phyla 219 

in the sediment samples were Gammaproteobacteria (34.1 ± 7.1%), Bacteroidota (14.4 ± 3.7%), 220 

Cyanobacteria (9.8 ± 6.2%), Alphaproteobacteria (7.6 ± 3.3%) and Verrucomicrobiota (6.8 ± 3.1%). 221 

Water samples were dominated by Gammaproteobacteria (29.7 ± 10.8%), Cyanobacteria (18.9 ± 222 

17.1%), Bacteroidota (11.5 ± 5.3%), Actinobacteriota (10.1 ± 7.4%) and Alphaproteobacteria (9.8 ± 223 

4.3%). We defined less, but more abundant OTUs in surface water than in sediment samples. 224 

Dominant OTUs (average relative abundance >1.0% in surface water and WWTP, and >0.1% in 225 

sediment samples) are listed in Suppl. Table S3. 226 

Non-metric multidimensional scaling (NMDS) analyses of water and sediment samples showed two 227 

main clusters in each lake: water and sediment. Furthermore, water samples showed a higher variance 228 

than the sediment samples, which were more similar to each other. Within the water samples we 229 

observed a clustering of samples by season, whereas the sediment samples revealed either random or 230 

spatial patterns (Fig. 1).  231 

A constrained correspondence analysis of the surface water samples in combination with an analysis 232 

of variance (ANOVA) showed that pH, temperature, orthophosphate, nitrate, nitrite, ammonium and 233 

dissolved organic carbon (DOC) concentration had a significant (all p≤0.001) correlation with the 234 

composition of the lake bacterial communities (Fig. 2a). Temperature (χ2 = 0.4425) and the 235 

concentration of orthophosphate (χ2 = 0.4026) had the strongest impact. Cyanobacteria were positively 236 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.26.173328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173328


10 

 

correlated with DOC, Alphaproteobacteria, Bacteroidota and Verrucomicrobiota with temperature, 237 

Actinobacteriota, Firmicutes and Gammaproteobacteria with orthophosphate and Acidobacteriota, 238 

Chloroflexi and Planctomycetota with nitrogen-based nutrients (Fig. 2b). Only temperature (p=0.04, χ2 
239 

=2.61), orthophosphate (p=0.03, χ2 =2.90), nitrate (p=0.002, χ2 =5.99) and nitrite (p=0.04, χ2 =2.58) 240 

were statistically significant in correlation with the bacterial phyla. 241 

Habitat-specific bacterial communities in rural and urban freshwater habitats 242 

Fig. 3 shows the relative abundances of the bacterial phyla contributing more than 1.0% to the 243 

bacterial community and the differences between wastewater, urban and rural lakes. 244 

Lakes were characterized by significant higher fractions of Actinobacteriota, Alphaproteobacteria, 245 

Planctomycetota and Verrucomicrobiota, while wastewater had significant higher levels of Firmicutes 246 

and Gammaproteobacteria (without the order Burkholderiales). Urban lakes differed significantly from 247 

rural lakes having higher relative abundance of Actinobacteria, Burholderiales and Firmicutes.  248 

Among all defined OTUs from water, sediment and wastewater samples (total = 112,133 OTUs) only 249 

1.1% were shared between all three environments, i.e. wastewater, urban and rural lakes (Fig. 4). 250 

10.2% of OTUs were unique to wastewater, 38.4% were unique to urban lakes and 30.0% were unique 251 

to rural lakes. Wastewater shared 0.9% of the OTUs with urban lakes and 0.3% with rural lakes, 252 

respectively. Urban and rural lakes shared 19.0% of OTUs. The percentages of OTUs unique to the 253 

respective lakes ranged from 8.9-16.2%. Among all lakes 53.9% of OTUs were unique to sediment 254 

and 20.3% to surface water.   255 

The ternary plots in Fig. 5a show the distribution of all OTUs of a certain bacterial taxon in the three 256 

different habitats: rural lake water, urban lake water and wastewater. We excluded the sediment from 257 

this analysis as we only had water samples from the wastewater treatment plant. Each dot indicates an 258 

OTU and the position in the ternary plot reflects its percentage presence in each of the three habitats. 259 

The percentages of the number of OTUs for each and shared habitats are shown in Fig. 5b.  260 

Wastewater and rural lakes shared only very few OTUs. Most OTUs were shared between rural and 261 

urban lakes except for the phylum Firmicutes that showed the highest prevalence of OTUs unique to 262 
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wastewater followed by OTUs shared by wastewater and urban lakes such as OTUs belonging to the 263 

genera Acinetobacter, Bacteroides, Bifidobacterium and Enterococcus. The Actinobacteriota and 264 

Gammaproteobacteria showed high OTU numbers in urban waters and shared between urban and rural 265 

lake water. All bacterial phyla showed higher numbers of OTUs in urban lake water than in rural lake 266 

water alone. An indicator species analysis (ISA) identified in total ~2,600 OTUs as significant 267 

indicators for urban waters (urban lakes and wastewater) including Acinetobacter 268 

(Gammaproteobacteria), Aeromonas (Gammaproteobacteria), Bacteroides (Bacteroidota), 269 

Bifidobacterium (Actinobacteriota), Blautia (Firmicutes), Clostridium sensu-stricto (Firmicutes), 270 

Comamonas (Burkholderiales), Enterococcus (Firmicutes), Lachnospira (Firmicutes), Paracoccus 271 

(Alphaproteobacteria) and  Uruburuella (Burkholderiales). 272 

Bacterial genera including (known) potential pathogenic species 273 

The prevalence of the most relevant genera, which include species that are known human pathogens 274 

are shown in Fig. 6a. A weighted correlation network analyses (WGCNA) identified 13 bacterial sub-275 

communities that were consistent throughout the sampled environments and significantly correlated 276 

with bacterial genera containing potential pathogenic species (Fig. 6b). Some of those genera were 277 

correlated significantly and positively with sub-communities that were only defined for urban waters 278 

such as Aeromonas, Alistipes, Clostridium (sensu-stricto), Enterococcus, Escherichia/Shigella 279 

Staphylococcus, Streptococcus and Yersinia. We could not find any significant correlation between 280 

potential pathogenic groups and sub-communities that were only present in rural waters.  281 

A CCA analysis (Fig. 7) shows those potential pathogenic genera and how they were correlated with 282 

the measured environmental parameters. ANOVA revealed that all parameters, except nitrite 283 

concentration, were significant. While Enterococcus was not correlated with any of the measured 284 

environmental factors, other groups showed clear correlations such as Microcystis with 285 

orthophosphate, Legionella with DOC and ammonium, Rickettsia with nitrite, Neisseria with nitrate 286 

and Peptoclostridium with temperature. 287 

 288 
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DISCUSSION 289 

Urbanisation represents a multifaceted stressor that impacts the quality of freshwater systems, 290 

promoting eutrophication [8, 65] and contributing to the accumulation of emerging pollutants [9, 66]. 291 

Eutrophication has long been recognised as a major driver of microbial community composition with 292 

high loads of organic matter leading to increased bacterial activity and creating opportunities for the 293 

proliferation of copiotrophs, including many pathogens [67, 68]. Eutrophication however, is not 294 

strictly an urban problem. Rural freshwater, particularly in close proximity to agricultural lands, can 295 

also be affected. However, our results revealed significant differences in the microbial community 296 

composition of sediments and water from rural and urban lakes, and wastewater. Sampled urban lakes, 297 

though not directly connected to wastewater effluents, showed a higher similarity to wastewater 298 

samples than rural lakes. Sewage generally reflects the human faecal microbiome [13], suggesting 299 

urbanization might have led to a humanization of freshwater bacterial communities [6]. In addition, it 300 

is known that bathers release bacteria from the skin during recreational water activity [34, 35] and 301 

animal or human urine could also be a source of bacterial contamination [69, 70].  302 

The presence of habitat specific bacterial communities was supported for wastewater, urban and 303 

rural lake water. The differences between rural and urban lake communities appear to be mainly 304 

driven by the prevalence of specific dissolved nutrients (Fig. 2). Increased availability of 305 

orthophosphate and ammonium coincided with an increase in the relative abundance (Fig. 3) and 306 

diversity (Fig. 5a) of most bacterial phyla in urban lakes, particularly the Actinobacteriota, 307 

Alphaproteobacteria, Bacteroidota, Firmicutes and Gammaproteobacteria. 308 

Actinobacteriota and Alphaproteobacteria are typically oligotrophic members of freshwater 309 

systems, notably represented by the genera Planktophila (acI) and Fonsibacter (LD12), respectively. 310 

These two groups alone can account for up to 50% of the bacterial community composition in lakes 311 

outside of periods of high phytoplankton biomass [71, 72]. In addition, there is a high capacity for 312 

organic matter utilisation within Actinobacteriota and Alphaproteobacteria, in particular by the genera 313 

Planktoluna (acIV) and Sphingomonas, respectively. A greater abundance of these latter phyla in 314 

urban landscapes reflects the enrichment of these copiotrophic taxa at the expense of other 315 
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oligotrophic taxa. A clear indicator of anthropogenic impacts in the phylum Actinobacteriota is the 316 

genus Bifidobacterium [73] that was only present in urban water.  317 

Bacteroidota are well established components of freshwater systems [18]. They perform important 318 

roles in the degradation of organic matter, in particular complex biopolymers [18, 74]. Typically, in 319 

freshwater systems Bacteroidota dominance and diversity are driven by increasing concentrations of 320 

either autochthonous, in the form of algal or zooplankton biomass, or allochthonous, in the form of 321 

terrestrial detritus, particulate organic matter. A recent study demonstrated that Bacteroidota strains 322 

are highly specific to individual polymeric substrates [75], suggesting that diversity of Bacteroidota 323 

scales with diversity of the organic matter pool. A higher diversity of Bacteroidota in urban lakes 324 

would be supportive of this. The high terrestrial-aquatic coupling and dynamic nature of urban 325 

landscapes would imply a greater diversity of organic matter including faecal contamination [48, 76, 326 

77] than in the rural lakes where cyanobacterial derived autochthonous organic matter is dominant. 327 

The genus Bacteroides, a known faecal contamination indicator [78, 79] showing a clear urban 328 

signature in our study, but also Prevotellacae, Rikenellaceae, Tannerellaceae and Weeksellaceae were 329 

significantly enriched in urban waters. In rural lakes the families Chitinophagaceae, Flavobacteriaceae, 330 

Saprospiraceae and Spirosomaceae, well-known freshwater taxa and decomposers of complex carbon 331 

sources such as from phytoplankton [18, 80, 81], were enriched. 332 

The Firmicutes, usually not abundant in lake water [18], but in faeces and wastewater [13, 17, 48, 82] 333 

were highly abundant in the wastewater samples, particularly the inflow samples and showed an 334 

enrichment in urban lakes, but not in rural lakes. The enrichment in urban lakes is explained by an 335 

increase of typical human derived groups such as Enterococcaceae, Eubacteriaceae, 336 

Peptostreptococcaceae, Ruminococcaceae, Streptococcaceae and Veillonellaceae. This “human 337 

footprint” also includes potential pathogens such as from the genera Bacillus, Clostridium, 338 

Peptoclostridium and Staphylococcus, Streptococcus. Furthermore, toxigenic C. difficile, a well-339 

known human pathogen, was isolated previously from one sample obtained in summer from the urban 340 

lake “Weißer See” [46]. This supports the hypothesis that urbanization creates favourable bacterial 341 
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communities for the growth of potential pathogens and thus, constitutes a higher risk for waterborne or 342 

–transmitted infections.  343 

The Gammaproteobacteria, occur at low abundance in natural freshwater lakes [18, 19, 83]. The 344 

increased relative abundance of Gammproteobacteria in urban and rural lakes was due to the 345 

abundance of members of Burkholderiaceae, Comamonadaceae and Methylophilaceae, all belonging 346 

to the order Burkholderiales. Although the relative abundance of Gammaproteobacteria as a whole did 347 

not increase in urban lakes, clear urban lake signatures were observed, represented by 348 

Aeromonadaceae, Enterobacteriaceae, Moraxellaceae, Pseudomonadaceae, Succinivibrionaceae, 349 

Xanthomonadaceae and Yersiniaceae that were enriched in urban water. These bacterial families 350 

include potential human pathogens such as Aeromonas hydrophila, Pseudomonas aeruginosa and 351 

Yersinia enterocolitica and thus, their enrichment in our urban lakes constitutes a potential health risk. 352 

A positive correlation of Gammaproteobacteria with lake eutrophication was recently observed [45] 353 

and it has been shown that Gammaproteobacteria grow faster than the average lake bacterioplankton, 354 

particularly when nitrogen and phosphorus levels are high [84, 85]. The CCA (Fig. 2b) showed a clear 355 

positive correlation of Gammaproteobacteria with orthophosphate and to a lesser degree, nitrogen-356 

based nutrients. Even if we cannot distinguish between urbanization or eutrophication as driver for this 357 

enrichment, urbanization also leads to an unavoidable eutrophication of environmental water [86, 87] 358 

and hence, could lead indirectly to favourable conditions for those potential pathogens. In addition,  359 

Aeromonadaceae and Pseudomonadaceae, in particular, have been identified as the most likely 360 

reservoirs for antibiotics resistance genes in aquatic environments and hence, constitute a further 361 

potential threat to human health by the ability to spread these genes to harmful microorganisms [88–362 

90]. 363 

Urban lakes contained a higher proportion of taxa, which include potentially pathogenic organisms. 364 

Urbanization may favour taxa that include potential pathogens indicating that if pathogenic bacteria 365 

contaminate urban waters, they will find a favourable environment in which to proliferate [5, 6, 34, 46, 366 

91]. We found statistically significant correlations between the occurrence of some potential 367 

pathogenic groups and sets of bacterial sub-communities of which four were only present in urban 368 
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water. These sub-communities were strongly correlated with the presence of potential pathogenic 369 

genera such as Acinetobacter, Aeromonas, Alistipes, Clostridium (sensu-stricto), Klebsiella, Neisseria, 370 

Staphylococcus, Streptococcus and Yersinia suggesting that urbanization favours the presence of these 371 

potential pathogenic groups. Nevertheless, while the occurrence of pathogenic species was rare in this 372 

study the enrichment of the taxonomic groups to which they belong was constant among all urban 373 

samples. This could favour stochastic and sudden outbreaks of pathogenic bacteria in urban settings 374 

that may be less likely to occur in rural settings, where environmental conditions are less favourable 375 

for such copiotrophic, pathogenic bacteria. The potential  health risk of urban water bacterial 376 

communities may need to be accounted for in future urban lake management [92, 93]. Furthermore, 377 

potential pathogenic groups are also present in coastal marine waters in the proximity of wastewater 378 

output confirming urbanization as health risk for waterborne or –transmitted diseases [48]. 379 

Within lakes, bacterial communities were more stable over time in the sediment than in surface water. 380 

Sediment samples showed a higher bacterial diversity than in the water column. Sediment seems to be 381 

more stable in environmental variables and might have a protective effect on microbes against 382 

environmental changes, UV radiation, drifting and grazing. Furthermore, sediment grains can be used 383 

as a substrate for microbial biofilms, which may enhance microbial stability and persistence in the 384 

system [39, 94, 95]. Some bacterial groups that include potential pathogens were also present in 385 

sediment samples such as Acinetobacter, Aeromonas, Legionella, Leptospira, Streptococcus and 386 

Treponema. Toxigenic C. difficile was isolated from the sediment of urban lake ‘Weißer See’ [46] and 387 

other studies demonstrated an extended persistence of faecal indicator bacteria such as Enterococcus 388 

associated with sediment representing a reservoir function [94, 95].  389 

In conclusion, increased urbanization will accelerate the humanization of aquatic bacterial 390 

communities. A better understanding of the ecological and functional consequences of urbanization 391 

and the roles of habitat specific bacterial groups is needed to mitigate potential health impacts of urban 392 

bacterial communities. We identified specific taxa that can exploit niches in urban water (i.e. human-393 

derived bacterial groups such as Alistipes, Bifidobacterium, Bacteroides, Enterococcus, Streptococcus 394 

and Yersinia), and demonstrated that specific environmental conditions and the presence of specific 395 
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sub-communities of bacteria represent risk factors for the emergence and spread of pathogenic taxa. 396 

Urbanization may create aquatic microbiomes that favour the growth of pathogens and antibiotic-397 

resistant bacteria that sporadically enter urban water systems that would otherwise face barriers to 398 

grow in rural water bodies and may represent an underestimated risk of urban associated pathogen and 399 

antibiotic resistance propagation and transmission. Beyond the increased proliferation of pathogenic 400 

and antibiotic-resistant microorganisms in urban waters, urbanization is likely to have additional 401 

impacts on aquatic biodiversity and biogeochemical cycling. Additional research is required to fully 402 

explore the impacts of urbanization, and action will need to be taken to reduce the impact of 403 

urbanization on aquatic ecosystems and offset harmful effects for both humans and the environment. 404 
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FIGURE LEGENDS 664 

Figure 1: Similarity studies of lake samples. Non-metric multidimensional scaling (NMDS) 665 

analyses based on Bray-Curtis dissimilarity index of water (empty symbols) and sediment samples 666 

(filled symbols) for each lake. Colours indicate the season and the different symbols represent the 667 

sampling site of each lake.  668 

Figure 2: Influence of environmental parameters on the bacterial communities in surface water. 669 

[a] A constrained correspondence analysis (CCA) of all water samples and their corresponding 670 

environmental measurements: ammonium, dissolved organic carbon (DOC), nitrite, nitrate, 671 

orthophosphate (OP), pH, and temperature. Colours indicate the season (blue: winter, green: spring, 672 

pink: summer and brown: autumn) and the symbols show the different lakes (square: Stechlinsee, 673 

diamond: Dagowsee, circle: Feldberger Haussee, triangle: Müggelsee and inverse triangle: Weißer 674 

See). [b] A constrained correspondence analysis (CCA) showing the most abundant bacterial phyla 675 

Acidobacteriota, Actinobacteriota (Actino), Alphaproteobacteria (α), Bacteroidota (Bacter), 676 

Chloroflexi (Chloro), Cyanobacteria (Cyano), Firmicutes, Gammaproteobacteria (γ), Planctomycetota 677 

(Plancto) and Verrucomicrobiota (Verruco) and their correlations with the environmental 678 

measurements in water samples. 679 

Figure 3: Differences in relative abundance of dominant bacterial phyla between wastewater, 680 

urban and rural lakes (summing all seasons and sites). Boxplots showing the relative abundance of 681 

the most abundant bacterial phyla for wastewater inflow (IN), wastewater outflow (OUT), urban lakes 682 

(U: Weisser See, Müggelsee, Feldberger Haussee), and rural lakes (R: Dagowsee, Stechlinsee). 683 

Significant differences are indicated by brackets based on pairwise Mann-Whitney U test. 684 

Gammaproteobacteria do not include any members of the order Burkholderiales, which have been 685 

analysed separately. Rel. abundance – relative abundance. 686 

Figure 4: Core, shared and unique OTUs of lake water and sediments. [a] Venn diagram showing 687 

core, shared and unique OTUs of the wastewater treatment plant (WWTP), urban (Weißer See - WS, 688 

Müggelsee - MS, Feldberger Haussee - FHS) and rural lakes (Dagowsee - DS, Stechlinsee - SS). [b] 689 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2020. ; https://doi.org/10.1101/2020.06.26.173328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.26.173328


27 

 

Bars showing OTUs that were unique either for each lake, WWTP plus all lakes together, or lake 690 

water and lake sediment.  691 

Figure 5: Habitat specific bacterial communities. [a] Ternary plots showing the number and relative 692 

abundance of OTUs (dots) that had 10 or more sequences in at least 3 samples and their occurrence in 693 

rural freshwater, urban freshwater and wastewater. Only the most abundant bacterial phyla/groups are 694 

shown. Colours in the plots indicate the number of OTUs (log-transformed) and the size of the dots 695 

indicate the maximum relative abundance for each OTU. Points close to the corners of the plots 696 

represent either OTUs that occur more often or that are specific for that given habitat, while points 697 

between two vertexes or in the middle of the plots have similar occurrence or are specific for the 698 

combination of the related habitat. Max. RA – maximum relative abundance. [b] Relative proportion 699 

of OTUs [%] present in one or more habitats. Coloured parts of the triangles correspond to the region 700 

in the ternary plots. Alphaproteo – Alphaproteobacteria, Gammaproteo. – Gammaproteobacteria. 701 

Figure 6: The prevalence of genera that are known to contain potential human pathogens [a] 702 

and their correlation with specific sub-communities (Sub-Com.) [b]. Heatmap [a] shows the 703 

average relative abundance in the wastewater treatment plant (WWTP), lake water, and lake sediment. 704 

Heatmap [b] shows the results of a weighted correlation network analyses (WGCNA). Only 705 

significant correlations (p<0.05) of the potential pathogenic genera and specific sub-community 706 

structures are shown. The composition and detailed occurrence of the sub-community OTUs can be 707 

found in Suppl. Figure S2. Alphaproteo – Alphaproteobacteria, Gammaproteo. – 708 

Gammaproteobacteria.  709 

Figure 7: Correlation of potential pathogenic genera and environmental measurements of the 710 

water samples. A constrained correspondence analysis (CCA) of genera that are known to contain 711 

potential human pathogens from all water samples and the measured environmental measurements: 712 

ammonium, dissolved organic carbon (DOC), nitrite, nitrate, orthophosphate (OP), pH, and 713 

temperature. Ac. Acinetobacter, Ae. Aeromonas, Al. Alistipes, Ba. Bacillus, Ca. Campylobacter, Cl. 714 

Clostridium (sensu-stricto), En. Enterococcus, ES Escherichia/ Shigella, Kl. Klebsiella, Lg. 715 

Legionella, Lp. Leptospira, Mi. Microcystis, Mb. Mycobacterium, Mp. Mycoplasma, Ne. Neisseria, Pe. 716 
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Peptoclostridium, Ps Pseudomonas, Ri. Rickettsia, Sa. Staphylococcus, Se. Streptococcus, Tr. 717 

Treponema, Vi. Vibrio and Ye. Yersinia. 718 
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