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Abstract—The computational complexity of the conventional
adaptive beamformer is relatively large, and the performance
degrades significantly due to the model mismatch errors and
the unwanted signals in received data. In this paper, an effi-
cient unwanted signal removal and Gauss-Legendre quadrature
(URGLQ)-based covariance matrix reconstruction method is
proposed. Different from the prior covariance matrix reconstruc-
tion methods, a projection matrix is constructed to remove the
unwanted signal from the received data, which improves the
reconstruction accuracy of the covariance matrix. Considering
that the computational complexity of most matrix reconstruction
algorithms is relatively large due to the integral operation,
we proposed a Gauss-Legendre quadrature-based method to
approximate the integral operation while maintaining accuracy.
Moreover, to improve the robustness of the beamformer, the mis-
match in the desired steering vector is corrected by maximizing
the output power of the beamformer under a constraint that the
corrected steering vector cannot converge to any interference
steering vector. Simulation results and prototype experiments
demonstrate that the performance of the proposed beamformer
outperforms the compared methods and is much closer to the
optimal beamformer in different scenarios.

Index Terms—Covariance matrix reconstruction, desired signal
removal, robust adaptive beamforming, Gauss-Legendre quadra-
ture, steering vector estimation.

I. INTRODUCTION

Adaptive beamforming is an array signal processing tech-
nology that has been widely applied in radar, sonar, wireless
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communication, and many other fields [1,2]. It is a data-based
beamformer that adjusts the weights adaptive according to
the received data to extract the desired signal and suppress
the interference and noise [3]. The minimum variance dis-
tortionless response (MVDR) is one of the most well-known
adaptive beamforming algorithms with the assumption that the
desired signal and antenna array structure are known accu-
rately [4]. MVDR has excellent resolution and interference
suppression capability, but it is sensitive to the steering vector
and covariance matrix mismatch. The effectiveness of the
beamformer degrades severely, especially when the desired
signal is presented in the received data, which is inevitable
in practice [5]. Therefore, a lot of work has been spent on
how to improve the robustness of the adaptive beamformer
during the last decades [6]–[8].

Generally, the robust adaptive beamforming techniques can
be divided into several types: diagonal loading technique,
eigenspace-based technique and covariance matrix reconstruc-
tion [9]. The diagonal loading is a widely used method, which
adds a scaled identity matrix to the covariance matrix to
get robustness [10,11]. However, how to choose the optimal
diagonal loading factor is a difficult problem, and it decides
the performance of the beamformer directly. An uncertainty
set of the steering vector is proposed to calculate the diagonal
loading factors precisely in [12]. A simple tridiagonal loading
method called automatic tridiagonal loading is proposed to
enhance the robustness in [13]. The eigenspace-based tech-
nique uses the orthogonality between the steering vector and
subspace to correct the nominal steering vector and estimate
the covariance matrix [14]–[17]. However, it is hard to obtain
an accuracy subspace and the signal subspace can be covered
by the noise subspace when the SNR is low. An eigenvalue
beamformer is proposed to resolve the unknown signal of
interest whose spatial signature lies in a known subspace
in [18]. Ref. [19] uses the subspace fitting and subspace
orthogonality techniques to improve the performance of the
beamformer.

The covariance matrix reconstruction technique is a novel
method, which separates the desired signal component away
from the sample covariance matrix to enhance the robustness
of the beamformer [20,21]. In [7], the interference-plus-noise
covariance matrix (IPNCM) is firstly reconstructed by using
the Capon spectrum to integrate the nominal steering vector
over an angle range that does not contain the desired signal
direction. Based on this, an annulus uncertainty set is proposed
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to replace the normal linear integral interval to improve the ro-
bustness in [22], which gives the algorithm better performance
but higher complexity. The covariance matrix reconstruction
in [23] follows a similar method to [7,22], but the maximum
entropy power spectrum (MEPS) is used to replace the Capon
spectrum to reconstruct the matrix, and the performance is fur-
ther improved. Estimating the interference steering vectors and
power is also widely used to reconstruct the covariance matrix.
Ref. [24] proposes a matrix reconstruction method by search-
ing the interference steering vectors inside the intersection
of the interference subspace. The interference steering vector
is estimated based on ad-hoc parameters in [25]. Ref. [26]
introduces a matrix reconstruction method based on subspace
and gradient vector. The adaptive beamforming method under
the colored noise is discussed in [27]. The impacts of inter-
ference power estimation on robust adaptive beamforming are
firstly analyzed in [28], and a matrix reconstruction method
via simplified interference power estimation is introduced
then. Based on it, two novel IPNCM reconstruction methods
by estimating the power and steering vectors of interference
are proposed in [29]. To reduce the algorithm complexity,
computational efficient matrix reconstruction algorithms are
proposed in [30]–[32]. A low computational complexity beam-
former using the covariance matrix taper technique is proposed
in [33].

In this paper, to further improve the beamformer perfor-
mance and reduce the algorithm’s computational complexity,
an unwanted signal removal and Gauss-Legendre quadrature
(URGLQ)-based covariance matrix reconstruction method is
proposed. In most existing algorithms, the IPNCM is recon-
structed based on the received data, and it contains the desired
signals, which will affect the accuracy of the reconstruction.
Thus, a projection matrix is constructed to remove the desired
signal information from the received data. The quasi-matrix
can be obtained by projecting the received data onto the pro-
jection matrix, which contains little desired information. The
quasi-matrix is then used to reconstruct IPNCM based on the
Capon spectrum. Due to that the quasi-matrix has less desired
information than the received data, the reconstruction of the
IPNCM-based method is more accurate. Considering that the
conventional method to calculate the integral is to approximate
it by polynomial summation, which usually leads to high
computational complexity, a low-complexity algorithm based
on 3-order Gauss-Legendre quadrature (GLQ) is introduced to
simplify the integral operation. It reduces the computational
complexity of the algorithm while maintaining high algebraic
precision. Furthermore, the presumed desired signal steering
vector is corrected by maximizing the beamformer output
power, which is solved under the constraint that the corrected
steering vector can not converge to any interference. By
combining the reconstructed IPNCM and the corrected desired
signal steering vector, the proposed adaptive beamformer can
be obtained. Simulations and experiments are done to explore
the performance of the algorithm. To summarize, we make the
contributions as follows:

• A new method for removing the desired signal from
received signal: A projection matrix is constructed to

remove the desired signal information from the received
data. By projecting the received data onto the projection
matrix, a matrix that contains little desired information
can be obtained.

• A new IPNCM reconstruction method with 3-order
Gauss-Legendre quadrature: Gauss-Legendre quadra-
ture is used to approximate the integral operation and
reduce the computational complexity. And a new IPNCM
reconstruction method based on the desired signal re-
moval and GLQ is proposed.

• A method for robust beamforming: To improve the
robustness and performance of the beamformer, a new
beamforming method based on IPNCM and steering vec-
tor estimation is proposed. Simulations and experimental
results show that the algorithm is effective.

The rest of the paper is organized as follows. The signal
model for the adaptive beamforming technique is introduced in
Section II. The preliminary for IPNCM estimation is discussed
in Section III. In Section IV, the novel algorithm is proposed
in detail. After numerical simulations and experiments, the
performances of the proposed beamformer under different
scenarios are demonstrated in Section V. The conclusion is
presented in Section VI finally.

Notations: Upper-case and lower-case boldface letters de-
note the matrices and column vectors, respectively. (·)T

denotes matrix transpose, while the Hermitian transpose is
denoted as (·)H. E {·} stands for the expectation operator of
stochastic variables. ‖·‖2 denotes the `2 norm. Tr {·} denotes
the trace of a matrix, and it is equal to the sum of the diagonal
elements of the matrix.

II. SIGNAL MODEL FOR ADAPTIVE BEAMFORMING

Without loss of generality, a uniform linear array (ULA)
with M sensors is considered in this paper, as shown in
Fig. 1. The ULA receives P + 1 far-field narrow-band signals
composing of 1 desired signal s0(t) and P interference signals
sp(t) (p = 1, 2, . . . , P ). The received signal sampled at the k-
th snapshot can be expressed as

x(k) , [x1(k), x2(k), . . . , xM (k)]T (1)

= a(θ0)s0(k)︸ ︷︷ ︸
xs(k)

+

P∑
p=1

a(θp)sp(k)︸ ︷︷ ︸
xi(k)

+xn(k),

where xs(k) ∈ CM×1, xi(k) ∈ CM×1 and xn(k) ∈ CM×1

are the desired signal, interference and noise, respectively,
and these signals are statistically independent. xm(k) (m =
1, 2, . . . ,M) represents the received data at the m-th sensor.
θ0 denotes the direction of the desired signal, and θp is that of
the p-th interference. a(θ) defines a steering vector and can
be given as

a(θ) = [a1, a2, · · · , aM ]

= [1, ej
2πd
λ sin θ, . . . , ej

2(M−1)πd
λ sin θ]T,

(2)

where d is the spacing between the adjacent sensors, and λ
denotes the wavelength.
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Fig. 1. Uniform linear array for adaptive beamforming.

An adaptive beamforming method can be adopted to elim-
inate the interference, with a beamforming weight being
w = [w1, w2, ..., wM ]T ∈ CM×1, the beamforming output
can be obtained as

y(k) = wHx(k). (3)

Traditionally, the optimal weight wopt is obtained by
maximizing the output signal-to-interference-plus-noise ratio
(SINR)

SINR =
E
{
wHxsx

H
s w
}

E {wH(xi + xn)(xi + xn)Hw}

=
σ2

s

∣∣wHa(θ0)
∣∣2

wHRINFw
,

(4)

where σ2
s = E

{
|s0(k)|2

}
denotes the power of the desired

signal and RINF ∈ CM×M is the IPNCM. When the inter-
ference and noise are irrelevant, RINF can be expressed as

RINF =

P∑
p=1

σ2
pa(θp)a

H(θp) + σ2
nIM , (5)

where σ2
p is the p-th interference power, σ2

n is the noise power,
and IM is an identity matrix with the size M ×M .

The problem of maximizing (4) is mathematically equiva-
lent to the following minimum variance distortionless respond
(MVDR) beamforming problem

min
w
wHRINFw s.t.wHa(θ0) = 1. (6)

The objective function in (6) is to minimize the power of
the interference and noise, and the constraint ensures that the
power of the desired signal is not affected. The solution to (6)
as the MVDR weight is

wopt =
R−1

INFa(θ0)

aH(θ0)R−1
INFa(θ0)

. (7)

iQ( )
l
qa

l
q

( )qa

a
q

b
q

Fig. 2. The concept of the direction range Θi and the discretized angle θi.

In the practical system, since the received signal x(k)
contains both the desired signal and the interference, the ma-
trix RINF cannot be estimated accurately from x(k). Hence,
we replace RINF by the following sample covariance matrix
(SCM)

R̂ =
1

K

K∑
k=1

x(k)xH(k), (8)

where K is the number of snapshots. Then, substitute (8) into
(7), and the MVDR beamformer turns to the sample matrix
inversion (SMI) beamformer [3]

wSMI =
R̂
−1
a(θ0)

aH(θ0)R̂
−1
a(θ0)

. (9)

However, there is a large gap between the SCM R̂ and the
IPNCM RINF, and the steering vector errors in the practical
array degrade the performance of the beamformer w [34].
Thus, in this paper, we are trying to estimate both the IPNCM
RINF and the desired signal steering vector a(θ0) accurately
from the received signal x(k) to improve the robustness and
the output SINR of the adaptive beamforming method.

III. PRELIMINARY FOR IPNCM ESTIMATION

To estimate the IPNCM precisely, an efficient reconstruction
method based on the Capon spatial spectrum has been pro-
posed in [35], where the IPNCM is estimated by integrating
over an angle range separated from the desired signal direction
[36].

First, the Capon spatial spectrum is obtained by substituting
the MVDR beamformer (9) back into the objective function
of (6)

P (θ) =
1

aH(θ)R̂
−1
a(θ)

. (10)

Second, as shown in Fig. 2, with the curve representing
the steering vector a(θ), the IPNCM is then reconstructed
by integrating the Capon spatial spectrum over the range Θi

between θa and θb

R̂INF =

∮
Θi

P (θ)a(θ)aH(θ)dθ

=

∮
Θi

a(θ)aH(θ)

aH(θ)R̂
−1
a(θ)

dθ,
(11)
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where Θi is the interference range, and the desired signal is
not included. Considering that the accuracy of the direction of
arrival (DOA) algorithm is affected by the resolution of the
array and propagation environment, in this paper, we set the
range of the interference θ̂i as [θ̂i − 8◦, θ̂i + 8◦], where θ̂i is
the presumed interference direction and estimated by the DOA
estimation algorithm. R̂INF collects all interference and noise
information without the effect of the desired signal.

However, the computational complexity of the integral op-
eration in (11) is high and cannot be solved efficiently. Third,
the integral operation can be approximated by a summation as
[37]

R̂INF ≈
L∑
l=1

a(θl)a
H(θl)

aH(θl)R̂
−1
a(θl)

dθ, (12)

where the range Θi is discretized into L angles, the l-th angle
is denoted as θl, and a(θl) is the corresponding steering vector.
The approximation accuracy is dependent on the discretization
number L, and the computational complexity of this method
is O(M2L).

However, in this method, the IPNCM RINF is estimated
from R̂ as shown in the denominator of (12), where the desired
signal component is included. Moreover, a large number of
discretized angles are needed to approximate the integration
operation precisely.

IV. THE PROPOSED URGLQ ALGORITHM

In this section, a novel adaptive beamforming algorithm
based on IPNCM reconstruction is proposed, which contains
3 steps as shown in Fig. 3. First, a projection matrix is
introduced to eliminate the desired signal from the received
one. A quasi-covariance matrix with less desired information
is obtained after the projection and replaces the SCM in (12).
Second, a matrix reconstruction method based on the Gauss-
Legendre quadrature (GLQ) is proposed to replace the integral
operation and reduce the computational complexity. At last,
the steering vector is updated to reduce the model mismatch
by maximizing the output power of the beamformer.

Projection Matrix 

Construction

Quasi Matrix 

Construction

3-order GLQ Steering Vector 

Correction

Robust Adaptive 

Beamformer

IPNCM 

Reconstruction

Step 1 Step 2 Step 3

Fig. 3. The proposed URGLQ algorithm flowchart.

A. Step 1: Projection Matrix Construction

In this step, a projection matrix B is constructed to remove
the desired signal from the received signal x(k), so we have
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Fig. 4. The value of ‖ BHa(θ) ‖22 versus θ, where α = 100 Tr
{
R̂
}

Bxs(k) → 0. Then, the IPNCM can be estimated more
accurately. First, we construct a covariance-like matrix as

C = αa(θ0)aH(θ0) + IM , (13)

where α � 1 is a construction parameter. To ensure good
orthogonality between the constructed matrix and the desired
signal, we set α = 100 Tr

{
R̂
}

in simulations of this paper,
and it can be set as α = 10000 in the practical application to
simplify the calculation. With the eigenvalue decomposition,
we have

C =

M∑
i=1

µipip
H
i , (14)

where µi (i = 1, 2, . . . ,M) denotes the eigenvalue in descend-
ing order, and the eigenvalues can be obtained as µ1 = Mα+1
and µi = 1. pi is the eigenvector corresponding to µi. Then,
the inverse matrix can be expressed as

C−1 =

M∑
i=1

pip
H
i

µi
=

p1p
H
1

Mα+ 1
+

M∑
i=2

p2p
H
2 . (15)

Considering that
∑M
i=1 pip

H
i = IM is fulfilled and α � 1,

C−1 can be further approximated as

C−1 ≈
M∑
i=2

pip
H
i = IM − p1p

H
1 . (16)

Hence, the projection matrix B can be chosen as

B = IM − p1p
H
1 . (17)

A function ‖BHa(θ)‖22 versus θ is plotted in Fig. 4 to
show that the desired signal can be removed efficiently with
the projection matrix B. In this example, 10 sensors are
considered. 1 desired signal comes from the direction 10◦ and
2 interference is assumed to be −30◦ and 40◦. The signal-to-
noise ratio (SNR) and interference-to-noise ratio (INR) in each
sensor are both set as 20 dB, the parameter α = 102 Tr{R̂}.
As shown in Fig. 4, ‖BHa(θ)‖22 is small when θ is located
in the direction of the desired signal, which means that the
desired signal is removed effectively.
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Using the projection matrix B, the quasi-matrix R̃ contain-
ing almost only the interference and noise information can be
calculated as

R̃ =
1

K

K∑
k=1

BHx(k)
[
BHx(k)

]H
+ σ̂2

nIM ,

= BHR̂B + σ̂2
nIM ,

(18)

where σ̂2
n is the estimate of the noise power, and is usually

computed as the minimum eigenvalue of SCM. Then, the
IPNCM can be reconstructed by replacing the R̂ in (11) with
R̃

R̂INF =

∮
Θi

a(θ)aH(θ)

aH(θ)R̃
−1
a(θ)

dθ. (19)

B. Step 2: IPNCM Reconstruction Using Gauss-Legendre
Quadrature

Since the complexity of (12) grows rapidly as the number
of discretization L increases, an efficient matrix reconstruction
method based on the Gauss-Legendre quadrature is proposed.

Gauss-Legendre quadrature is a kind of Gauss interpolation
integral formula and is one of the highest algebraic precision
methods in the interpolation-type quadrature formulas [38,39].
Additionally, for the integrands which can be well approx-
imated by polynomials, the Gauss-Legendre quadrature can
approximate operation with high precision [40]. A generalized
interpolation-type Gaussian quadrature formula with N points
can be written as∫ b

a

f(z)dz =

N−1∑
n=0

Anf(zn) + E, (20)

where zn ∈ [a, b] (n = 0, 1, . . . , N − 1) is the Gauss integral
node, a ∈ R and b ∈ R are the lower and upper bounds of
the integral respectively, E is the integral remainder (residual
error), and An is the weight, which can be calculated as

An =

∫ b

a

h(z)

(z − zn)∂h(z)
∂z

dz (21)

where h(z) = (z−z0)(z−z1) · · · (z−zn) is a polynomial in z.
It is worth mentioning that the Gauss theorem states that h(z)
must be orthogonal to any polynomials of less than power N
[41].

Moreover, the N -th normal Legendre polynomial is written
as

PN (z) =
1

2NN !

∂N (z2 − 1)N

∂zN
. (22)

We can choose the roots of the Legendre polynomial as the
integral nodes in the Gaussian quadrature formula (20), i.e.,
letting zn as the roots of PN (z) = 0, and construct the GLQ.

Taking the trade-off between computational complexity
and algebraic precision into account, we can choose 3-order
GLQ [42] to calculate the integral. Additionally, the integral
interval is chosen as [−1, 1] to facilitate calculation, i.e.,
a = −1 and b = 1. Then, Eq. (20) can be rewritten as∫ 1

−1

f(z)dz = A0f(z0) +A1f(z1) +A2f(z2) + E, (23)

where z0 = −
√

15/5, z1 = 0, z2 =
√

15/5 are the roots of
the 3-order Legendre polynomial, i.e.,

P3(z) =
1

2
(5z3 − 3z) = 0. (24)

Next, letting h(z) = PN (z), the weights An in (21) can be
further obtained as

An =

∫ 1

−1

PN (z)

(z − zn)
∂PN (zn)

∂z

dz =
2

(1− z2
n)
[
∂PN (zn)

∂z

]2 .
(25)

Thus, using 3-order Legendre polynomial, the weights can be
obtained as A0 = 5/9, A1 = 8/9, A2 = 5/9.

Finally, by combining the roots xn and the weights An,
Eq. (23) can be approximated as∫ 1

−1

f(z)dz ≈ 5

9
f

(
−
√

15

5

)
+

8

9
f(0) +

5

9
f

(√
15

5

)
(26)

Furthermore, using a simple linear transformation, a general
integral can be approximated by a 3-order GLQ as∫ b

a

f(z)dz ≈ b− a
2

[
5

9
f(l0) +

8

9
f(l1) +

5

9
f(l2)

]
, (27)

where ln = 1
2 (a+ b) + 1

2zn(b− a).
Therefore, the IPNCM (19) can be calculated by the 3-order

GLQ as

R̂INF =

∮
Θi

a(θ)aH(θ)

a(θ)HR̃
−1

INFa(θ)
dθ

=
θb − θa

2

[
5

9
f(l0) +

8

9
f(l1) +

5

9
f(l2)

]
,

f(θ) =
a(θ)aH(θ)

aH(θ)R̃
−1

INFa(θ)
,

(28)

where θa and θb are the lower and upper bounds of the integral
angular range Θi = [θa, θb], and ln = 1

2 (θa + θb) + 1
2xn(θb −

θa). Additionally, when calculating the IPNCM by the 3-order
GLQ, the integral angular range Θi is the range of interference.

C. Step 3: Desired Signal Steering Vector Estimation

In practice, the presumed desired steering vector a(θ0),
which is simply obtained by the DOA estimation, is usu-
ally different from the actually desired steering vector â(θ0)
due to the complex propagation environment. Therefore, a
steering vector estimation method based on maximizing the
beamformer output power is proposed in this step.

To maximize the output SINR Eq. (4), an optimization
problem in Eq. (6) can be obtained and solved by Eq. (7).
By substituting both the Capon beamformer (7) and the
reconstructed IPNCM R̂INF (28) into Eq. (6), the output power
of the beamformer can be obtained as [7]

P (θ0) =
1

a(θ0)HR̂
−1

INFa(θ0)
, (29)

which is a function of the steering vector a(θ0), and a(θ0)
can be estimated by maximizing P (θ0). Suppose that â(θ0) =
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Algorithm 1 Proposed URGLQ Adaptive Beamforming

1: Input: Array received data {x(k)}Kk=1

2: Calculate the SMI R̂ = 1
K

∑K
k=1 x(k)x(k)H;

3: Construct the covariance-like matrix C =
αa(θ0)aH(θ0) + IM , α = 100 Tr

{
R̂
}

;

4: Construct the projection matrix B = C−1 = IMp1p
H
1 ;

5: Calculate quasi-matrix R̃ = BHR̂B + σ̂2
nIM ;

6: Reconstruction the IPNCM R̂INF based on GLQ,
R̂INF = θb−θa

2 [A0f(l0) + A1f(l1) + A2f(l2)], f(θ) =
a(θ)aH(θ)

aH(θ)R̃
−1

a(θ)
, θ ∈ Θi;

7: Correct the desired signal steering vector by solving a
QCQP (31);

8: Design proposed adaptive beamformer wprop =
R̂INFâ(θ0)

âH(θ0)R̂INFâ(θ0)
;

9: Output: Proposed robust adaptive beamforming weight
vector wprop

a(θ0)+e, where e is the mismatch vector, and the optimization
problem of estimating â(θ0) can be expressed as

min
e

(a(θ0) + e)HR̂
−1

INF(a(θ0) + e) (30)

s.t. (a(θ0) + e)HR̂INF(a(θ0) + e) ≤ aH(θ0)R̂INFa(θ0),

where the constraint prevents the estimated steering vector a
from converging to the range Θi.

The mismatch vector e can be further decomposed into e⊥
and e‖, where e⊥ is orthogonal to a(θ0), while the e‖ is
parallel to a(θ0). Consider that e‖ is a scaled copy of â(θ0),
so it does not affect the beamforming performance. Thus, (30)
can be transformed into

min
e⊥

(a(θ0) + e⊥)HR̂
−1

INF(a(θ0) + e⊥)

s.t. aH(θ0)e⊥ = 0 (31)

(a(θ0) + e⊥)HR̂INF(a(θ0) + e⊥) ≤ aH(θ0)R̂INFa(θ0),

where the equality constraint maintains the orthogonality
between e⊥ and a. Since the optimization problem (31) is
a feasible quadratically constrained quadratic programming
(QCQP) problem, it can be efficiently solved by a convex
optimization toolbox.

Finally, substituting the reconstructed IPNCM R̂INF with
the estimated steering vector â(θ0) back into (7), the adaptive
beamformer can be calculated as

wprop =
R̂
−1

INFâ(θ0)

âH(θ0)R̂
−1

INFâ(θ0)
. (32)

Based on the above discussion, the detailed procedures of
the proposed adaptive beamforming algorithm are described
in Algorithm 1. In the proposed URGLQ algorithm, matrix
R̃ is obtained from received data by projecting SCM R̂ onto
C. Then, an IPNCM reconstruction method based GLQ and
R̃ is proposed to reduce the computational complexity and
maintain excellent performance. Combining the reconstructed
IPNCM R̂ and corrected desired steering vector â(θ0), the
proposed beamformer is obtained.

D. Computational Complexity Analysis

Since the proposed beamforming algorithm consists of three
parts: projection matrix construction, IPNCM reconstruction
using Gauss-Legendre quadrature and desired signal steering
vector estimation, its computational complexity is determined
by the three parts. Furthermore, the IPNCM reconstruction
part, which is based on the Gauss-Legendre quadrature, only
needs three addition operations and has relatively low com-
plexity. Thus, the computational complexity of the proposed
algorithm mainly depends on the projection matrix con-
struction and steering vector estimation. In projection matrix
construction, the computational complexity is determined by
the eigenvalue decomposition operation of the covariance-
like matrix C (13), which is O(M3). In steering vector
estimation, a QCQP (31) is solved, and the complexity is
O(M3.5). Thus, the computational complexity of the proposed
algorithm is O(M3.5). Meanwhile, to reconstruct the IPNCM,
the computational complexity of LINEAR [7], VOLUME [22],
and ISVPE [25] is O(max(LM2,M3.5)), while SUB [24] is
O(max(LM2,M3)) and MEPS [28] is O(LM2). Note that,
the L denotes the number of discretization points in the angular
domain, which is much larger than the number of sensors M
in general. Thus, the complexity of the proposed algorithm is
much less than most beamformers.

V. SIMULATION AND EXPERIMENTAL RESULTS

The parameters in this simulation are shown in Table I. In
this part, the ULA with M = 10 omnidirectional sensors,
which are spaced half-wavelength, is considered. For each
antenna sensor, the additive noise is modeled as a complex
Gaussian process, which is spatially and temporally white
with zero mean and unit variance. One desired signal and two
interference are impinging from θ0 = 10◦, θ1 = −30◦ and
θ2 = 40◦, respectively. In all the examples, the INR is set as 20
dB. The interference and desired signal ranges are set as Θi =
[θ1−8◦, θ1 +8◦]∪θ2−8◦, θ2 +8◦] and Θs = [θ0−8◦, θ0 +8◦].
The number of discretizations L is set as 20 in all examples
except example 1. The simulation parameters are summarized
in TABLE I. The code is available online https://github.com/
chenpengseu/robust-adaptive-beamforming-2022.git.

TABLE I
THE PARAMETERS OF THE SIMULATION

Parameter Value

The number of sensors M 10
The spacing d half-wavelength

DOA of desired signal θ0 10◦

DOA of interference (θ1, θ2) (−30◦, 40◦)
INR 20 dB

Desired signal range Θs [θ0 − 8◦, θ0 + 8◦]
Interference range Θs [θ1 − 8◦, θ1 + 8◦] ∪ θ2 − 8◦, θ2 + 8◦]

The number of discretizations L 20

The proposed algorithm URGLQ is compared with the
following 5 different matrix reconstruction methods:
• The optimal algorithm MVDR [4], which assumes the

desired signal steering vector and antenna array structure
are known precisely;

https://github.com/chenpengseu/robust-adaptive-beamforming-2022.git
https://github.com/chenpengseu/robust-adaptive-beamforming-2022.git
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• Interference covariance matrix reconstruction beam-
former (LINEAR) [7], which is the first one to recon-
struct the IPNCM by linear integration over the Capon
spectrum, where the parameter is ε =

√
0.1 in LINEAR;

• The covariance matrix reconstruction beamformer based
on volume integration (VOLUME) [22], which replaces
the linear integration with a volume integration based on
LINEAR, where the parameters are ε = 0.3, φlm ⊆ [0, π],
and ρ = 0.9;

• The interference covariance matrix reconstruction beam-
former based on annular uncertainty set (AUS) [43],
which estimates the desired steering vector by vector
space projection, and improves the robustness of the
algorithm, where ρ = 0.9, φlm ⊆ [0, π];

• The covariance matrix reconstruction based on subspace
projection (SUB) [24], which reconstructs the IPNCM
based on subspace and eigenvalue decomposition;

• The covariance matrix reconstruction with maximum
entropy spectrum (MEPS) [23], which replaces the Capon
spectrum in [7] with maximum entropy spectrum to
improve the performance of beamformer.

All the optimization problems in the simulation and experi-
ment are solved by the convex optimization toolbox CXV [44].
300 Monte Carlo simulations are performed in each scenario
and the desired signal is always included in the received data
of each snapshot. The number of snapshots is fixed to K = 30
when the SNR changes. Similarly, the SNR is fixed to 20 dB
when the number of snapshots changes.

A. Example 1: The Comparison Between the Polynomial Sum-
mation and GLQ.

First, to verify the effectiveness of GLQ algorithm, we
compare the performance of GLQ with the polynomial sum-
mation algorithm versus the number of discretizations. In this
example, the input SNR and INR are set as 20 dB.

10 20 30 40 50 60 70 80 90 100
Number of discretizations

22

23

24

25

26

27

28
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32
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B
)
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Fig. 5. The performance comparison of GLQ method and summation versus
the number of discretizations.

The performance comparison between the proposed method
and polynomial summation is plotted in Fig. 5. As it shows,
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Fig. 6. Output SINR versus input SNR in example 1.

compared with the GLQ, the performance of the polynomial
summation method is consistently worse, while the complexity
is much higher than GLQ. Furthermore, with the increase
in the number of discretizations, the performance of the
polynomial summation method improves slowly, which means
a sufficiently large number of discretizations is needed to
achieve the same performance as GLQ. Based on this, the
proposed algorithm has better precision with an approximate
integral operation, while the integrands and power spectral
density of the incident signal is not smooth. Thus, com-
pared with the normal polynomial summation method with
the computational complexity O(M2L), the proposed GLQ
method only needs three addition operations but gets much
more excellent performance. By using GLQ, the computational
complexity of the proposed adaptive beamforming is greatly
reduced while the algorithm maintains high performance.

B. Example 2: Random Signal and Interference DOA Mis-
match

First, the effect of random DOA mismatch is considered.
The mismatch of both the desired signal and interference is
uniformly distributed in [−4◦, 4◦]. Thus, the desired signal is
θ0 ∈ [6◦, 14◦], two interference are θ1 ∈ [−34◦,−26◦] and
θ2 ∈ [36◦, 44◦], respectively. The DOA changes from run to
run but keeps fixed from snapshot to snapshot.

The performance of the output SINR versus the input SNR
is shown in Fig. 6. To better distinguish the differences among
each algorithm, Fig. 7 demonstrates the deviation between the
optimal and other beamformers. The two figures show that
the proposed algorithm has a better performance compared
to other beamformers in the case of random DOA mismatch.
Although at the low SNR, the MEPS performs a little better
than the proposed, the proposed algorithm has an excellent
performance in most cases. The performance of SUB gets
decline when the SNR is lower. It may be caused by the
projection operation since the subspace is constructed based
on the eigenvalue decomposition, which is inaccurate when the
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Fig. 7. Deviation from optimal SINR versus SNR in example 1.
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Fig. 8. Output SINR versus the number of snapshots in example 1.

SNR is low. Fig. 8 depicts the output SINR when the input
SNR is fixed at 20 dB and the number of snapshots is varied.
It can be found that the performances of all the algorithms
fluctuate slightly when the snapshot number changes, while
the proposed algorithm always has the best performance and
is more robust.

To make it more general, we test the proposed algorithm
when the desired signal angle is close to the interference
direction. In this simulation, the directions of desired signal
and interference are set as θ0 = 5◦, θ1 = −5◦, and θ2 = 15◦,
respectively. Other parameters are the same as previous sim-
ulations, and the results are shown in Fig. 9. The proposed
algorithm has excellent performance, but the performance of
the compared algorithms declines obviously, demonstrating
that the proposed algorithm has better robustness.

-10 -5 0 5 10 15 20 25 30

SNR(dB)

-40

-30

-20

-10

0

10

20

30

40

50

S
IN

R
(d

B
)

Optimal

Proposed

AUS

VOLUME

LINEAR

SUB

MEPS

Fig. 9. Output SINR versus input SNR for closer angles.

C. Example 3: Mismatch due to Gain and Phase Perturbations

In this example, the influence of gain and phase pertur-
bations on array output is considered. The gain and phase
mismatches on the m-th sensor can be described as

am(θ) = (1 + γm)ej(πsinθ(m−1)+δm), (33)

where γm ∈ N (0, 0.052) denotes the zero-mean random
gain perturbation of m-th sensor, and δm ∈ N (0, (0.025π)2)
denotes the zero-mean random phase perturbation of m-th
sensor.
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Fig. 10. Output SINR versus input SNR in example 2.

Fig. 10 reveals the performance curves versus the input
SNR, while Fig. 11 shows the deviation between the optimal
method and the tested algorithm, respectively. As they show,
even if all the beamformers have great performances, the
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Fig. 11. Deviation from optimal SINR versus SNR in example 2.
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Fig. 12. Output SINR versus the number of snapshots in example 2.

proposed algorithm gets the best in the case of gain and phase
perturbations. The SUB algorithm has excellent performance
only when the SNR is higher than 15 dB. Fig. 11 shows that
the proposed algorithm has the performance which is closest to
the optimal. The performance versus the number of snapshots
is demonstrated in Fig. 12. The AUS and VOLUME have
almost the same performance, while the proposed performs the
best regardless of the number of snapshots. Additionally, as
the simulation results show, all the algorithms can not achieve
the optimal output SINR. It is mainly determined that the
optimal SINR is calculated by error-free parameters, while
the beamforming algorithms work in a complex environment
with errors.
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Fig. 13. Output SINR versus input SNR in example 3.
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Fig. 14. Deviation from optimal SINR versus SNR in example 3.

D. Example 4: Mismatch due to Steering Vector Random
Error

The effect of mismatch due to steering vector random error
is investigated in this example. Considering that each actual
steering vector is generated by adding a random error vector
to the nominal steering vector as

ai = ai + ξi, (34)

where ξi is the random error corresponding to ai, and can be
expressed as

ξi =
ρi√
M

[ejφ
i
0 , ejφ

i
2 , . . . , ejφ

i
M−1 ]T, (35)

where the Euclidean norm ρi follows a uniform distribution in
the interval [0,

√
0.3], and the phases φim,m = 0, 1, . . . ,M−1

are uniformly distributed in [0, 2π) and are independent with
each other.
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Fig. 15. Output SINR versus the number of snapshots in example 3.

Fig. 16. The experimental scene.

Fig. 13 and Fig. 14 display the performance of the tested
algorithms versus the input SNR. It can be found that in
the case of steering vector random error, even if the MEPS
and other algorithms can effectively reduce the error, the
proposed algorithm demonstrates an obvious improvement
compared to other beamformers. The AUS performs with a
good effect which is the same as VOLUME. Fig. 15 displays
the output SINR versus the number of snapshots, which shows
the proposed algorithm has excellent robustness.

E. Experimental Data

In this section, an experiment is carried out by an S-band
ULA system. The system consists of 4 received sensors and 2
transmitting sensors, where the transmitting sensors are both
about 4 meters away from the receiving sensors, and the
spacing between the two transmitting sensors is about 4.2
meters. The spacing of adjacent receiving sensors is half-
wavelength. Signals are generated by a field-programmable
gate array (FPGA) signal generator and consist of Gaussian
white noise with 10 MHz bandwidth. The received signals
are transmitted to the computer through the network cable for
subsequent processing. The experimental scene is presented in
Fig. 16.
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Fig. 17. The beampattern for the different algorithms with experimental data.

According to the experimental data, we get the two trans-
mitting sensors’ locations at −54.8◦ and 8.1◦ of the receiving
sensors by using the Capon spectrum, respectively. The trans-
mitting sensor at −54.8◦ is chosen as the interference, and
the other is chosen as the target. The SNR and INR of the
received signal are both 5 dB.

The performance of the proposed algorithm is evaluated and
compared with AUS, VOLUME, LINEAR, SUB, and MEPS
methods. The beampatterns of all the tested algorithms with
the experimental data are shown in Fig. 17. We can find
that almost all the algorithms can suppress the interference
efficiently except the SUB method, which is mainly caused by
the low SNR, and is consistent with the previous simulation
results. The proposed algorithm forms a deeper null around
the location of the interference, which is the same as MEPS
algorithm but more precisely than MEPS, since the null is
closer to the direction of the interference. Furthermore, the
proposed algorithm maintains the desired signal well, it only
forms little attenuation in the direction of the desired signal,
while the VOLUME method forms a nearly 10 dB attenuation
of the desired signal.

VI. CONCLUSION

In this work, a novel adaptive beamforming algorithm
based on the IPNCM reconstruction is proposed. A projection
matrix is constructed to remove the desired signal from the
received data to reconstruct the IPNCM accurately. To reduce
the algorithm complexity, the Gauss-Legendre quadrature is
introduced. Based on the reconstructed covariance matrix, the
presumed steering vector of the signal is corrected by maxi-
mizing the array output power. The computational complexity
of the proposed algorithm is O(M3.5), which is less than most
robust adaptive beamformers. The simulation results show that
compared to other beamformers, the proposed beamformer can
achieve excellent performance with less computation and is
always close to the optimal. Meanwhile, the experimental data
shows the proposed algorithm performs better in a practical
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environment. Future work will explore novel reconstruction
methods of IPNCM to improve the robustness of the beam-
former further and reduce the computational complexity.
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