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Urea Uptake and Carbon Fixation by Marine Pelagic Bacteria and
Archaea during the Arctic Summer and Winter Seasons

Tara L. Connelly,a Steven E. Baer,c* Joshua T. Cooper,b Deborah A. Bronk,c Boris Wawrikb

The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USAa; Department of Microbiology and Plant Biology, University of Oklahoma, Norman,
Oklahoma, USAb; Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, USAc

How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect
to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammo-
nium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial
and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bac-
teria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when
phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, dur-
ing August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate
uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial
and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal
pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I
Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter.
Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmic-
utes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under
dark conditions.

The Arctic is already experiencing the impacts of global climate
change, which has the potential to disrupt the ecology of the

Arctic Ocean, causing broad changes in the physical, chemical,
and biological realms (1–5). How such changes might translate
into alterations of ecosystem dynamics and of the overall balances
and rates of biogeochemical cycles of carbon (C) and nitrogen (N)
is not well understood (6, 7). Generally, short days and sea ice
coverage during the Arctic winter limit light and primary produc-
tion of phytoplankton, while summer is characterized by episodic
phytoplankton blooms following sea ice melt (8). High levels of
primary productivity during the summer are thought to be sus-
tained through the buildup of NO3

� in the water column during
the dark winter period, as well as by inputs from ice melt and
allochthonous riverine nutrient sources (9). Production could ad-
ditionally be augmented by dissolved organic nitrogen (DON),
which can represent between 18 and 85% of the total dissolved N
pool in coastal and open ocean surface water (10, 11). The inter-
play between inorganic and organic N utilization, with respect to
heterotrophic versus autotrophic activities, could be an important
contributor to biological production but remains poorly resolved,
especially in Arctic environments (12).

Among DON compounds, urea has long been recognized as an
important N source in tropical, subtropical, and temperate ma-
rine environments (13–16). Urea usually occurs at nanomolar lev-
els in the open oceans but can be found at concentrations as high
as 50 �M in coastal ecosystems (17), where it can be an important
N substrate that promotes large seasonal blooms of phytoplank-
ton (18). The importance of urea at high latitudes is, however, less
well understood. In addition to riverine input, other natural
sources of urea in the Arctic can include excretion and sloppy
feeding by zooplankton (19) and inputs from the melting of sea-
sonal fast ice (20). Urea production has also been attributed to
sediment-associated bacteria, which may mediate the release of

urea into the water column via thermal or wind-driven mixing
(21). In the Canadian Arctic, urea has been observed to account
for �50% of total dissolved nitrogen (TDN) (22). The same study
reported urea uptake rates that mimicked the distributional pat-
terns of urea concentrations while accounting for approximately
32% of N productivity (nitrate, ammonium, and urea). A more
recent study in the Beaufort Sea found that urea supplied almost
half of the phytoplankton N uptake annually (23), and on a sea-
sonal basis it was reported that urea uptake increased relative to
that of other N substrates as the year progressed from winter to
spring to summer (S. E. Baer, R. E. Sipler, Q. N. Roberts, P. L.
Yager, M. E. Frischer, and D. A. Bronk, submitted for publica-
tion). In the northern Baffin Bay, cycloheximide and streptomy-
cin were utilized as inhibitors, and it was found that urea was
consumed primarily by phytoplankton (58 to 95%) but may also
be utilized by bacteria (5 to 42%) (24). Collectively, these studies
suggest that urea is likely an important source of N in Arctic sys-
tems. It remains uncertain, however, what the dynamics of com-
petition for urea between phytoplankton and bacteria are at the

Received 5 May 2014 Accepted 16 July 2014

Published ahead of print 25 July 2014

Editor: K. E. Wommack

Address correspondence to Boris Wawrik, bwawrik@ou.edu.

* Present address: Steven E. Baer, Bigelow Laboratory for Ocean Sciences, East
Boothbay, Maine, USA.

T.L.C. and S.E.B. contributed equally to this article.

This article is contribution 3386 from the Virginia Institute of Marine Science,
College of William and Mary.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.01431-14

October 2014 Volume 80 Number 19 Applied and Environmental Microbiology p. 6013– 6022 aem.asm.org 6013

 on O
ctober 30, 2018 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://dx.doi.org/10.1128/AEM.01431-14
http://aem.asm.org
http://aem.asm.org/


community level and which populations of cells successfully com-
pete for urea N under different conditions. Size fractionation ex-
periments often retain significant numbers of bacteria in the “phy-
toplankton fraction” (traditionally collected on GF/F filters with a
nominal pore size of 0.7 �m), and they provide no phylogenetic
information about active microbial community members.

The ability of pelagic bacteria and archaea to fix carbon inde-
pendently of light in oxygenic waters is becoming widely recog-
nized (25–28), especially in deeper oceanic waters (29–31). How-
ever, the extent to which dark carbon fixation is occurring in the
world’s oceans and how important this metabolism is for the life
strategies of specific taxa are still unknown. It is hypothesized that
dark carbon fixation can be important in compensating for met-
abolic imbalances under oligotrophic conditions. Since large pro-
portions of the world’s oceans are oligotrophic, the significance of
dark carbon fixation could therefore be large. This may be espe-
cially true under dark winter conditions in the Arctic, when pho-
tosynthesis rates are low. Previously, Alonso-Sáez et al. (26) found
that certain taxa of bacteria (e.g., Oleispira and Pseudoalteromo-
nas-Colwellia) collected from shelf waters in the Arctic and cul-
tured in aged seawater had the potential to fix carbon. The authors
concluded that heterotrophs were primarily responsible for the
observed bicarbonate uptake and proposed that this metabolism
would be advantageous for survival during periods of low nutrient
availability.

In this study, we combined dissolved inorganic nitrogen (DIN)
and urea uptake rate measurements with 15N- and 13C-based
DNA stable-isotope probing (SIP) in order to investigate the role
of bacterial and archaeal plankton in C and N cycling during the
Arctic summer and winter seasons. We hypothesized that both
bacteria and archaea would successfully compete for N from
NO3

� and urea during the Arctic winter but not during the sum-
mer, when phytoplankton dominate the absolute uptake of these
N sources. Further, 13C-based SIP was used to investigate the in
situ capabilities of both bacteria and archaea to incorporate car-
bon from bicarbonate into DNA in order to demonstrate their
potential involvement in the fixation of carbon during the dark
winter months.

MATERIALS AND METHODS
Field sample collection. To capture the extreme Arctic light and physical
conditions, sampling took place during the summer (August 2011) and
winter (January 2012) �2.5 km offshore of Barrow, AK. A YSI sonde was
used to measure temperature and salinity throughout the water column.
During the summer, samples were collected via a low-pressure electric
pump at a depth of 8 m from a 17-m water column located at 71°18.13=N,
156°43.16=W. During the winter, when the water was covered with ice, a
small hole was drilled through the ice to allow access for sample collection.
Due to ice conditions, winter samples were collected at a 1-m depth to
minimize the intake of resuspended sediment in a shallow, 8-m water
column at 71°22.12=N, 156°34.34=W. Every effort was made to reduce
stress on the organisms by limiting light and temperature changes. A small
tent was erected and was heated to approximately �1°C (near the tem-
perature of the ambient seawater) to prevent the pumped seawater and
sampling equipment from freezing.

15N and 13C additions. Water was collected into a series of 2-liter
acid-washed polyethylene terephthalate glycol (PETG) bottles. A subset
was used for the determination of ambient nutrient concentrations. Sam-
ples for SIP and uptake rate incubations were each run in duplicate and
were inoculated with unlabeled (14N) or labeled (15N) ammonium
(NH4

�), nitrate (NO3
�), and urea (�98% 15N). Previously reported am-

bient concentrations were used to establish N additions for uptake rate

incubations. Since DNA stable-isotope probing (SIP) requires substantial
isotopic labeling, incubations for SIP samples were made with saturating
additions of 2.0 �mol N liter�1 in the form of NH4

�, NO3
�, and urea

during the summer. Winter additions were 3.25 �mol N liter�1 for NH4
�

or urea and 7.7 �mol N liter�1 for NO3
�. For dark carbon fixation exper-

iments, duplicate sets of samples were incubated with either labeled (13C)
or unlabeled (12C) bicarbonate at 200 mM. The bottles were then sur-
rounded by ambient seawater, placed in insulated coolers, and brought to
the laboratory within 1 h of collection to prevent freezing. Samples were
incubated in a temperature-controlled chamber for 24 h at ambient water
temperature (�4.7°C in the summer; �1.8°C in the winter). To mimic
spectral attenuation from the field during the summer, light levels were
maintained by GAMColor blue films and were confirmed using a Li-Cor
PAR sensor. Winter samples were incubated in the dark. At the ends of
incubations, samples were filtered separately for uptake rates and SIP
analyses, and water was collected for nutrient analyses. For uptake rate
determinations, samples were filtered through Whatman GF/F filters
(nominal pore size, 0.7 �m). The filters were placed in cryovials and were
frozen until analysis. For the determination of nutrient concentrations at
the ends of incubations, the filtrate was poured into polypropylene tubes
and was frozen until analysis. Samples from SIP incubation bottles were
filtered onto 0.45-�m Supor filters (Pall Life Sciences) and were frozen in
750 �l STE buffer (1 M NaCl, 100 mM Tris-HCl [pH 8.0], 10 mM EDTA
[pH 8.0]).

Nutrient analysis and uptake rates. Nutrients were measured on am-
bient seawater and on water incubated with a labeled substrate in order to
correct for isotope dilution in the uptake rate calculations. NH4

� concen-
trations were measured in triplicate using the phenol-hypochlorite
method (32). Duplicates of NO3

� and nitrite (NO2
�) were measured on

a Lachat QuikChem 8500 autoanalyzer (33). Urea was measured in dupli-
cate using the manual monoxime method (34). A Europa Scientific Geo
20/20 mass spectrometer with an ANCA autosampler was used to make
isotopic measurements of 15N samples. Nitrogen uptake rates were calcu-
lated according to the method of Dugdale and Goering (35) and carbon
uptake rates according to that of Hama et al. (36). The NH4

� pool was
isolated at the end of the incubation by solid-phase extraction (37, 38),
and the 15N enrichment was determined, so that NH4

� uptake rates could
be corrected for isotope dilution and NH4

� regeneration rates could be
calculated (39).

Stable-isotope probing. DNA was extracted as described by Wawrik
et al. (40). Cesium chloride (CsCl) density centrifugation and fraction-
ation were conducted as described previously (40–43) by loading 2 �g of
DNA and spinning for 48 to 72 h in a Beckman VTi 65.2 rotor at
140,000 � g. Thirty 150-�l fractions were then collected from each
tube with a fraction collector (Beckman) by displacing the contents
with mineral oil at a constant rate using a peristaltic pump. Densities
for each fraction were calculated from their refractive indices (40, 42).
After ethanol reprecipitation with 1.0 �l of molecular-grade glycogen
(Ambion), DNA was suspended in 30 �l sterile nuclease-free deion-
ized (DI) water. These purified fractions served as templates for quan-
titative PCR (qPCR) and 16S rRNA gene PCR for Illumina sequencing.
All direct comparisons made in this paper (i.e., 14N versus 15N treat-
ment for a specific substrate) are for fractions and gradients from the
same centrifuge run, which used the same batch of buffer.

Labeling was assessed by integrating abundance peaks observed in
gradients and thereby estimating their average density. For bacteria and
archaea, the proportional abundance from qPCR was used. Average den-
sities for individual phylogenetic groups and individual operational tax-
onomic units (OTUs) were calculated from 16S rRNA gene community
OTU frequency data. To minimize biases introduced by baseline variabil-
ity (i.e., because target DNA is typically found throughout gradients, and
because the density ranges obtained can differ slightly among gradient
runs), only the major peak of DNA was integrated. All fractions that con-
tained �20% of the maximum observed quantity were hence integrated
(see Fig. 2). The percentage of labeling was calculated by assuming that
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100% labeling of DNA with 15N or 13C would yield a density shift of 0.016
g cm�3 or 0.036 g cm�3, respectively (42). Sequential gradient fractions
differed, on average, by �0.0035 � 0.0001 g cm�3. Shifts of �30% and
�15% for 15N and 13C, respectively, were therefore interpreted as positive
labeling. This corresponds to a density shift of approximately 1.5 fractions
in our gradients, where complete (i.e., 100%) labeling would correspond
to a shift of 4.6 or 10 fractions for 15N or 13C, respectively.

qPCR for 16S rRNA gene copy numbers of bacteria and archaea.
Bacterial and archaeal 16S rRNA gene copy numbers were determined for
each SIP fraction via qPCR. The bacterial 16S rRNA gene qPCR primers
were forward primer 27F (5=-AGA GTT TGA TCM TGG CTC AG-3=) and
reverse primer 519R (5=-GWA TTA CCG CKG CTG-3=). The archaeon-
specific qPCR primers were forward primer 8AF (5=-TCC GGT TGA TCC
TGC C-3=) and reverse primer A344R (5=-TCG CGC CTG CTC CIC CCC
GT-3=). SYBR green qPCRs were run in 30-�l volumes using the Power
SYBR green PCR master mix (Applied Biosystems), 500 nM (final con-
centration) each primer, and 2 �l of template DNA. Using an Applied
Biosystems ABI 7300 real-time PCR system, qPCR was conducted as fol-
lows: 50°C for 2 min and 95°C for 8 min, followed by 40 cycles of 95°C for
30 s, 55°C for 30 s, and 72°C for 30 s. Genomic DNA of Roseobacter
denitrificans Och114 was used as a standard for bacteria, while a linearized
plasmid containing the complete 16S rRNA gene of Methanospirillum
hungatei JF-1 served as a standard for archaea.

16S rRNA gene community analysis. Environmental genomic DNA
(10 ng) and 2 �l DNA purified from CsCl gradient fractions were ampli-
fied using Phusion high-fidelity DNA polymerase (Thermo Scientific) by
targeting partial 16S rRNA genes with the universal (bacterial and ar-
chaeal) primers S-D-Arch-0519-a-S-15 (5=-CAG CMG CCG CGG TAA-
3=) and S-D-Bact-785-a-A-21 (5=-GAC TAC HVG GGT ATC TAA TCC-
3=) as described previously (44). These primers do not amplify rRNA
genes from eukaryotes but cover 86.5% and 87.1% of bacterial and ar-
chaeal phyla, respectively. If one mismatch is allowed (which occurs fre-
quently during PCR), 94.6% and 94.8% of bacterial and archaeal phyla are
covered, respectively (44). Amplification of candidate divisions WS6,
TM7, and OP11, as well as the phylum Nanoarchaeota, was deemed un-
likely via in silico analysis (44). The forward primer was modified to in-
clude a 5=M13 tag, used for labeling the PCR products with Illumina tags
(45). Community DNA was amplified with 30 cycles. For gradient frac-
tions, PCR was used to estimate the cycle number where PCR plateaued
for each gradient. Illumina libraries were then generated from fractions by
applying a cycle number (25 to 32) that maximized the amount of DNA
produced but did not allow the plateauing of reaction products from
individual fractions. Amplicons were checked by gel electrophoresis to
confirm a single band and were then cleaned using the QIAquick PCR
purification kit (Qiagen). The M13-containing amplicons were then
tagged for MiSeq Illumina sequencing by including a unique 8-bp bar
code in each amplicon (45). MiSeq Illumina sequencing was performed as
described previously (46) with the modification of an added CC spacer
between the adapter and the bar code.

Sequence classification. Raw Illumina sequence reads were processed
by first removing adapter and primer sequences and then stitching over-
lapping forward and reverse reads. Sequences were then clustered and
assigned taxonomy using the QIIME pipeline. They were demultiplexed,
clustered into OTUs using UCLUST at the 95% identity level, and checked
for chimeras using USEARCH. Given the very short reads (250 bp) uti-
lized here, the 95% level, which refers roughly to the genus level, was
chosen as a compromise between a desire to retain resolution and a need
for conservative interpretation of the data. This is especially true for ar-
chaea, where classification is less robust than for bacteria. A representative
set of sequences was picked at random from each OTU and was aligned to
the SILVA small-subunit rRNA reference alignment (www.arb-silva.de)
using the PyNAST algorithm (47). Core taxa were defined as those OTUs
that represented �1% of reads within a sample, and rare OTUs were
defined as those representing 	0.1% within a sample (48). Classification
was then exported at the genus, class, and phylum levels. 16S rRNA gene

frequencies at each taxonomic level were then normalized to the respec-
tive qPCR quantities (bacterial OTUs to bacterial 16S rRNA gene copy
numbers by qPCR and archaeal OTUs to archaeal 16S rRNA gene copy
numbers by qPCR). This was done because the frequencies of OTUs are
relative to the whole 16S rRNA gene data set, which includes both bacte-
rial and archaeal data. The qPCR normalization was also performed to
account for the differential abundances and distributions of their DNA in
gradients. Data were then converted to ratios of quantities in which the
highest normalized frequency measured equaled 1.

Nucleotide sequence accession numbers. Sequence data were depos-
ited to the NCBI Sequence Read Archive under accession numbers SRR1
383176 and SRR1383325.

RESULTS

The water column during late August was well mixed, with a water
temperature of �4.7°C and salinity of 30.2. The chlorophyll a
concentration was 0.4 �g liter�1. In winter, the water column
remained well mixed, with a water temperature of �1.8°C, salinity
of 33.7, and chlorophyll a concentrations of 0.01 �g liter�1. Light
levels were low in the water column under the sea ice at 0.12 �mol
quanta m�2 s�1 and, based on light level data from August 2010,
were higher in the summer, ranging from 8 to �100 �mol quanta
m�2 s�1 in the top 8 m of the water column. Summer concentra-
tions of ambient nutrients were greatest for NH4

� (Table 1). Up-
take rates were similarly dominated by NH4

�; they were close to
an order of magnitude greater for NH4

� than for NO3
� and urea.

The regeneration rate of NH4
� was more than six times greater

than its uptake rate. During the winter, NO3
� concentrations in-

creased dramatically, but all of the uptake rates fell to extremely
low levels, and urea uptake rates were the lowest of those mea-
sured.

Sequencing of amplified 16S rRNA genes from ambient com-
munity DNA yielded 97,858 and 25,666 quality paired-end Illu-
mina reads for summer and winter samples, respectively. The
Shannon diversity index scores were 3.80 and 3.82, with Shannon
evenness of 0.62 and 0.63 and Good’s coverage of 0.99 and 0.98,
for summer and winter samples, respectively. A breakdown of
ambient microbial communities at the phylum/family level is
shown in Fig. 1. Overall, samples contained fairly similar micro-
bial communities during the two seasons, with some notable dif-
ferences. Archaea accounted for a smaller proportion of overall
reads in the summer (1.8%) than in the winter (11.8%). These data
are consistent with the results from qPCR of community DNA, which
detected 7.1 � 106 � 0.41 � 106 and 2.5 � 106 � 0.20 � 106 bacterial

TABLE 1 Concentrations and uptake rates of ammonium, nitrate, and
urea in near-shore waters of the Alaskan Arctic during January and
August

N sourcea

Concn (nmol N liter�1)
(SD)b

Uptake (nmol N liter�1

h�1) (SD)b,c

Summer Winter Summer Winter

NH4
� 590 (60) 960 (23) 5.78 (0.34) 0.19 (0.11)

NO3
� 290 (NA)d 9,855 (1.4) 0.82 (0.69) 0.14 (0.04)

Urea 230 (2.9) 157 (1.9) 0.99 (NA)d 0.01 (0.0)
a NH4

�, ammonium; NO3
�, nitrate. The regeneration rate (standard deviation) for

NH4
� was 38.2 (3.15) nmol N liter�1 h�1 in the summer and 10.5 (5.2) nmol N liter�1

h�1 in the winter.
b Summer measurements were taken in August and winter measurements in January.
c Uptake rates were determined with GF/F filters (nominal pore size, 0.7 �m).
d NA, not available (n 
 1).
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rRNA gene copies per ml of seawater and 8.4 � 104 � 0.54 � 104 and
3.0 � 105 � 0.17 � 105 archaeal rRNA gene copies per ml of seawater
in summer and winter samples, respectively. Archaea were therefore
3.6-fold more abundant in winter samples than in samples collected
during the summer, while bacteria were 2.8-fold more abundant dur-
ing the summer. The ratio of bacterial to archaeal 16S rRNA genes
was 82 in summer samples and 7.1 in winter samples, after the 2.7%
and 14.9% of reads that were classified as potentially of chloroplast
origin in the winter and summer, respectively, were accounted for
and eliminated. Thirty-eight archaeal OTUs were shared among the
summer and winter libraries, but winter communities were charac-
terized by a greater proportion of marine group I Crenarchaeota
(MGIC) and a smaller proportions of reads classified as Halobac-
teria (	1%) and Methanobacteria (	0.3%) (Fig. 1A and B).

Bacterial communities also exhibited strong similarities, with
19 core OTUs (�1.0% of reads) shared between seasons, account-
ing for 65% and 53% of reads during the summer and winter,
respectively. The prominent difference between the two seasons
consisted in greater proportions of sequences classified within the

Cyanobacteria/chloroplasts and Verrucomicrobia in the summer
samples (Fig. 1C and D). Winter samples, conversely, had greater
proportions of reads within the Proteobacteria, Bacteroidetes, and
Planctomyces than summer samples. Within the Proteobacteria,
most OTUs were classified within the SAR11 clade and the Altero-
monadales (Oceanospirillum) during the winter sampling. A
greater diversity of taxa within the Proteobacteria was observed
during the summer. Winter samples exhibited greater species
richness, containing 594 unique OTUs (found only in the winter
sequence libraries) compared to 144 unique taxa in summer sam-
ples. The rare biosphere was prominent, with 93% and 96% of the
OTUs found in less than 0.1% of reads in libraries during the
summer and winter, respectively.

CsCl DNA density gradients from 14N- and 15N-labeled NH4
�,

NO3
�, and urea (summer and winter), as well as from 12C- and

13C-labeled bicarbonate (winter only), were fractionated. Each of
the resulting fractions was assayed via qPCR for bacterial and ar-
chaeal 16S rRNA genes to estimate the degree of isotopic labeling
(Fig. 2). It is assumed that minimal primer biases and minimal

FIG 1 Phylogenetic analysis of archaeal (A and B) and bacterial (C and D) 16S rRNA gene sequences for the Arctic summer (A and C) and winter (B and D)
seasons. PCR products were bar coded and sequenced using the Illumina MiSeq platform. OTUs were defined at the 95% identity level for bacteria. Represen-
tative sequences from each OTU were chosen at random, and their phylogenetic affiliations were determined using QIIME (46). Underlined taxa indicate phylum
(division)-level classifications. Nonunderlined taxa are family-level assignments (not all are shown). Greek letters (�, �, , �, and ε) refer to the divisions of
Proteobacteria (for example, � refers to the Alphaproteobacteria).
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differences in copy numbers occurred across major taxa, given the
short incubation times and the fact that no notable differences
were observed between the background 16S rRNA gene distribu-
tions (shown in Fig. 1) and gradient fractions (data not shown).
Keeping these caveats in mind, addition of 15NH4

� led to isotopic
labeling of bacterial and archaeal DNA in summer but not winter

samples, when 30% labeling for the major peak in the gradient is
used as a conservative cutoff (Table 2). No evidence for the incor-
poration of 15NO3

� into bacteria or archaea was observed in either
season. Incubation with 15N-labeled urea produced no evidence of
incorporation of N from urea in summer samples; however, win-
ter samples yielded estimates of 30% and 35% isotopic labeling for

FIG 2 Examples of qPCR analysis of SIP gradient fractions for bacterial and archaeal 16S rRNA gene copies of samples collected from the near-shore Arctic. The
relative quantities detected in each fraction are shown as a function of density. All data were normalized to the highest quantities observed and are hence shown
as ratios, where 1 equals the highest value observed. Error bars indicate one standard deviation calculated from three replicate qPCR measurements. The
horizontal lines indicate the threshold above which quantities were integrated to calculate the average DNA density and the percentage of incorporation. (A)
Comparison of winter and summer [14N]urea (Œ) and [15N]urea (�) treatments. (B) Dark carbon fixation SIP experiment showing [12C]bicarbonate (Œ) and
[13C]bicarbonate (�) treatments for bacteria and archaea.
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bacterial and archaeal populations, respectively (Fig. 2A). Winter
[14N]urea and [15N]urea treatments were therefore chosen for
more-detailed analysis via high-throughput sequencing. In addi-
tion, [12C]bicarbonate- and [13C]bicarbonate-treated samples
were analyzed via SIP to investigate dark (winter) carbon fixation
activity by the major bacterial and archaeal populations, revealing
17 and 18% labeling of DNA with 13C for bacterial and archaeal
populations in the winter, respectively.

A total of 1.27 � 106 paired-end reads were generated from
[14N]urea and [15N]urea treatments by using the Illumina MiSeq
platform, yielding an average of 3.59 � 104 paired-end sequences
for each fraction. The 10 most abundant divisions (proteobacteria
are shown at the family level [Fig. 1]) accounted for 60% of the
read data and were chosen for further analysis (Table 3). Less-
abundant divisions generally did not contain sufficient read data
in each fraction to resolve frequency distributions sufficiently
well. Analogously, for OTU-level labeling estimates (Table 4), we
restricted ourselves to OTUs that occurred at average frequencies
of �0.5% of reads across gradient fractions. This cutoff was used
because stochastic effects are likely to be significant at frequencies
of 	0.5%, given that a single read can represent a �1% difference
in abundance for less-abundant taxa. For example, if a library
from a fraction contains 20,000 sequences and a particular OTU is
present at 0.5%, then this represents only 100 reads. Overall, la-
beling with N from [15N]urea appeared to be widespread among
taxonomic groups and individual OTUs (Tables 3 and 4). Firmi-
cutes and Betaproteobacteria exhibited labeling above the 30%
threshold (Table 3). Alphaproteobacterial DNA displayed a shift
of only 20% at the phylum level, but specific alphaproteobacterial
OTUs that were classified within the SAR11 clade exhibited den-
sity shifts of �30% (Table 4). In addition, labeling of 39% and
49% was observed for a gammaproteobacterial OTU classified as
Oceanospirillum and a deltaproteobacterial OTU classified within
the SAR324 clade, respectively. The most abundant OTU in the
data set was not classified beyond the division of Proteobacteria via
QIIME but exhibited labeling for both [15N]urea and [13C]bicar-
bonate. MGIC exhibited labeling for both [15N]urea and [13C]bi-
carbonate; the dominant MGIC archaeal OTU displayed 27% la-
beling with both substrates.

Both the bacterial and archaeal qPCR analyses of SIP fractions

provided evidence of [13C]bicarbonate uptake during the winter
(Fig. 2B), exhibiting 17% and 18% labeling, respectively. Sequenc-
ing of fractions from [12C]bicarbonate- and [13C]bicarbonate-
treated samples produced 1.40 � 106 reads, which yielded an av-
erage of 2.38 � 104 paired-end sequences for each fraction. No
appreciable difference in overall phylogenetic composition was
observed between these data and the 15N-labeled fractions (data
not shown). Evidence of labeling was observed for all four major
proteobacterial families detected here, as well as for the Firmicutes
and the Crenarchaeota.

DISCUSSION

Marine bacterial and archaeal plankton play a critical role in the
biogeochemical cycling of C and N in the world’s oceans (49, 50).
Identification of the phylogenetic groups that are responsible for
specific C or N cycling activities can provide insight into the forces
that drive marine productivity and community function, as well as
the spatial and temporal dynamics of individual C and N trans-
formation processes themselves. The work presented here aimed
to identify the dominant groups of bacteria and archaea that in-
corporate DIN and urea into DNA and to quantify the rates of
uptake of these N substrates. In addition, we explored dark carbon
fixation by bacteria and archaea, which can be coupled to ammo-
nium oxidation via urea deamination.

SIP data suggest an important seasonal transition of microbial
N incorporation from NH4

� during the summer to urea during
the winter (Table 2). In addition, SIP implicated a broad range of
microbial taxa in urea utilization during the winter, including
Proteobacteria, Firmicutes, and MGIC. Utilization of [15N]urea
was not necessarily expected, given that other sources of N were

TABLE 2 Percentages of isotopic labeling of DNA with 15N or 13C,
calculated from qPCR data of SIP fractions

Domain Season Substrate % incorporationa

Bacteria Summer 15NH4 31
15NO3

� �4
[15N]urea �2

Archaea Summer 15NH4 31
15NO3

� �5
[15N]urea 2

Bacteria Winter 15NH4 9
15NO3

� 6
[15N]urea 30

Archaea Winter 15NH4 23
15NO3

� 17
[15N]urea 35

Bacteria Winter [13C]bicarbonate 17
Archaea Winter [13C]bicarbonate 18
a Percentages in boldface are above the 30% and 15% thresholds used as indicators that
uptake of 15N- and 13C-labeled substrates had occurred, respectively.

TABLE 3 Percentages of isotopic labeling with 15N or 13Ca derived from
SIP gradients

Domain Division/class Substrate % incorporationb

Archaea Crenarchaeota [15N]urea 31

Bacteria Actinobacteria [15N]urea 17
Bacteroidetes [15N]urea 22
Firmicutes [15N]urea 31
Planctomycetes [15N]urea 22
Verrucomicrobia [15N]urea 12
Alphaproteobacteria [15N]urea 20
Betaproteobacteria [15N]urea 33
Deltaproteobacteria [15N]urea 25
Gammaproteobacteria [15N]urea 23

Archaea Crenarchaeota [13C]bicarbonate 22

Bacteria Actinobacteria [13C]bicarbonate 14
Bacteroidetes [13C]bicarbonate 12
Firmicutes [13C]bicarbonate 17
Planctomycetes [13C]bicarbonate 14
Verrucomicrobia [13C]bicarbonate 12
Alphaproteobacteria [13C]bicarbonate 18
Betaproteobacteria [13C]bicarbonate 15
Deltaproteobacteria [13C]bicarbonate 18
Gammaproteobacteria [13C]bicarbonate 15

a Percentages were calculated from 16S rRNA gene frequency data with respect to
densities of fractions.
b Percentages in boldface are at or above the 30% and 15% thresholds used as indicators
that uptake of 15N- and 13C-labeled substrates had occurred, respectively.
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available, but it is not inconsistent with the phylogenetic distribu-
tion of urease genes among bacteria and archaea. Although it has
been argued that urease genes are rare in the domain Archaea (17),
and it has been noted that urease genes are absent from the ge-
nomes of Nitrosopumilus maritimus and “Candidatus Nitrosoar-
chaeum limnia” (51), it has also been observed that ureC genes are
abundant in polar archaea, with an average ureC/16S rRNA gene
ratio close to or greater than 1 (51). Likewise, urease-related genes
were identified in “Candidatus Nitrosopumilus sediminis” AR2, a
species cultured from Arctic sediments (52). A search of genome
sequences available in the DOE’s Joint Genome Institute IMG
database (as of August 2013) identified urease genes within the
genomes of several Halobacteria and Crenarchaeota; the latter are
relevant to our samples. Similarly, the IMG search identified ure-
ase genes in the genomes of Alpha-, Beta-, Gamma-, and Epsilon-
proteobacteria, Actinobacteria, and Firmicutes, which were the
main bacterial groups in our samples. In contrast to the SIP ob-
servations, urea uptake rates were very low in both summer and
winter samples. This discrepancy likely reflects our choice of fil-
ters. Filters with a nominal pore size of 0.7 �m (GF/F filters) were
used to determine rates, while 0.45-�m filters were used for DNA
extractions for SIP. Flow cytometric analysis of seawater indicated
that most bacterial cells in the winter were 	0.7 �m (data not
shown). Thus, the urea uptake rates reported here likely underes-
timate actual in situ activity, particularly in the winter. In the fu-
ture, therefore, investigators conducting rate and SIP studies in

the Arctic should consider filters with smaller pore sizes (e.g., 0.1
�m) in order to capture a greater fraction of active bacteria.

Summer and winter samples exhibited good incorporation of
15N from NH4

� and urea, respectively, indicating that incubation
times (24 h) were sufficiently long. A lack of labeling with 15N
from NH4

� or urea might indicate incubation times inconsistent
with uptake rates. Conversely, incubation times that are too long
can lead to cross-feeding and eliminate the ability to resolve sub-
strate-specific uptake in SIP experiments (43). Cross-feeding re-
sults when a substrate is added in one form but is converted to
another form during incubation. Nitrification, for example, can
occur at high rates during the Arctic winter (53; Baer et al., sub-
mitted), and therefore, additions of 15NH4

� could result in the
production of 15NO3

�, which could subsequently be incorpo-
rated. Additionally, urea is likely converted to NH4

�, but there is
no current information on the rate of that process in the environ-
ment. Given those caveats, our relatively short incubation times,
and low ambient rates of uptake (Table 1), cross-feeding was not
likely to be an important factor in our results.

Incorporation of N from 15NO3
� by bacterial or archaeal pop-

ulations was not supported by SIP for either season (Table 2). This
is in contrast to the findings of prior studies indicating that NO3

�

can serve as an important N source for bacterioplankton in the
Arctic and sub-Arctic, accounting for 16 to 40% of NO3

� uptake
(24, 53, 54). A meta-analysis of these and other data suggests a
pattern of greater NO3

� utilization by heterotrophic bacterio-
plankton under low chlorophyll conditions and relatively lower
contributions when phytoplankton are more prevalent (24). Al-
though NO3

� incorporation, as determined via SIP, was not ob-
served in this study, we note that background NO3

� levels (�10
�M [Table 1]) in winter samples were substantially above the
levels of our additions. SIP experiments, as performed here, re-
quire an excess of 15N-labeled substrate in order to result in �30%
labeling of cellular DNA. Additions of 15NO3

� to winter samples
were therefore likely below the limit of detection. Summer addi-
tions, in contrast, were sufficiently high, and a lack of 15N labeling
of DNA is consistent with the domination of NO3

� uptake by
phytoplankton (54). It has also been noted that NO3

� is likely the
least preferred N source for supporting bacterial growth (55); i.e.,
it may be the N source of last resort, especially during times other
than the spring bloom, when energetically more favorable sources
of N are abundant (Baer et al., submitted).

Community analysis of 16S rRNA genes revealed that summer
and winter communities were largely similar, while displaying
some notable differences. Minor seasonal differences in microbial
community composition are in line with previous reports for Arc-
tic Ocean microbial communities (56–58). For example, analysis
of denaturing gradient gel electrophoresis (DGGE) fingerprints
from Arctic and Antarctic samples revealed no seasonal variation
in archaeal community structure but suggested greater richness of
archaea in water from greater depths (58). The dominant contrib-
utors to the archaeal community in the study by Bano et al. (58)
and in a study of five distinct water masses in the Arctic Ocean (59)
were MGIC, as in the populations described here. We also ob-
served a greater proportion of archaea during the winter, as in
prior observations (51). The abundance of MGIC in the southeast
Beaufort Sea has been observed to reach 18% in winter, decreasing
to ca. 5% of cells in the spring of the same year (51). This change
was attributed to the growth of the archaeal populations during
the winter and not due to mixing with deeper water masses, which

TABLE 4 Percentages of isotopic labeling of OTUs in winter samplesa

with [15N]urea or [13C]bicarbonate

Domain Division/class Family/genus

%
labelingb

with:

15N 13C

Bacteria Proteobacteria Unclassified 35 18
Alphaproteobacteria SAR11 (Surface 1) 30 14

Archaea Crenarchaeota Marine group I 27 27

Bacteria Gammaproteobacteria Oceanospirillales 39 12
Alphaproteobacteria SAR11 (Surface 2) 31 22
Verrucomicrobia Verrucomicrobiaceae 13 3
Alphaproteobacteria Rhodobacteraceae 19 15
Gammaproteobacteria Alteromonadaceae 28 17
Deltaproteobacteria SAR324 (marine group B) 49 13
Alphaproteobacteria SAR11 (Chesapeake

Delaware Bay)
32 17

Verrucomicrobia Verrucomicrobiaceae 13 6
Deltaproteobacteria Nitrospinaceae 16 9
Alphaproteobacteria Rhodobacteraceae 13 7
Bacteroidetes Cryomorphaceae 42 �9
Alphaproteobacteria SAR11 (Surface 4) 32 16
Alphaproteobacteria SAR11 (Deep 1) 37 14
Alphaproteobacteria Rhodospirillaceae 29 20
Actinobacteria Acidimicrobiales (SVA0996) 32 5

a Only OTUs that accounted for more than 0.5% of reads across libraries from gradient
fractions are shown. OTUs are shown in rank order, with the first being the most
abundant.
b Percentages were calculated from 16S rRNA gene OTU frequencies in Illumina
libraries with respect to densities of fractions. Percentages in boldface are at or above
the 30% and 15% thresholds used as indicators that uptake of 15N- and 13C-labeled
substrates occurred, respectively.
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often contain greater proportions of these organisms. Overall,
these data suggest that archaea are a salient and stable feature of
Arctic marine planktonic communities and that their relative im-
portance increases during the dark, cold months of the Arctic win-
ter. Seasonal differences in bacterial communities are equally con-
strained. A study using samples collected from the western Arctic
reported no significant seasonal differences in bacterial communities,
as determined via pyrotag sequencing, despite large differences in
biogeochemical parameters (56). The dominant bacterial taxa in that
study were the Alpha- and Gammaproteobacteria, as well as the Bac-
teroidetes (Flavobacteria) (56). Our findings match these observa-
tions, although Kirchman and Wheeler did not observe a shift
toward greater proportions of chloroplast-like sequences during
the summer. This discrepancy likely arises from the use of 0.8-
�m-prefiltered samples to remove much of the eukaryotic phyto-
plankton, including their chloroplasts.

Urea is present in relatively high concentrations in polar sea-
water (22, 23, 51), and its role as an important component of the
Arctic N cycle has been recognized. Urea can account for as much
as 30 to 50% of the N assimilated by phytoplankton annually (22,
23) and as much as 80% of the regenerated production during the
spring bloom (23). Urea has also been reported to have half-satu-
ration constants similar to those of NH4

� but greater maximum
uptake rates (59). A more recent study has investigated the role of
urea in nitrification by polar marine archaea (51). In that study,
metagenomic analysis of Arctic winter samples revealed an abun-
dance of urea transport and degradation genes. Quantitative PCR
assays resulted in good correlation between the numbers of MGIC
and ureC genes, suggesting that ureC genes were abundant in polar
archaea. Experiments with 14C-labeled urea demonstrated C up-
take from urea (carbon dioxide is generated from urea by urease
activity) by the 0.2- to 0.6-�m fraction and showed that this ac-
tivity was greater under dark conditions (51). The implication is
that urea may fuel nitrification and autotrophic growth by polar
archaea via the release of ammonium from urea. This may be
advantageous under dark conditions, when urea can be a more
reliable source of energy for ammonium oxidizers (2). Urea may
also be produced continually during the Arctic winter via micro-
bial and zooplankton (20) activities. The notion of urea-fueled
nitrification is not without precedent. It has been argued that urea
hydrolysis may serve to generate ammonium and carbon dioxide
by ammonium oxidizers (60), allowing these bacteria to generate
energy to fuel dark carbon fixation.

Studies using microautoradiography-catalyzed reporter depo-
sition fluorescence in situ hybridization (MAR-CARDFISH) have
shown that bacteria and archaea from the Beaufort and Chukchi
Seas actively incorporated bicarbonate (61). The study in the
Beaufort Sea targeted specific bacterial taxa and found that Gam-
ma- and Betaproteobacteria, specifically organisms of the gamma-
proteobacterial genera Oleispira and Pseudoalteromonas-Colwellia,
were actively assimilating bicarbonate when seawater cultures
were grown on a resource-deplete medium (26). Our results dem-
onstrate that dark carbon fixation is not limited to dilution cul-
tures grown under enhanced substrate depletion conditions but
may be a viable metabolic strategy for diverse taxa under in situ
conditions. Moreover, our work expands on the previously re-
ported diversity of bacteria and archaea active in assimilating dis-
solved inorganic carbon (DIC) in the Arctic during the winter.

The relevance of chemoautotrophy, such as ammonia oxida-
tion by bacteria and archaea, in Arctic waters may increase from

summer to winter, when light levels and photosynthetic primary
production are low (53). The important role of ammonia-oxidiz-
ing Crenarchaeota to carbon fixation and nitrogen cycling in
deeper waters of the world’s oceans is becoming well established
(29, 30, 62). The significance of ammonia oxidation in surface
waters of the ocean has, however, been argued to be minor due to
inhibition from light and competition with phytoplankton for
ammonia (63, 64). Arctic winter surface waters are comparable to
deeper waters in the ocean due to limited light as a consequence of
sea ice coverage, short days, and low inputs of organic matter from
photosynthesis. Further, ammonium concentrations in the Arctic
are higher in winter than in summer (53; this study). Thus, the role
of chemoautotrophy from ammonia oxidation may be notable in
Arctic surface waters during winter, as it is for deeper waters in the
world’s oceans. In agreement with this proposition, Christman et
al. (53) found that ammonia monooxygenase (amoA) genes from
archaea and bacteria in surface waters near Barrow, AK, were al-
most 2 orders of magnitude more abundant in the winter than in
the summer, with most or all Crenarchaeota likely capable of am-
monia oxidation. Metagenomic analysis of winter (August) sur-
face communities near the Antarctic Peninsula were consistent
with bacterial and archaeal autotrophy, with 18 to 37% of the
community belonging to known or putative chemolithoau-
totrophs (65). Similarly, metaproteomic analysis of coastal winter
samples taken from the same region in Antarctica supported the
utilization of chemolithoautotrophic metabolism by ammonia-
oxidizing archaea and nitrite-oxidizing bacteria (66).

In addition to chemoautotrophic contributions to DIC uptake,
all heterotrophic bacteria are thought to assimilate bicarbonate via
pathways involved in anaplerotic reactions of the tricarboxylic
acid cycle. However, carbon fixation by heterotrophs via anaple-
rotic reactions is assumed to account for only 1 to 8% of bacterial
biomass production (67, 68) and thus would play a minor role in
DIC uptake. In contrast, ammonium additions failed to stimulate
bicarbonate assimilation, leading Alonso-Sáez et al. (26) to con-
clude that the high rates of bicarbonate assimilation they observed
in their seawater cultures resulted from dark carbon fixation by
heterotrophs. Although we cannot differentiate between che-
moautotrophic and heterotrophic assimilation with [13C]bicar-
bonate SIP data, both metabolisms likely contributed to our re-
sults. Thus, future research should consider that dark carbon
fixation may be an essential survival strategy for heterotrophs,
chemoautotrophs, mixotrophs, and other organisms in the mi-
crobial loop that rely on archaeal and bacterial production during
the Arctic winter.

To determine the extent to which dark carbon fixation is a
significant aspect of community ecology during the Arctic winter,
quantification of in situ rates of bicarbonate uptake by bacteria
and archaea in the dark is essential (as in reference 69). Prelimi-
nary data from our study area in January suggest a bicarbonate
uptake rate of 0.09 �g C liter�1 day�1 (S. E. Baer and D. A. Bronk,
unpublished data), which is similar to rates observed by L. Alonso-
Sáez (personal communication) in the Beaufort Sea and is within
the range for heterotrophic production rates in the Arctic in the
winter and the spring (70, 71). These scarce uptake measurements
and the phylogenetic diversity of labeled populations in [15N]urea
and [13C]bicarbonate SIP experiments suggest that dark carbon
fixation may be notable for marine Arctic ecosystems during the
winter, highlighting the need for additional observations.

The current study, in conjunction with discoveries made by
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others, continues to call our attention to several unresolved ques-
tions, such as the following. Is a seasonal shift in NH4

� and urea
utilization widespread? What regulates N utilization in the Arctic?
How does dark carbon fixation influence other members of the
ecosystem, such as bacterivores, especially in oligotrophic envi-
ronments such as the Arctic in winter? What are the capacity and
rate of dark DIC assimilation by heterotrophic bacteria? And what
is the role of urea uptake and dark carbon fixation in the N and C
budgets of the world’s oceans? These questions remain poorly
addressed for aerobic chemoautotrophs, mixotrophs, and hetero-
trophs. Recent methodological advances with DNA-SIP, RNA-
SIP, lipid-SIP, MAR-CARDFISH, and metagenomics hold prom-
ise for helping us resolve the importance of these metabolisms on
a seasonal basis in the Arctic Ocean or on a global scale and for
deepening our understanding of the life history strategies adapted
for survival in resource-limited environments.
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