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URDME: a modular framework for stochastic
simulation of reaction-transport processes in
complex geometries
Brian Drawert1 , Stefan Engblom2,3 and Andreas Hellander1*

Abstract

Background: Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in

molecular systems biology. Designing computational software for such applications poses several challenges. Firstly,

realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries,

including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally

expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological

phenomena of actual interest. We therefore argue that simulation software needs to be both computationally

efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs

of increasingly complex biological modeling.

Results: We have developed URDME, a flexible software framework for general stochastic reaction-transport

modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries,

and relies on the Reaction-DiffusionMaster Equation formalism to model the processes under study. An interface to a

mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive

environment for model construction. The core simulation routines are logically separated from the model building

interface and written in a low-level language for computational efficiency. The connection to the geometry handling

software is realized via a Matlab interface which facilitates script computing, data management, and post-processing.

For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is

possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively

hides the complexity of managing the geometry and meshes, this means that newly developed methods may be

tested in a realistic setting already at an early stage of development.

Conclusions: In this paper we demonstrate, in a series of examples with high relevance to the molecular systems

biology community, that the proposed software framework is a useful tool for both practitioners and developers of

spatial stochastic simulation algorithms. Through the combined efforts of algorithm development and improved

modeling accuracy, increasingly complex biological models become feasible to study through computational

methods. URDME is freely available at http://www.urdme.org.
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Background
Stochastic simulation of reaction kinetics has emerged

as an important computational tool in molecular sys-

tems biology. In cases for which mean-field analysis has

been shown to be insufficient, stochastic models provide

a more accurate, yet computationally tractable alterna-

tive [1-3]. For example, a frequently studied topic is the

mechanisms for robustness of gene regulatory networks

relative to intrinsic and extrinsic noise [4-6]. In a stochas-

tic mesoscopic model the time evolution of the number

of molecules of each species is described by a continuous-

time discrete-state Markov process. Realizations of this

process can be generated using techniques such as the

Stochastic Simulation Algorithm (SSA) [7].

If the system can be assumed to be spatially homoge-

neous, or well-stirred, simulations are simplified consid-

erably compared to a spatially varying setting. However,

there are many phenomena inside the living cell for which

spatial effects play an important role [8,9]. In such cases,

a mesoscopic spatial model can be formulated by first

discretizing the computational domain into subvolumes,

or voxels. Molecular transport processes are then mod-

eled as combined decay- and creation events that take

a molecule from one voxel to an adjacent one [10,11].

For appropriate discretizations [12,13], the assumption

of spatial homogeneity holds approximately within each

voxel, where reactions can be simulated as in the well-

stirred case. The governing equation for the probability

density function is called the Reaction Diffusion Master

Equation (RDME) and methods to generate realizations

in this framework have been used previously to study

reaction-diffusion systems in the context of molecular cell

biology [8,14-16].

Modern experimental techniques can provide informa-

tion not only on the total copy numbers but also on

the spatial localization of individual molecules [17,18]. As

such techniques are further developed and spatial models

can be calibrated to biological data, methods and software

for flexible and efficient simulation of spatial stochastic

models will likely continue to grow in importance. As a

coarse-grained alternative to detailed microscopic mod-

els based on Smoluchowski reaction dynamics [19,20], or

other similar microscale simulators such as MCell [21],

simulations in the RDME framework are orders of magni-

tude faster than microscopic alternatives [22].

For most applications, a large number of sample real-

izations need to be generated to allow for a useful statis-

tical analysis. Exploring parameter regimes or estimating

responses to different stimuli adds to the complexity so

that the generation of tens of thousands of independent

realizations is not uncommon. Computational efficiency

is therefore an important concern and has motivated

research in many types of approximate or optimized

methods (see for example [23-27]).

Despite advances in the development of approximate

methods, spatial stochastic simulation in realistic geome-

tries is still challenging. One of the main reasons is

the complexity involved in handling the 3D geometry

and the associated mesh. The purpose with this paper

is to introduce URDME, a modular software framework

for spatial stochastic simulation. The goal of URDME

is twofold: firstly, it provides applied users with a pow-

erful and user-friendly modeling environment that sup-

ports realistic geometries. Secondly, URDME facilitates

the development of new computational methods by tak-

ing care of the technical details concerning the geome-

try, the mesh generation, and the assembly of local rate

constants. By providing a well-defined interface to the

modeling environment, new algorithms can be incorpo-

rated into the URDME framework as plug-in solvers.

We anticipate that this modular structure will facilitate

the development and dissemination of advanced sim-

ulation methodologies to real-world molecular biology

applications.

URDME differs from other public domain software for

mesoscopic simulations such as MesoRD [28] or Smart-

Cell [29], in that it uses unstructured tetrahedral meshes

to discretize the domain, offering a much greater geo-

metrical flexibility and better resolution of curved sur-

faces compared to Cartesian meshes. URDME shares its

utilization of tetrahedral meshes with another reaction-

diffusion simulation software, STEPS [22], which we

will discuss later in the paper. One of the defining fea-

tures of URDME is that it is structured to be highly

modular in order to be useful as a platform for developers

of the associated computational tools. This design also

allows for flexible work-flows for result generation. When

used interactively, URDME’s Matlab interface provides

for convenient model construction and evaluation. Since

the solvers are automatically compiled into optimized

stand-alone executables, URDME can also be used to

define batch jobs using the very same Matlab interface.

In this way, URDME is a convenient platform both in

the initial modeling phase as well as when perform-

ing high-performance and/or high-throughput computa-

tional analysis.

Implementation
In this section we describe how the URDME framework

is structured, how it is used to simulate a model, and how

to interface with it to add new simulation algorithms. For

more details we refer to the softwaremanual [30] included

in the software distribution (Additional file 1).

Overview

The URDME framework consists of three logical layers

connected by well-defined interfaces (see Figure 1). At the

top level, a third-party software for mesh-generation is
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Figure 1 The URDME framework consists of three loosely coupled layers. Solvers reside at the bottom level and are most often written in a

compiled language like ANSI-C. The middle layer provides for interfaces between the solvers and the top-level mesh-generation infrastructure. Both

the top- and the bottom-layer may be replaced by other software as long as the middle level is extended appropriately.

used to define the geometry and to generate the mesh.

Currently, URDME interfaces with Comsol Multiphysics

3.5a for this functionality. The middle layer routines in

Matlab serve as an interactive environment formodel con-

struction, and connects the geometry and mesh-handling

facilities of Comsol with the core simulation algorithms

(bottom layer).

With this modular structure, the top level can be

replaced by other mesh generation software such as for

example Gmsh [31], provided that the appropriate inter-

face routines are added to the middle level interface. Rely-

ing on Comsol Multiphysics for the geometry definition

and mesh-generation provides for a convenient interac-

tive environment for the model construction, allowing

advanced models to be formulated quite easily.

The default core solver at the bottom level is an opti-

mized implementation of the Next Subvolume Method

(NSM) [8]. Since the solver layer is kept separate from the

model building interface, new solvers can easily be added

to URDME while taking advantage of all of the infrastruc-

ture related to model management and post-processing.

The data passed to the solvers is well-defined and docu-

mented (see [30] for more information). It is our goal for

URDME to grow through the contribution of solvers from

the community. One such solver has already been con-

tributed and distributed in this way: the diffusive finite

state projection (DFSP) algorithm [32]. Additionally, the

URDME framework has been utilized in the development

of new algorithms [27,33,34] and a master equation for-

mulation of active transport on microtubules [35].

Using URDME for model development and simulation

The process of analyzing a reaction-diffusion model with

URDME begins with the creation of a Comsol model

file that defines the geometry of the domain, includ-

ing (optionally) the subdomains where specific localized

reactions are to be defined (e.g. membrane, cytosol, and

nucleus). At this stage, the biochemical species and their

associated diffusion rates are also defined. Once themodel

is set up, the mesh generation facilities of Comsol are

used to create a tetrahedral discretization of the domain.

Next, this information is exported to Matlab via an API

connection as illustrated in Figure 2A (top). The interface

routines of URDME are then used to assemble the data

structures needed by the core simulation routines. This

whole process is summarized in Figure 2A (bottom).

Apart from defining the geometry, the user also needs to

create two additional program files to be used by URDME.

The first is a Matlab function (referred to as the model

file), that defines the data related to the actual simula-

tion. This includes the initial distribution of molecules,

the stoichiometric matrix defining the topology of the

reaction network, a certain dependency graph for events

in the model, and the simulation interval (for a detailed

list, see [30]). This model file can also be used to define

custom configurations for the model, including restricting
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A

B C

Figure 2 Summary of the URDME software infrastructure. (A) URDME flow diagram for the complete simulation process. (B) Process flow

diagram for the stochastic simulation step of (A) using the NSM solver. (C) DFSP solver flow diagram, an alternative to (B) for the stochastic

simulation step.

a species to a specific subdomain, adding modified trans-

port terms, and evaluating expressions over the geometry

such that this information can be passed on to the core

solver. In this way, URDME supports custom modeling

that would be very hard to achieve with a less flexible soft-

ware architecture. This, we argue, is one of the defining

and unique features of the URDME framework.

The second program file a user must create is a tem-

plated C-program file that defines the propensity func-

tions for the chemical reactions of the model. This file

defines one function for each chemical reaction in the

system and are called by the core solver routines to cal-

culate the propensity for each reaction in each voxel.

The propensity function template requires the output to

depend only on the system state at the current time, but

is unique to a voxel and allows for additional data to be

passed on to the function. The propensity function file

is later automatically compiled and linked with the core

solver, resulting in a highly efficient solution procedure.

Once the model data structure has been exported to

Matlab and the model and propensity functions have been

defined, the next step is to let URDME execute a simula-

tion of the model. From the users’ perspective, simulation

now only requires to invoke the urdme function inMatlab

with the proper arguments,

>> model = urdme(model,@model file,

{’Propensities’,’propensity file’});

The arguments passed are the Comsol data structure,

the model function, the propensity functions, and various

optional arguments. URDME now invokes GCC to com-

pile the propensity function file with the specified solver

(defaulting to NSM) to create a dedicated executable for

the model. This executable is then invoked using the

model and geometry data structure as inputs. Note that

compilation and execution of the low-level components of

the system is fully automatic, and requires no additional

action from the user. Following a successful execution

of the core solver the urdme function returns a modi-

fied model data structure with a single stochastic solution

trajectory attached to it.

Since the layers of URDME are decoupled, it is also pos-

sible to execute the solvers in non-interactive batch mode

to allow for more flexible result generation and distribu-

tion of computations on a multicore platform. For exam-

ple, to conduct the simulation in background mode and

write the resulting trajectory to the file ‘output.mat’ one

simply invokes urdme with a few additional arguments,

>> model = urdme(model,@model file,

{’Propensities’,’propensity file’, ...

’Mode’,’bg’,’Output’,’output.mat’});

Here, control returns to Matlab directly after execu-

tion of the solver executable, without waiting for it to

complete.

Visualization and post-processing are important com-

ponents in most simulation software. Once a URDME

simulation is complete, users can easily visualize the spa-

tially varying concentration of biochemical species in their

model by using Matlab’s interface to the Comsol graphics

routines. Examples of this will be presented in the Results

section. Similarly, most modeling and simulation projects

require custom data analysis once the simulation data

has been generated. To facilitate this, URDME supports

the creation of post-processing scripts in Matlab using

its native high-level scripting language and computational

libraries. Examples of complex post-processing routines

implemented as Matlab functions and scripts are available
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as part of the example directories in the URDME software

distribution package, and in Additional file 2, Additional

file 3 and Additional file 4.

Structure and implementation of core simulation

algorithms

Taken together, the components of URDME that was

introduced in the previous section create a flexible and

expandable platform. While an applied user need not

know any details about how a core solver is implemented,

a developer of a new simulation algorithm can use the

infrastructure to develop a plug-in solver to URDME.

Figure 2C illustrates the structure of the plug-in solver

that implements the DFSP algorithm [32]. Note the sim-

ilarities with the flow diagram of the core NSM solver in

Figure 2B. URDME plug-in solvers have three main com-

ponents: a Makefile, the solver source files, and (option-

ally) a pre-execution script intended to be invoked by

the middle-level scripting interface. The solver Makefile

is used for compiling and building the solver automati-

cally from the Matlab interface. The name of this file tells

URDME what solver it builds; when urdme is invoked

with the option to run a simulation using a specific solver,

it will look for a Makefile with the correct naming pat-

tern. This Makefile then compiles the solver along with

the propensity functions associated with the model being

simulated into a stand-alone binary executable. Hence a

different and unique executable is automatically produced

for each new combination of model and solver.

The source code of the solver itself can formally con-

sist of any number of files in any language as long as

the Makefile can create the final executable called by the

middle-level interface. To enable a seamless integration

with the URDME Matlab interface, the URDME C API

contains library routines to read and parse the data struc-

tures generated by the URDME model files. These API

routines will parse all data-structures required by the core

NSM solver. A plug-in solver that needs additional input

will have to make sure that these are parsed correctly

as part of the solver main routines. To pass such addi-

tional data to the solver, it need only be appended to the

‘model.urdme’ field, either by the Matlab model file, or

by a pre-execution script (compare Figure 2C). URDME

will then write this data to the solver input file. Such

a pre-execution script is an optional component of the

solver integration. Simply put, when executing a model,

URDME always looks for a Matlab function defined in the

file ‘urdme init <solver>.m’.

All current solvers are written in ANSI-C and use

GNU-style Makefiles. The process of integrating a simu-

lation algorithm in the URDME framework is described

in more detail in [30] and is also exemplified by the

source code for the DFSP plug-in that is included in the

URDME distribution.

In conclusion, when all the components of a solver is in

place as described above, the only difference to an end-

user of URDME is a single additional argument

>> model = urdme(model,@model file,

{’Propensities’,’propensity file’, ...

’Solver’,’dfsp’});

The use of the URDME framework to implement and

analyze the performance of a simulation algorithm will be

further exemplified in the Results section.

Results
In this section we will use three different examples to

illustrate how the design of URDME makes the software

framework a useful tool to accomplish different simula-

tion tasks.

In the first example we show how an established model

from the molecular systems biology literature is simulated

in URDME. This example illustrates the powerful nature

of the URDME scripting environment in setting up and

conducting a parameter sweep.

In the second example we demonstrate how URDME

can aid in the development of efficient simulation algo-

rithms by explaining how a novel method, the Diffusive

Finite State Projection (DFSP) [32], was integrated into

URDME as a plug-in solver.

As a final example we simulate a model of molecular

transport in a neuron. Here, the unstructured mesh is a

critical feature in order to be able to resolve the com-

plex geometry with a feasible number of voxels. We also

show with this example how a model of active, molecular

motor driven transport as proposed in [35] can be imple-

mented in URDME to simulate molecular transport in the

different parts of the neuron.

SimulatingMin oscillations in E. Coli

In E. Coli, the Min family of proteins are believed to

play a key role in the regulation of symmetric cell divi-

sion. In a mechanism thought to be self-organized and

to function in a manner similar to the formation of

Turing-patterns, the MinD protein oscillates from pole

to pole with a period close to 40 seconds. Another Min

protein, MinC, co-localizes with MinD and acts as a

repressor for the formation of the cell division site by

destabilizing Ftz polymerization [36]. On average, MinD

(and hence MinC) will spend less time near the cen-

ter of the cell, allowing the division ring to assemble

there. Both deterministic and stochastic models of this

system have been studied previously in the literature

[8,36].

To illustrate how to use URDME to conduct a parame-

ter sweep we will simulate the Min-system for increasing

lengths of the bacterium and observe the behavior

of the oscillations. The example is representative for
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how experiments using different sets of parameters can

be defined and organized with the current version of

URDME. A detailed account for how to create all model

files to run simulations of the model from [8] can be

found in the software manual [30] in the form of a

tutorial. There, the model is run interactively from the

Matlab prompt as detailed in the previous sections. In

order to conduct the experiment outlined here in the

same fashion we would have to manually rebuild the

geometry and execute the simulations for the different

parameter cases. This would be time-consuming and

error prone. Instead, here we exemplify how to auto-

mate such a task by using the Matlab scripting environ-

ment and the URDME Matlab interface. The code block

below shows how the parameter sweep can be specified

in a simple script in the Matlab language. The function

‘coli model’ (Additional file 2) was automatically gen-

erated from the Comsol interface using the model of

an E. coli bacterium shown in Figure 3A. It was then

slightly modified by manipulating the original consec-

utive solid geometry (CSG) description. The geometry

of the bacterium is parametrized by creating a copy of

the original geometry and then translating it along the

x-axis. The union of these two objects is the final geom-

etry and the variable ‘xsep’ specifies the extent of the

translation. Note that, as shown in Figure 3C, the bac-

terium will ultimately split into two separate geometric

objects.
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Figure 3 Simulating Min oscillations in E. Coli for varying length of the cell. (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal

average concentration of MinD protein as a function of position along the long axis of the E. Coli cell (top), and the time series plot of the

oscillations. (C) Six E. Coli cells of increasing lengths, as specified in the parameter sweep described in the code block above. The color intensity

shows the temporal average concentration of MinD protein along the membrane. (D) Parameter sweep shows how the relative concentration of

MinD changes as the bacterium grows.
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Below we show a Matlab script that simulates the Min

E. Colimodel with varying cell length.

% Define the parameter space

Nval = 30;

xsep = linspace(0,4.5e-6,Nval+1);

xsep(end) = []; % (avoid creating two

% distinct bacteria)

save results/info.mat xsep

for i = 1:Nval

% Generate the E. coli cell by

% merging two cells with separation

% xsep(i) along the positive x-axis

fem = coli model(xsep(i));

% run an instance of URDME in

% background mode

fem = urdme(fem,@huang,

{’Propensities’,’huang’, ...

’Mode’,’bg’, ...

’Outfile’,sprintf

(’results/out%d.mat’,i)});

% save input separately for later use

save(sprintf(’results/in%d.mat’,i)

,’fem’);

end

The results of the parameter sweep is summarized in

Figure 3. Figure 3A shows the geometry of a model of an

E. Coli bacterium with length 4.5 µm and radius 0.5µm

discretized with a tetrahedral mesh. Figure 3B shows the

temporal average of membrane bound MinD obtained

in a simulation of the model from [36] with URDME, as

well as a time series of pole-to-pole oscillations of the

membrane bound fraction of MinD. As can be seen, the

model predicts a minimum of MinD near the center of

the cell. Figure 3C shows a visualization of the E. Coli

bacterium at six different lengths, including the temporal

average of the relative concentrations of the MinD pro-

tein. Figure 3D shows the stability of oscillations when

increasing the ‘xsep’ parameter.

For values of the parameter ‘xsep’ less than about 2µm,

coherent oscillations are observed and the MinD pro-

tein is concentrated at the poles of the bacterium. For

larger values, the oscillations cease and MinD is dis-

tributed evenly in the cell. Hence, in order to maintain

oscillations also for longer cells, the model needs to be

modified in some way. For example, the total copy num-

ber of MinD is currently kept constant as the cell grows.

Different initial conditions such as constant concentration

can of course be tested with equal ease by making the

appropriate changes to the model file.

In this example, URDME is invoked in background

mode allowing for several parameter cases to be run in

parallel on a multicore workstation. Instead of returning

the results directly in the workspace, we direct URDME

to store the result files and the input files on disk for later

post-processing.

Developing and benchmarking a new algorithm for spatial

stochastic simulation

Generally, a large fraction of the effort in developing sim-

ulation tools goes into software infrastructure as opposed

to code pertaining to the underlying solver algorithms.

URDME is designed to provide that infrastructure. The

first two layers of the framework provides handling of

geometry and meshing, assembly of diffusion jump-rate

constants, model integration, pre- and post-processing

and data visualization. In this section we will illustrate

how to use URDME’s infrastructure to enhance the devel-

opment and benchmarking of a new stochastic simulation

algorithm, DFSP [32]. We will describe the components

of this solver and how they are integrated with URDME.

This example may therefore serve as a design pattern for

algorithm integration into the URDME framework.

Since the diffusion intensity scales differently than the

reaction propensitieswith increasingmesh resolution, dif-

fusion events often occur on a faster time scale than the

reactions in the system. Effectively, as the mesh becomes

finer a larger and larger percentage of the simulation

events will be diffusion jumps. A similar phenomenon,

stochastic stiffness, often occurs in simulations of well-

stirred models and has led to extensive methods devel-

opment [37-40]. The DFSP algorithm is an approximate

spatial stochastic simulation algorithm which aggregates

a large number of diffusive transfers over a time-step.

It does this by calculating the probability distribution

of a molecule starting in a given voxel after some fixed

time-step τD, and then samples from this distribution to

redistribute themolecules. DFSP can in this way give great

enhancements in simulation speed at the cost of approxi-

mation errors which can be controlled (see [32] for a more

extensive analysis).

Integration of a new solver into the URDME framework

is designed to be a simple process, with the largest fraction

of the required new code being specific to the under-

lying solver algorithm. URDME solvers have three main

components: the solver source code, a Makefile, and an

optional pre-execution script. TheMakefile creates a stan-

dalone Unix executable from the source code. The DFSP

solver uses a pre-execution script in Matlab to calculate

data specific to the algorithm. This data is then added to

the input file that URDME creates upon execution of the

solver. Table 1 describes the files that are part of the DFSP

solver.
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Table 1 Overview of the files thatmake up the DFSP plugin solver

Directory File Description

urdme/build Makefile.dfsp Solver Makefile.

urdme/src/dfsp dfsp.c Solver entry point and data initialization.

dfsp.h DFSP header file.

dfspcore.c Main entry point for the solver.

dfsp reactions.c Simulates reaction events.

dfsp diffusion.c Simulates diffusion events.

urdme/msrc urdme init dfsp.m Matlab pre-execution script.

This structure shows the design pattern for solver integration into the URDME framework (see [30]).

% DFSP Performance and Error benchmark

% code

tic;

solution = urdme(fem,@fange,{’Solver’,

’nsm’,’Propensities’,’fange’});

nsm simulation time = toc

nsm period = find mincde period(solution)

for tau D = [ 0.001, 0.005, 0.01, 0.05,

0.1, 0.5 ]

tic;

solution = urdme(fem,@fange,

{’Propensities’,’fange’,’Solver’,

’dfsp’,...

’tau’,tau D,’max jump’,10,

’DFSP cache’,

dfsp cache filename});

dfsp simulation time = toc

dfsp period = find mincde period

(solution)

error = abs(dfsp period-nsm period)/

nsm period

end

In addition to the lower integration overhead of imple-

menting a new algorithm in the URDME framework,

URDME allows developers to easily benchmark their

solvers. The code block above shows a Matlab script that

sets up a benchmarking experiment to assess the perfor-

mance and error of the DFSP solver when simulating the

model for Min-oscillations described in the first example

in this paper. This code also illustrates the calling signa-

ture for the urdme function when used with the NSM

and DFSP solvers. The DFSP solver takes the additional

arguments ‘tau’ as the time-step, ‘max jump’ as the maxi-

mum spatial jump distance, and ‘DFSP cache’ as the cache

file used to store the data specific to the DFSP algorithm.

The utility function find mincde period finds the

peak period of the oscillations through straightforward

spectral analysis using built-in routines in the Matlab

scripting environment, again illustrating the advantage

of using the scripting layer’s post-processing capabil-

ities. Figure 4 shows the results of the benchmark-

ing experiment. We find that the DFSP method with

0.01 < τD < 0.1 produces simulation results faster

than NSM and with good accuracy in the oscillation

period.

Active transport in a neuron

Diffusion is the dominating mechanism of molecular

transport in prokaryotes such as E. Coli, and it was in that

context the NSM was first applied [8,15]. However, diffu-

sion is not the only mechanism for molecular transport in

eukaryotic cells. Intra-cellular cargo can be transported by

motor proteins along cytoskeletal structures made up of

microtubule and actin polymers [41-43].Molecular motor

proteins bind to the cargo and to the filaments and move

the cargo along the fiber, always in a specific direction

depending on the type ofmotor and fiber. This transport is

usually much faster than diffusion but requires an energy

input. Vesicles, organelles, mRNA and proteins involved

in signaling are examples of cargo that are transported in

this way inside living cells.

Due to the ubiquity of active transport in biological

systems, it is important that simulation software have

the capability to handle mesoscopic models with general

transport mechanisms. In [35], the RDME was extended

to include an advection term that models cargo transport

on the microtubule network. A simple model of signal-

ing in a yeast cell was considered and URDME was used

for model development and simulation. To illustrate both

the geometrical flexibility of URDME as well as its capa-

bility to model more general transport mechanisms, we

show here how to simulate active transport in a model of

a neuron with a detailed geometry.

Active transport of cellular cargo is of fundamental

importance to maintain the highly polarized state of a



Drawert et al. BMC Systems Biology 2012, 6:76 Page 9 of 17

http://www.biomedcentral.com/1752-0509/6/76

Figure 4 DFSP benchmark results. (A) Performance of DFSP shows a comparison of simulation times for DFSP at varying τD values (red) and NSM

(blue), and the DFSP speedup factor (green). For this model, DFSP outperforms NSM for τD > 0.01. (B) Error in DFSP shows the relative error in

MinCDE oscillation period (red) and the oscillation patterns for three simulations. Simulations with τD < 0.1 produces coherent oscillation patterns

and result in a negligible error. The system was simulated to a final time 900s. Simulations were performed on a 1.8 Ghz Intel Core i7 processor.

healthy neuron. In the axon, microtubules are uniformly

oriented with plus-end towards the soma and minus-

end towards the synapse. Kinesin transports cargo in the

anterograde direction, from the cell body to the synapse.

For example, kinesin drive the transport of synaptic vesi-

cles from the cell body through the axon where they

are subsequently docked to the plasma membrane in

the presynaptic terminus. Dynein drives transport in the

opposite direction (retrograde transport) in the axon, and

may aid in transporting for example RNA from the cell

body to the dendrites [44]. In the dendrites, the situation

is more complex than in the axon, since the microtubules

form an array of mixed orientation. While the particular

motor protein transports cargo in a specific direction on

the fibers, a single cargo such as a vesicle can have many

different motors bound to it simultaneously and therefore

may move in a bidirectional manner [45-47]. The details

of how kinesin and dynein-driven transport is coordinated

and regulated to achieve differential targeting and local-

ization of cargo is still a largely unresolved issue [48,49].

As an example of a possible mechanism of regulation,

the microtubule binding protein Tau effects the binding

affinity of kinesin to the microtubule, while dynein is less

sensitive to elevated Tau concentrations [50].

To illustrate how diffusion and active transport can

simultaneously be modeled with URDME in the neu-

ron geometry shown in Figure 5 we consider a straight-

forward model where a cargo species is transported to

different regions of the neuron. The motor proteins are

modeled implicitly, that is, we assume that a population

of motor proteins is associated to the cargo species at

all times. Although an approximation, there are recent

experimental evidence that the distributions of motors on

vesicles are relatively stable [47]. Table 2 summarizes the

model. Here, the cargo species V is created uniformly in

the cell body (R1). V can diffuse and bind reversibly to

microtubule filaments, either with a kinesin motor as V k

or with a dynein motor as V d (R2–R5). When bound to a

filament, V is actively transported in a direction dictated

by the kind of motor that is currently active. The cargo

can reverse its direction on the fiber in bidirectional trans-

port by letting the currently active motor protein change

with some probability (R6,R7). The quotient σkd/σdk then

dictates the direction of net transport. Finally, V is uni-

formly degraded (R8) in the whole neuron so that the total

number of cargo V reaches a steady-state level.

To illustrate the ability of cargo to localize to different

compartments of the cell depending on the dominating

motor protein we consider the following scenario. First,

we let σdk = 10σkd, so that on the average, kinesin will

spend more time bound to the microtubule than dynein

will do. In this case, the cargo will travel through the axon

and eventually localize to the axon terminus. After half

of the total simulation time has elapsed, the situation is

reversed and σkd = 10σdk such that the cargo will localize

to the dendrites.

Figure 6 shows a typical output of a simulation with

URDME. The fraction of the total number of cargo V

is plotted in the different regions of the neuron geome-

try (axon, soma, and dendrites). Since the purpose of this

example is to illustrate the capability of URDME to model

both diffusion and active transport in a complex geometry,

the values of the various parameters have not been chosen

to fit any particular neuron geometry. Hence the velocity

of dynein is conveniently set to be half of that of kinesin

in the axon. Also, the net rate of transport in the dynein is

set to be one hundredth of the rate of kinesin in the axon

to reflect the effects of mixed polarity of fibers [51].

In order to setup this simulation in URDME, a Matlab

function for the velocity field modeling the average ori-

entation of the fibers at any point in the domain needs

to be provided. Obviously, specification of this velocity
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A B

Figure 5 Geometry and mesh for amodel of a neuron. The neuron geometry (A) is based on a artistic CAD rendering generated with the public

domain version of the software Blender (http://www.blender.org). In order to conduct simulations in this geometry, the model was exported in the

STL surface mesh format, imported into the open-source meshing package Gmsh [31], where the boundary was re-parametrized and the domain

subsequently meshed with a volume mesh in 3D. The resulting mesh was then converted into a Comsol Multiphysics 3.5a model to serve as a

geometry description for the URDME model. Assembly of active transport jump rate constants are conducted by URDME on the unstructured mesh

shown in (B). For a mathematical background on how to obtain these constants on the unstructured mesh, see [35]. URDME’s capability to use an

unstructuredmesh made up of tetrahedral and triangular elements is of vital importance in order to be able to resolve the complex geometry of the

neuron.

field requires biological knowledge. The ability to work

in the Matlab environment greatly simplifies parametriza-

tion of the velocity field. Since this geometry was given

as a surface mesh, which is also often the case when the

domain is obtained from cell imaging, we have no ana-

lytical expression for the parametrization of the geometry

to rely on. In this example we want the velocity field to

trace the axon and dendrite structures. To achieve this,

we first compute surface normals to all triangles on the

surface of the neuron. An interpolation table containing

vectors with base in the centroids in the triangles of the

surface mesh and pointing in the direction of suitably

chosen reference points was thus constructed. For sim-

plicity, we only used two different reference points, one

near the center of the cell body and the other beyond

the axon terminus along the long axis of the axon. The

smoothness of the velocity field can easily be improved

by adding more reference points. For any point inside

the domain, we evaluate the velocity by nearest neigh-

bor interpolation using the interpolation table. From this

description of the microtubule network and the informa-

tion about the mesh, utility routines available as add-ons

to the basic URDME package can be used to assemble

jump rate constants to be used in the definition of the

stochastic transport process in much the same way as

for diffusion [35]. This procedure may seem complicated

at a first glance, but can be performed quite easily in

Matlab using built-in utility routines. The model files

required to run this example can be found in Additional

file 4.

Discussion
The design of URDME is motivated by bothmodeling and

algorithm development. Systems biology investigations

are typically computational intensive, and often require

large ensembles of trajectories spanning parameter space

to match data, or to conduct a sensitivity and robustness

analysis.

Development of more efficient simulation methods

is needed to make such large scale investigations

feasible. However, due to the overhead of handling com-

plex geometries, mesh generation and visualization of

results, algorithm developers often tend to consider

only simple test models in simple geometries, often

restricted to one or two spatial dimensions. While

this can be enough to illustrate the potential benefits

Table 2 Reactions of the transport model

Reaction Description Cellular location

(R1) ∅
µ1
−→ V Creation of cargo Cell body

(R2–R5) V
σb
⇋
σd

Vk,d Binding of V to microtubule All domains

(R6,R7) Vk
σkd
⇋
σdk

Vd Reversal of direction Microtubule

(R8) V
µ2
−→ ∅ Degradation of V All domains

Model of active transport of a cargo species V that is transported on microtubule filaments in a direction determined by the orientation of the fibers (as modeled by a

velocity field) and the current motor protein bound to the fiber (kinesin or dynein).

http://www.blender.org
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Figure 6 Localization as a function of the binding rates to microtubules for the different motor proteins. Normalized concentration of V in

the soma (green), axon (blue) and in the dendrites (red) as a function of time. Initially, the parameters satisfy σkd = 10σdk and cargo localizes to the

axon due to the larger fraction of time spent in the kinesin binding state. At time t = 0.5 the situation is reversed, and the localization of V shifts

from axon to dendrites. The red regions in the inlays depicting the neuron shows the areas where V is present.

of a new method, the resulting software is often not

general enough for use on complex biological mod-

els. URDME aims to bridge this gap by facilitating for

method developers by providing a large part of the

infrastructure needed for simulation of realistic mod-

els. We exemplified this in the paper by the exten-

sion of the approximate algorithm DFSP to a full 3D

simulation.

The theory and methodology for spatial stochastic sim-

ulation is still undergoing extensive development, and no

single mathematical modeling framework or method has

emerged as a de facto standard. The utility of the URDME

framework is not restricted to mesoscopic RDME simula-

tions; we have used URDME to develop solvers based on

the Smoluchowski model and a microscopic–mesoscopic

hybrid methods [34].

Another benefit of the modular architecture is that

it simplifies the use of different execution models for

the simulations. As part of work on methods for enact-

ment of computation in grid environments, we are devel-

oping a URDME server module that enables remote

execution in distributed computing environments [52].

This enables highly task-parallel investigations to uti-

lize distributed computational resources such as clusters,

grids, and clouds to greatly increase productivity for the

end-user.

Comparison of spatial stochastic software packages

To further illustrate the design of our software, we have

compared its features to two other publicly available pack-

ages for mesoscopic spatial stochastic simulation. Table 3

shows a comparison between URDME 1.1, MesoRD 1.0,

and STEPS 1.3. MesoRD was one of the first software

projects aimed at simulation of the RDME. STEPS was

developed for simulation of detailed models of dendrites

and synapses, but is generally applicable to a lager set of

reaction-diffusion models.

There are three significant ways a user interacts with

a spatial stochastic software package: the environment

for model development, execution of a simulation, and

post-processing and analysis of the data generated by the

simulation.

The interface and model development environment

used by URDME and STEPS are similar in that both

are closely tied to a programming language environment:

Matlab in the case of URDME and Python for STEPS.

URDME provides a single function entry point, and mod-

els are developed in external programming files. This

design pattern follows that of the Matlab ODE suite.

STEPS provides an object oriented Python interface

for creation, simulation and post-processing of models.

STEPS claims that a programmatic interface offers signif-

icant advantages over non-interactive software interface
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Table 3 A comparison of features of RDME simulation software

URDME 1.1 MesoRD 1.0 STEPS 1.3

Interface Matlab & Comsol Command line Python

Simple GUI (Windows)

Visualization Matlab & Comsol OpenGL tool PyOpenGL tool

Matlab toolbox

Post-processing Matlab 3rd party Python

SBML support Conversion tool SBML L2v4 Import module

(no geometry) + CSG geometry (no geometry)

Edit Geometry Comsol SBML 3rd party

Mesh Type Vertex centered Uniform Cartesian Body centered

Tetrahedrons Tetrahedrons

Algorithms NSM, DFSP NSM Spatial-SSA

+ extendable +non-local extension

Propensity types All SBML (MathML) Mass-action

Model Features compartments compartments compartments

surfaces surfaces

volume diffusion volume diffusion volume diffusion

surface diffusion

directed transport

This table summarizes the main differences and similarities between the software packages URDME, MesoRD and STEPS.

[22] (in contrast to the command line and input file

interface), and we share this opinion.

The major differences between URDME and STEPS

are the feature set and the performance. The execution

platform of URDME is the Matlab-Comsol environment,

thus URDME has full access to the scientific libraries of

Matlab as well as the advanced geometry and mesh han-

dling interface of Comsol. Another major difference is

one of aim. URDME is developed by a team of biologi-

cal model developers as well as of algorithm developers,

and it aims itself at both communities. This is reflected

in its expandable solver interface and performance centric

design.

In contrast to the design pattern used in URDME and

STEPS, MesoRD functions as a command line program

that uses an input file in the Systems BiologyMarkup Lan-

guage (SBML) [53] format to describe the model. SBML is

a community effort with the aim to standardize descrip-

tions of biochemical reaction network models. MesoRD

extends the format with a custom Consecutive Solid

Geometry (CSG) description of the domain geometry of

the model. SBML has been widely adopted as a standard

to exchange non-spatial models, but the limitations in

its capability to describe spatial models has restricted its

adoption for RDME simulations.

The post-processing environment of URDME is closely

integrated into Matlab. MesoRD provides a Matlab tool-

box for analyzing the simulation data files. STEPS utilizes

the Python programming environment and packages such

as NumPy, SciPy, and Matplotlib for post-processing and

analysis.

Compared to static XML input files, the programmatic

paradigm used by URDME and STEPS provides a more

powerful but also more complex modeling environment.

Constructing model files using a complete programming

language reduces the restrictions imposed on the software

by the model format. For example, the model of the neu-

ron presented in the Results section could not have been

described by an SBML document, nor the extended SBML

format used by MesoRD. Since propensities in URDME

are defined in a program file, any type of functional

propensity can be used in URDME models, including

Michaelis-Menten and Hill term style propensities, and

even arbitrary logical expressions can be employed.

This offers great flexibility in terms of the models that

can be simulated, but also places more responsibility

on the end-user. MesoRD uses MathML as part of the

SBML definition, which allows the use of any mathemati-

cal expression in the propensities and facilitates handling

of units and error checking. This is a powerful and robust,

but also a computationally very expensive strategy. The

STEPS reaction object only supports mass action kinetics,

which results in an efficient but less flexible strategy.

In addition to having the most efficient and expandable

design of the model propensity, URDME also provides

the largest set of geometry and mesh model features of
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the three software packages. URDME supports volume

compartments with internal and external 2D surfaces

embedded in the 3D geometry, as well as diffusion and

reactions on surfaces and in the 3D volume. URDME also

supports directed transport (convection) in 3D through

an add-on module. STEPS 1.3 supports 3D compart-

ments and volume diffusion. It is capable of localiz-

ing species to a curved surface embedded in 3D, but

does not support surface diffusion. MesoRD 1.0 sup-

ports 3D compartments and volume diffusion only.

To represent cellular membranes, their models typi-

cally use a small 3D volume on the exterior of the

domain.

In summary, as a consequence of the design of the

model environment, MesoRD is simpler to learn and use

than both URDME and STEPS and also offers a better

support for e.g. handling units, but the latter two offer

a much more flexible and efficient modeling and sim-

ulation environment. In addition to the programmatic

environment, both URDME and STEPS provide limited

support for SBML. URDME has an experimental conver-

sion utility that will create templates for the model and

propensity file from an SBML description of the chemi-

cal reactions, see Additional file 5. This utility will be fully

included in the next version of URDME. STEPS provides

a function to convert an SBML file into Python model

objects. In addition to the SBML document defining the

biochemical reaction network, both URDME and STEPS

require a mesh describing the model domain geometry be

provided.

Simulation performance

To compare the performance of the software packages,

we implemented the model of Min oscillations in E. Coli

as described in [8] in each of the three software environ-

ments. Figure 7 shows simulation time as a function of

the number of voxels in the mesh. The simulation was

run for 900 seconds (simulation time), with the system

state recorded every second. A detailed description of

the model setup in the different packages can be found

in Additional file 6 and the scripts used for produc-

ing these benchmarks are provided in Additional file 7.

The URDME framework has a strong emphasis on effi-

cient simulation algorithms which is also visible in the

figure. URDME clearly outperforms the other packages

and we believe that this is in large parts due to URDME’s

modular design and the fact that the solver source files

and the propensity functions file are compiled into a

dedicated executable for each separate model (see the

Implementation section for details).
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Figure 7 Performance comparison of the three software packages for an increasing number of voxels. Each point shows the mean and the

error bars show the standard deviation of a ensemble of N = 5 runs. For URDME the number of voxels represents the number of mesh vertices, for

MesoRD it represents the number of cubic subvolumes, and for STEPS it represents the number of tetrahedrons. All simulations were performed on

a 1.8 GHz Intel core i7 processor with 4GB of memory.
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The numerical treatment of mesoscopic diffusion

URDME emphasizes the use of unstructured tetrahe-

dral and triangular meshes to discretize the geometry.

Unstructured meshes offer distinct advantages over

Cartesian meshes for resolving complex geometries with

non-trivial boundaries and they are more flexible than

cut-cell approaches when it comes to describing pro-

cesses occurring on a curved boundary embedded in

3D space, such as the cell membrane of a spherical

cell or the nuclear membrane [54]. The first version of

URDME was developed as a product of theoretical work

on how to obtain mesoscopic diffusion jump constants

on triangular and tetrahedral meshes [33]. In short, the

methodology used by URDME is based on the fact that

a numerical discretization scheme for the standard dif-

fusion equation will give jump coefficients that result in

mesoscopic simulations that are consistent with both the

behavior of mean values of a large ensemble of particles

and the probability density function for a single parti-

cle diffusing according to Brownian motion. The latter is

true since the Fokker-Planck equation for the one-particle

probability density function is mathematically equivalent

to the macroscopic diffusion equation. URDME currently

uses a discretization with the Finite Element method to

obtain the diffusion jump coefficients.

The quality of the tetrahedral mesh is an important

aspect of a numerical discretization. An in-depth dis-

cussion of the requirements on the mesh for use in the

mesoscopic model is given in [33]. Tetrahedra should

not be too irregular, and between regions in the domain

with much different resolution, the size of the elements

should not grow too fast. This is also true for the solu-

tion of PDEs, and mesh generation software is aware of

these issues and attempts to optimize the meshes accord-

ingly. Surface meshes in 2D from state-of-the art mesh

generation software such as Comsol tend to be of very

high quality. In 3D, many meshes will violate the assump-

tions in [33] to some degree. Generation of high quality

unstructured meshes is an active area of research due to

their importance in industrial applications. The modu-

lar design of URDME ensures that we can accommodate

new results in this area without major restructuring of the

code.

The influence of mesh quality on RDME simulations on

unstructured meshes in 3D was studied for several dif-

ferent discretization schemes in [55] using particularly

revealing and highly sensitivemodel problems. They show

that unless the meshes are of high quality, discretization

errors may lead to small but persisting errors for both

the Finite Element and the Finite Volume methods, i.e.

the convergence properties of the schemes are affected

negatively. In some of these cases, simulations using

a structured Cartesian mesh will have better numeri-

cal properties if the geometry permits resolution of the

domain with a feasible number of subvolumes. On the

other hand, it is not difficult to think of cases for which this

is very difficult and for which sensitive processes occur on

the parts of the domain which are hard to resolve.

Using MesoRD, surfaces in a 3D model are modeled as

volume geometry objects by ensuring that the thickness

of the membrane is small compared to its size, approach-

ing a true 2D model as the thickness of the membrane

becomes small. Unless one desires to resolve some dynam-

ics on such high level of detail as to consider vertical

movement of molecules in the membrane, this will be

unnecessarily expensive since the mesh elements has to be

sufficiently small to resolve the narrow 3D volume. The

mesh generation in MesoRD needs several grid points in

the extent of a membrane to give a fully connected dif-

fusion volume [56](Figure eleven). With a uniform grid,

this will lead to expensive simulations since the size of

the voxels necessary to accurately resolve the membrane

must be used everywhere in the domain. In order to

demonstrate this, we conducted a simple diffusion-only

numerical experiment, described in detail in Additional

file 6. We let molecules diffuse freely on the surface of

a unit sphere, and be absorbed by a small circular patch

at one of the poles. Simulations using URDME are in

excellent agreement with the exact solution even for fairly

coarse meshes (Additional file 6: Figure S1). For exam-

ple, using an ensemble size of 105 molecules to compute

the mean absorption time, the error was ≈ 0.2% for a

mesh with 4343 voxels. The computing time to generate

the solution was 21 seconds. By contrast, for a membrane

thickness of 100 nm and a voxel size of 20 nm, MesoRD

1.0 produces a solution with about 14% error using 157128

voxels and a simulation time of 1 hour and 50 minutes on

the same 2.66 Ghz Intel Core i7 with 8GB of RAM.

For complex models with both volume diffusion, sur-

face diffusion, and reactions, it is difficult to predict what

impact different sources of error in the diffusion will have

on the output metric of interest. For example, for the Min

system used to benchmark the different software pack-

ages in Figure 7, URDME, STEPS, and MesoRD give quite

similar period times of oscillations (Additional file 6).

In addition to errors caused by the discretization, errors

intrinsic to the RDME mathematical model arise for

highly diffusion limited reactions when the voxels become

very small [12]. To some extent, this can be alleviated

using modified, mesh dependent bimolecular reaction

rates [13,57], but there is a critical size of the voxels under

which no correction to the traditional RDME can make

it consistent with more fine scaled particle based meth-

ods [58]. Since unstructured meshes can more accurately

resolve complex geometries, their spatial accuracy is often

higher for equivalently sized voxels when compared to

Cartesian meshes. This can help in avoiding geometrical

features of the model to force us to approach the critical
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regime for the voxel sizes. The combined effects of diffu-

sion discretization error and error caused by small sub-

volumes were investigated for several additional models in

[55]. For the examples studied there, it was concluded that

the error introduced by small subvolumes in 3D could be

a bigger source of error than any numerical discretization

errors of the diffusion operator.

Conclusions
As demonstrated by the examples in this paper, the

URDME infrastructure offers great flexibility at the stage

of model construction and execution. Using a simple

script in Matlab, URDME was used to set up and conduct

a series of experiments in which the geometry of an E. Coli

bacterium was automatically varied. In another exam-

ple, the basic reaction-diffusion modeling framework was

extended to include active transport in a highly com-

plex geometry obtained from external CAD and meshing

software.

The URDME software framework offers unique features

for both model and methods developers in computational

systems biology. The support of unstructured meshes

provides the capability to create models with a complex

geometry that closely match the physical descriptions of

the systems under study. URDME integrates easily with

widely used scientific computing software to provide a

versatile platform for mathematical and computational

modeling, allowing for the implementation of complex

and customized models and pre- and post-processing

routines. The modular design ensures extensibility and

interchangeability of the third-party tools used for model

specification and mesh generation, as well as of the core

simulation algorithms.

Availability and requirements
• Project name: URDME.
• Project home page: http://www.urdme.org.
• Operating systems: Linux, MacOS X.
• Programming language: C, Matlab, Bash shell script.
• Other requirements: GNU GCC version ≥ 4.2,

Matlab, Comsol Multiphysics 3.5a.
• License: GNU General Public License, version 3.
• Any restrictions to use by non-academics: none.

Additional files

Additional file 1: urdme.tar.gz. The current release of URDME. Also

available for download via http://www.urdme.org.

Additional file 2: minsweep.tar.gz.Model files required to run the first

example in the main paper.

Additional file 3: benchmark.tar.gz.Model files required to run the

second example in the main paper.

Additional file 4: neuron.tar.gz.Model files required to run the third

example in the main paper.

Additional file 5: urdme sbml converter.tar.gz. SBML conversion tool

to create URDME model files from a SBML model file describing chemical

reactions.

Additional file 6: validation.pdf. Simulation results for a simple diffusion

problem on the surface of a sphere and for the Min system

[8,34,55,56,59,60].

Additional file 7: urdme software comparision.tar.gz.Model files and

scripts used to conduct the performance benchmark in the discussion
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