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Abstract

Background: The topical role of uric acid and its relation to cardiovascular disease, renal disease,

and hypertension is rapidly evolving. Its important role both historically and currently in the clinical

clustering phenomenon of the metabolic syndrome (MS), type 2 diabetes mellitus (T2DM),

atheroscleropathy, and non-diabetic atherosclerosis is of great importance.

Results: Uric acid is a marker of risk and it remains controversial as to its importance as a risk

factor (causative role). In this review we will attempt to justify its important role as one of the many

risk factors in the development of accelerated atherosclerosis and discuss its importance of being

one of the multiple injurious stimuli to the endothelium, the arterial vessel wall, and capillaries. The

role of uric acid, oxidative – redox stress, reactive oxygen species, and decreased endothelial nitric

oxide and endothelial dysfunction cannot be over emphasized.

In the atherosclerotic prooxidative environmental milieu the original antioxidant properties of uric

acid paradoxically becomes prooxidant, thus contributing to the oxidation of lipoproteins within

atherosclerotic plaques, regardless of their origins in the MS, T2DM, accelerated atherosclerosis

(atheroscleropathy), or non-diabetic vulnerable atherosclerotic plaques. In this milieu there exists

an antioxidant – prooxidant urate redox shuttle.

Conclusion: Elevations of uric acid > 4 mg/dl should be considered a "red flag" in those patients

at risk for cardiovascular disease and should alert the clinician to strive to utilize a global risk

reduction program in a team effort to reduce the complications of the atherogenic process

resulting in the morbid – mortal outcomes of cardiovascular disease.

Background
While the topicality of serum uric acid (SUA) being a risk
factor is currently controversial [1,2], there is little contro-
versy regarding its association as a risk marker associated
with cardiovascular (CVD) and renal disease (especially in
patients with hypertension, diabetes, and heart failure).

SUA seems to be a graded marker of risk for the develop-
ment of coronary heart disease (CHD) or cerebrovascular
disease and stroke compared with patients with normal
uric acid levels and especially those in the lower 1/3 of its
normal physiological range [1,3-13].
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LK Niskanen's et al. recently published article has demon-
strated new information regarding this subject. They were
able to demonstrate that elevations of SUA levels were
independent of variables commonly associated with gout
or the metabolic syndrome in association with CVD mor-
tality in middle aged men [3].

In 1951, Gertler MM and White PD et al. sat out to deter-
mine the clinical aspects of premature coronary heart dis-
ease in 100 male patients 40 years old and younger. Their
findings were increased mesomorphic body build, shorter
stature, increased anterior posterior chest wall diameter,
and increased cholesterol and uric acid (5.13 +/- .11 vs.
4.64 +/-.06) as compared to the normal population [14].

A much larger trial (1967) confirmed the initial interest in
SUA and CVD with the publication of the early, large
(5,127 participants), epidemiologic, seminal Framing-
ham study. This classical paper by Kannel et al. noted an
elevated SUA was also associated with an increased risk of
coronary heart disease for men aged 30–59 [15]. In addi-
tion to the important finding of elevations in lipoproteins
(specifically cholesterol levels greater than 250 mg/100
ml) being associated with CHD, there also appeared a def-
inite association of elevated SUA, which was associated
with an increase in the incidence rate of CHD. The above
authors also noted that subjects in this study with evi-
dence of impaired carbohydrate metabolism or disor-

dered purine metabolism could be assumed to have
accelerated atherogenesis [15].

This controversy regarding SUA being a risk factor or a risk
marker is not as important as understanding its overall
role in the association with endothelial cell damage, dys-
function, decreased endothelial nitric oxide (eNO) bioa-
vailability, and how SUA interacts with other substrate
toxicities and increased reactive oxygen species (ROS) of
the A-FLIGHT-U acronym, which result in accelerated
atherosclerosis (table 1). Johnson RJ et al. have nicely
demonstrated that hyperuricemia predicts cardiovascular
events in the general population, the hypertensive popu-
lation, and patients with pre-existing CVD. Furthermore
hyperuricemia predicts the development of future hyper-
tension [11].

There are certain clinical clustering groups with increased
cardiovascular risk, which have associated hyperuricemia
(table 2). Non-diabetic patient groups with accelerated
atherosclerosis, T2DM patient groups with accelerated
atherosclerosis (atheroscleropathy), congestive heart fail-
ure patient groups with ischemic cardiomyopathy, meta-
bolic syndrome patient groups (with hyperinsulinemia,
hypertension, dyslipidemia, impaired glucose tolerance,
and obesity), renal disease patient groups, hypertensive
patient groups, African American patient groups, patient
groups taking diuretics, and patient groups with excessive

Table 1: A-FLIGHT-U ACRONYM Identification of multiple metabolic toxicities and injurious stimuli responsible for reactive oxygen 

species production. (figure 2)

A Angiotensin II (also induces PKC-β isoform)
Amylin (hyperamylinemia) / amyloid toxicity
AGEs/AFEs (advanced glycosylation/fructosylation endproducts)
Apolipoprotein B
Antioxidant reserve compromised
Absence of antioxidant network
Aging
ADMA (Asymmetrical DiMethyl Arginine)

F Free fatty acid toxicity: Obesity toxicity: Triad

L Lipotoxicity – Hyperlipidemia – Obesity toxicity: Triad

I Insulin toxicity (endogenous hyperinsulinemia-hyperproinsulinemia)
Inflammation toxicity

G Glucotoxicity (compounds peripheral insulin resistance) reductive stress
Sorbitol/polyol pathway
Pseudohypoxia (increased NADH/NAD ratio)

H Hypertension toxicity
Homocysteine toxicity
hs-CRP

T Triglyceride toxicity: Obesity toxicity: Triad

U Uric Acid toxicity:Antioxidant early in physiological range and a conditional prooxidant late when elevated through the 
paradoxical (antioxidant → prooxidant)

URATE REDOX SHUTTLE

Endothelial cell dysfunction with eNOS uncoupling, decreased eNO and increased ROS.

Vulnerable atherosclerotic plaque milieu of being acidic, proinflammatory, excess metal ions (Fe) (Cu) from vasa 
vasorum rupture and red blood cell plasma membranes due to intraplaque hemorrhage and plaque thrombus 
formation.
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alcohol usage. Each of these clustering groups has meta-
bolic mechanisms that may help to explain why SUA may
be elevated (table 2). In addition to the recurring finding
of an elevated tension of oxidative- redox stress and ROS
in many of the groups is the importance of the MS and
insulin resistance.

Uric acid, MS, T2DM, and atheroscleropathy
The importance of hyperuricemia and the clustering phe-
nomenon of the metabolic syndrome were first described
by Kylin in 1923 when he described the clustering of three
clinical syndromes: hypertension, hyperglycemia, and
hyperuricemia [16]. In 1988, Reaven GM described the
important central role of insulin resistance in the seminal
Banting lecture where he described Syndrome X, which
has now become known as the metabolic syndrome (MS)
and/or the insulin resistance syndrome (IRS) [17]. Seven
decades after the clustering phenomenon was reported by
Kylin (1993), Reaven GM and Zavaroni I et al. suggested
that hyperuricemia be added to the cluster of metabolic

and hemodynamic abnormalities associated with insulin
resistance and/or hyperinsulinemia of Syndrome X [18].

The four major players in the MS are hyperinsulinemia,
hypertension, hyperlipidemia, and hyperglycemia. Each
member of this deadly quartet has been demonstrated to
be an independent risk factor for CHD and capable of
working together in a synergistic manner to accelerate
both non-diabetic atherosclerosis and the atheroscleropa-
thy associated with MS, PD, and T2DM.

In a like manner, hyperuricemia, hyperhomocysteinemia,
ROS, and highly sensitive C- reactive protein (hsCRP)
each play an important role in expanding the original Syn-
drome X described by Reaven in the atherosclerotic proc-
ess. The above quartet does not stand alone but interacts
in a synergistic manner resulting in the progression of
accelerated atherosclerosis and arterial vessel wall remod-
eling along with the original players and the A-FLIGHT-U
toxicities (table 1). The MS of clinical clustering has been

Table 2: Hyperuricemia: clinical clusters at cardiovascular risk

GROUPS Abbreviated Mechanisms

Patients with CVD
Accelerated atherosclerosis
Congestive heart failure

Increased apoptosis – necrosis of the arterial vessel wall and capillary resulting in increased purine 
metabolism and hyperuricemia.
Increased oxidative – redox stress
Antioxidant – Prooxidant Paradox:
Urate Redox Shuttle

Patients with (T2DM)
Accelerated atherosclerosis
(Atheroscleropathy)

Acting through obesity and insulin resistance.
Accelerated atherosclerosis with increased vascular cell apoptosis and inflammatory necrosis with 
increased purine metabolism resulting in hyperuricemia and increased oxidative stress through 
ischemia-reperfusion and xanthine oxidase.
Additional reductive stress associated with glucotoxicity and pseudohypoxia.
Increased oxidative-redox stress
Antioxidant – Prooxidant Paradox:
Urate Redox Shuttle

Obesity – Insulin resistance
Hyperinsulinemia – Insulin toxicity
Metabolic Syndrome (figure 1):
Hyperinsulinemia
Hypertension
Hyperlipidemia dyslipidemia, obesity
Hyperglycemia

Leptin may induce hyperuricemia.
Insulin increases sodium reabsorption and is tightly linked to urate reabsorption.
Increased oxidative – redox stress
Antioxidant – Prooxidant Paradox:
Urate Redox Shuttle

Men and Postmenopausal females Estrogen is uricosuric

Renal diseases Decreases in GFR increases uric acid levels

Hypertension Urate reabsorption increased in setting of increased renal vascular resistance, microvascular disease 
predisposes to tissue ischemia that leads to increased urate generation (excess purine metabolism) and 
reduced excretion (due to lactate competing with urate transporter in the proximal tubule).
Increased oxidative – redox stress
Antioxidant – Prooxidant Paradox:
Urate Redox Shuttle

African American Unknown (assumed genetic causes as yet unidentified)

Diuretic use Volume contraction promotes urate reabsorption

Alcohol use (in excess) Increases urate generation and decreased urate excretion
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renamed multiple times over the past 16 years indicating
its central importance to cardiovascular disease and was
included in the recent National Cholesterol Educational
Program – Adult Treatment Panel III (NCEP ATP III) clin-
ical guidelines in order to assist the clinician in using this
important tool to evaluate additional cardiovascular risk
[16-19].

Hyperinsulinemia and Hyperamylinemia

Insulin, proinsulin, and amylin individually and synergis-
tically activate the renin – angiotensin system (RAS) with
subsequent increase in Ang II. Ang II is the most potent
endogenous inducer of NAD(P)H oxidase, increasing
NAD(P)H, which increases vascular – intimal reactive
oxygen species (ROS) and superoxide (O2

-•) [19,20].
There are many deleterious effects of hyperinsulinemia in
addition to its being responsible for sodium, potassium,
water, and urate retention in proximal kidney (table 3)
[21].

Hypertension

Hypertension is strongly associated with hyperuricemia.
SUA levels are elevated in hypertension and are present in
25% of untreated hypertensive subjects, 50% of subjects
taking diuretics, and greater than 75% of patients with
malignant hypertension [22]. Potential mechanisms
involved with the association of hyperuricemia and
hypertension include the following: 1. Decreased renal
blood flow (decreased GFR) stimulating urate reabsorp-
tion, 2. Microvascular (capillary) disease resulting in local
tissue ischemia. 3. Ischemia with associated increased lac-
tate production that blocks urate secretion in the proximal
tubule and increased uric acid synthesis due to increased
RNA-DNA breakdown and increased purine (adenine and
guanine) metabolism, which increases uric acid and ROS
through the effect of xanthine oxidase (XO). 4. Ischemia
induces increased XO production and increased SUA and
ROS. These associations with ischemia and XO induction

may help to understand why hyperuricemia is associated
with preeclampsia and congestive heart failure.

Because endothelial dysfunction, local oxidant genera-
tion, elevated circulating cytokines, and a proinflamma-
tory state are common in patients with cardiovascular
disease and hypertension there is an increased level of oxi-
dative – redox stress within vascular tissues. Oxidative –
redox stress results in impaired endothelium-dependent
vasodilation with quenching of endothelial nitric oxide
(eNO) and allows the endothelium to become a net pro-
ducer of ROS specifically superoxide as the endothelial
nitric oxide synthase (eNOS) enzyme uncouples to pro-
duce superoxide instead of eNO. This similar mechanism
applies equally well to that associated with type 2 diabetes
and congestive heart failure [11,19]. It is important to
note that allopurinol and oxypurinol (XO inhibitors) are
capable of reversing the impaired eNO production in
both heart failure [23-25] and type 2 diabetes mellitus
(T2DM) [26].

Lin KC et al. were able to demonstrate that blood pressure
levels were predictive for cardiovascular disease incidence
synergistically with serum uric acid level [27]. Two sepa-
rate laboratories have demonstrated the development of
systemic hypertension in a rat model of hyperuricemia
developed with a uricase inhibitor (oxonic acid) after sev-
eral weeks of treatment [28,29]. This hypertension was
associated with increased renin and a decrease in neuro-
nal nitric oxide synthase in the juxtaglomerular apparatus.
Prevention of this hypertension was accomplished by an
ACE inhibitor and to a lesser extent L-arginine. These find-
ings indicate an interacting role of the renin- angiotensin
system and the NOS enzyme. Hypertension, neural nitric
oxide synthase (nNOS) and renin changes were also pre-
vented by maintaining uric acid levels in the normal range
with allopurinol or benziodarone (a uricosuric).

Table 3: Deleterious effects of hyperinsulinemia (HI)

1. HI, hyperproinsulinemia, and hyperamylinemia synergistically activate RAS with subsequent increase in Ang II, renin, and 
aldosterone.

2. HI promotes Na+ and H2O retention, which increases blood volume and pressure. In turn this activates the reabsorption of uric acid 
resulting in elevation of SUA. In turn increased SUA has been shown to increase tubular reabsorption of Na+.

3. HI increases membrane cation-transport increasing intracellular Ca++, which increases tone and pressure.

4. HI activates the sympathetic nervous system.

5. HI stimulates vSMC proliferation and migration and remodeling.

6. HI increases the number of AT-1 receptors.

7. HI creates cross talk between the insulin receptor and AT-1 receptor, resulting in a more profound Ang II effect.

8 HI promotes PI3 kinase Akt-MAP kinase Shunt. Impairing the metabolic (PI3 kinase-AKT pathway while promoting the MAPkinase 
remodeling pathway.

9. HI induces Ang II, which promotes the MAP kinase pathway and remodeling. 

10. HI induces Ang II, which is the most potent stimulus for production of NAD(P)H oxidase with reactive oxygen species generation 
(superoxide production) and resultant vascular oxidative stress.
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These above models have provided the first challenging
evidence that uric acid may have a pathogenic role in the
development of hypertension, vascular disease, and renal
disease [11].

Obesity

Obesity has reached epidemic proportions in the past dec-
ade and represents one of the confounding factors associ-
ated with the MS and T2DM [19,30] (figure 1).

Hyperuricemia has been associated with increasing body
mass index (BMI) in recent studies and are even apparent
in the adolescent youth [30-33].

Leptin levels are elevated and associated with insulin
resistance in MS and early T2DM. Bedir A et al. have
recently discussed the role of leptin as possibly being a
regulator of SUA concentrations in humans and even sug-
gested that leptin might be one of the possible candidates
for the missing link between obesity and hyperuricemia
[34]. Furthermore, hypertriglyceridemia and free fatty
acids are related to hyperuricemia independently of obes-
ity and central body fat distribution [30,33] (table 1: (T):
Triglyceride toxicity and (F): Free fatty acid toxicity).

Hyperglycemia: Impaired glucose tolerance: Type 2 

Daibetes Mellitus (T2DM)

Glucotoxicity places an additional burden of redox stress
on the arterial vessel wall and capillary endothelium.
Hyperglycemia induces both an oxidative stress (glucose
autoxidation and advanced glycosylation endproducts
(AGE) – ROS oxidation products) and a reductive stress
through pseudohypoxia with the accumulation of NADH
and NAD(P)H in the vascular intima [19,35,36].

This redox stress consumes the natural occurring local
antioxidants such as: SOD, GPX, and catalase (table 4).
Once these local intimal antioxidants are depleted uric
acid can undergo the paradoxical antioxidant – prooxi-
dant switch or the urate redox shuttle [37,38]

Homocysteine

A direct relation between homocysteine levels and SUA
levels is known to occur in patients with atherosclerosis.
Not only do these two track together (possibly reflecting
an underlying elevated tension of redox stress) but also
may be synergistic in creating an elevated tension of redox
stress, especially in the rupture prone, vulnerable athero-
sclerotic plaque with depletion of local occurring antioxi-
dants [39-41] (figure 1).

Metabolic syndrome: hyperuricemiaFigure 1
Metabolic syndrome: hyperuricemia. This image focuses on the "H" phenomenon consisting of the four major players in 
the MS: Hyperinsulinemia, Hypertension, Hyperlipidemia and the Lipotoxicity – Obesity toxicity triad, and Hyperglycemia. 
These players have frequently been referred to as the "deadly quartet" and the "H" phenomenon. It is important to note the 
central position of insulin resistance in this image and also hyperuricemia. Hyperuricemia is flanked by hyperhomocysteinemia 
to indicate its importance in the MS. Each of these players has its own important role and this image helps to portray the clus-
tering effect and synergism to contribute to an overall increased oxidative – redox stress to the endothelium of the 
vasculature.
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Atherosclerosis and Atheroscleropathy

Non-diabetic atherosclerosis and atheroscleropathy
(accelerated atherosclerosis associated with MS, prediabe-
tes, and T2DM) are each impacted with the elevation of
uric acid [42,43].

Prothrombotic milieu

In MS and T2DM there is an observed increased thrombo-
genecity, hyperactive platelets, increased PAI-1 (resulting
in impaired fibrinolysis), and increased fibrinogen in the
atherosclerotic milieu associated with the dysfunctional
endothelial cell. Additionally, the vulnerable atheroscle-
rotic plaque includes increased tissue factor, which
increases the potential for thrombus formation when the
plaque ruptures and exposes its contents to the lumen
[19,42,43].

Uric acid as one of the multiple injurious stimuli 
to the endothelium of the arterial vessel wall and 
capillary
The upper 1/3 of the normal physiologic – homeostatic
range (> 4 mg/dl) and abnormal elevations (> 6.5 or 7
mg/dl in men and > 6.0 mg/dl in women) in SUA defi-
nitely should be considered as one of the multiple injuri-
ous stimuli to the arterial vessel wall and capillary, which
may contribute to endothelial dysfunction and arterial –
capillary vessel wall remodeling through oxidative – redox
stress [2,3,19] (figure 2). There are multiple injurious
stimuli to the endothelium and arterial vessel wall in the
accelerated atherosclerosis associated with MS and T2DM
(atheroscleropathy)(figure 2). It is important to note that
redox stress occurs upstream from inflammation by acti-
vating the nuclear transcription factor: NFkappa B [39].
Over time, individually and synergistically injurious stim-
uli of the A-FLIGHT-U acronym (table 1) result in the
morbid – mortal complications of MS, T2DM, atheroscle-
ropathy, and non-diabetic atherosclerosis.

Table 4: Antioxidants: enzymatic – nonenzymatic inactivation of free radicals.

ENZYMATIC ANTIOXIDANTS

SUPER OXIDE DISMUTASE (SOD)
Reactions catalyzed: [O2

- + SOD → H2O2 + O2]
Various isoforms: ecSOD (extracellular); Mn-SOD (mitochondrial); Cu/Zn-SOD (intracellular)

CATALASE – Location: peroxisome.
Reaction catalyzed: [2 H2O2 + catalase → 2 H2O + O2]

GLUTATHIONE PEROXIDASE – Location: mitochondrion, cytosol, and systemic circulation.
Glutathione (GSH or glutamyl-cysteinyl-glycine tripeptide): the reduced -SH of GSH is oxidized to disulfide GSSG.
Glutathione peroxidase-catalyzed reation: [GSH + 2 H2O2 → GSSG + H2O + O2]
Glutathione reductase-catalyzed reaction: [GSSG → GSH] at the expense of [NADH → NAD+] and/or [NAD(P)H → NAD(P)+]

ENZYMATIC – NONENZYMATIC INACTIVATION OF FREE RADICALS. NITRIC OXIDE SYNTHASE Location: membrane.

Isoforms:

eNOS (endothelial): good

nNOS (neuronal): good

iNOS (inducible-inflammatory): bad

O2
- and nitric oxide (NO) are consumed in this process with the creation of reactive nitrogen species (RNS).

O2
- + NO → ONOO-(peroxynitrite) + tyrosine → nitrotyrosine.

Nitrotyrosine reflects redox stress and leaves a measurable footprint.
NO the good; O2

• the bad; ONOO- the ugly *

NONENZYMATIC ANTIOXIDANTS

Vitamins (A, C, and E):
Thiols: Sulfhydryl (-SH)-containing molecules.
Albumin: Is an antioxidant because of it is a thiol-containing macromolecule.
Apoproteins: Ceruloplasmin and transferrin. Bind copper and iron in forms, which cannot participate in the Fenton reaction.
Uric acid:Early on in the atherosclerotic process in physiologic ranges: antioxidant.
PARADOX:Late in elevated range prooxidant with loss of supporting antioxidants above and in a milieu of oxidative – redox stress within the 
atherosclerotic intima. In MS, T2DM and advanced vulnerable atherosclerotic plaques SOD, Catalase, and GPX are depleted. The Urate Redox 
Shuttle.
PARADOX: antioxidants may become prooxidant in a certain milieu.

* Beckman JS and Koppenol WH [1996] Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Part 1): 
C1424–C1437
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Each of these A-FLIGHT-U toxicities may be viewed as an
independent risk marker – factor and is known to have a
synergistic effect when acting in concert [19,21,39,42,43].
Additionally, low density lipoproteins such as LDL-cho-
lesterol are capable of being modified and retained within
the intima through a process of oxidative modification
through free radicals, hypochlorous acid, peroxynitrite,
and selected oxidative enzymes such as xanthine oxidase,
myeloperoxidase and lipoxygenase (table 5) [19,44-50].

The simple concept that SUA in patients with CVD, MS,
T2DM, hypertension, and renal disease may reflect a
compensatory mechanism to counter oxidative stress is
intriguing. However, this does not explain why higher
SUA levels in patients with these diseases are generally
associated with worse outcomes [11].

An antioxidant – prooxidant urate redox shuttle

Antioxidants may become prooxidants in certain situa-
tions [51-55]. Therefore we propose the existence of an
antioxidant – prooxidant redox shuttle in the vascular
milieu of the atherosclerotic macrovessel intima and the
local sub endothelial capillary interstitium of the micro-
vessel [38,51,52] (figure 3).

SUA in the early stages of the atherosclerotic process is
known to act as an antioxidant and may be one of the
strongest determinates of plasma antioxidative capacity
[53].

Multiple injurious stimuli to the endothelium in non-diabetic atherosclerosis and atheroscleropathyFigure 2
Multiple injurious stimuli to the endothelium in non-diabetic atherosclerosis and atheroscleropathy. This image 
portrays the anatomical relationship between the endothelium, intima, media and the adventitia. Each of these layers plays an 
important role in the development of accelerated atherosclerosis (atheroscleropathy) of the MS, PD, and overt T2DM. Of all 
the different layers the endothelium seems to play a critical and central role. It is placed at a critical location and acts as an 
interface with nutrients and toxic products not only at its luminal surface of musculo-elastic arteries but also at the endothelial 
extracellular matrix interface of the interstitium in capillary beds. The intima, sandwiched between the medial muscular layer 
and the endothelium, is the site of atherosclerosis, intimopathy, and the atheroscleropathy associated with MS, PD, and overt 
T2DM. There are multiple injurious stimuli to the endothelium including ROS and hyperuricemia. It is important to note that 
redox stress occurs upstream from inflammation by activating the nuclear transcription factor: NFkappa B [39]. Over time, 
individually and synergistically these injurious stimuli (table 1) result in the morbid – mortal vascular complications of MS, 
T2DM, atheroscleropathy, and non-diabetic atherosclerosis.
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Table 5: Origin, enzymatic pathways of reactive oxygen species, and their oxidized products.

[Origin and Location]
Enzymatic Pathways:

[ROS]
Potent Oxidants:

[Products]
Oxidized lipids and proteins:

Mitochondrial Respiratory
Chain

O2
•

-OH•

Oxidized lipids, proteins, nucleic acids, and autoxidation 
byproducts

Inflammatory Macrophage
Membranous NAD(P)H
Oxidase

O2
•

-OH•

H2O2

Advanced lipoxidation endproducts (ALE)
ortho o-tyrosine
meta m-tyrosine

Granular Myeloperoxidase
(MPO)

Hypochlorous acid
HOCL
Tyr (Tyrosine)
NO2

3-Chlorotyrosine
di-Tyrosine
NO2

-(Nitrotyrosine)

Macrophage

Nitric Oxide Synthase (iNOS)
Inducible (iNOS)
Large bursts – uncontrolled

ONOO• NO2
-(Nitrotyrosine)

Endothelial Cell

Nitric Oxide Synthase (NOS)
Constitutive (cNOS)
eNOS → NO
nNOS → NO
Small bursts – controlled

NO + O2
• → ONOO•

ONOO•

NO2
-(Nitrotyrosine)

NO2
-(Nitrotyrosine)

eNOS-derived NO NO The GOOD * Natural-occurring, local-occurring, chain-breaking, antioxidant

Superoxide O2
• The BAD * Toxic effects of ROS on proteins, lipid, nucleic acids

Peroxynitrite ONOO• The UGLY * Toxic effects of ROS on proteins, lipid, nucleic acids

Hypochlorous acid HCLO The UGLY * Toxic effects of ROS on proteins, lipid, nucleic acids

Restoration of eNO
Via the eNOS reaction

Antioxidant
Antioxidant

Prevention of the toxic effects of ROS

* Beckman JS and Koppenol WH [1996] Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Part 1): 
C1424–C1437

Antioxidant – prooxidant urate redox shuttleFigure 3
Antioxidant – prooxidant urate redox shuttle. The antioxidant – prooxidant urate redox shuttle is an important concept 
to understand regarding accelerated atherosclerosis. This shuttle is important in understanding the role of how the antioxidant 
uric acid becomes prooxidant in this environmental milieu, which results in its damaging role to the endothelium and arterial 
vessel wall remodeling with an elevated tension of oxidative – redox stress (ROS), accelerated atherosclerosis and arterial ves-
sel wall remodeling.
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However, later in the atherosclerotic process when SUA
levels are known to be elevated (in the upper 1/3 of the
normal range >4 mg/dl and outside of the normal range
>6 mg/dl in females and 6.5–7 mg/dl in males) this previ-
ously antioxidant (SUA) paradoxically becomes prooxi-
dant. This antioxidant – prooxidant urate redox shuttle
seems to rely heavily on its surrounding environment
such as timing (early or late in the disease process),
location of the tissue and substrate, acidity (acidic – basic
– or neutral ph), the surrounding oxidant milieu, deple-
tion of other local antioxidants, the supply and duration
of oxidant substrate and its oxidant enzyme. In the accel-
erated atherosclerotic – vulnerable plaque the intima has
been shown to be acidic [54], depleted of local antioxi-
dants with an underlying increase in oxidant stress and
ROS (table 1) (table 5) and associated with uncoupling of
the eNOS enzyme and a decrease in the locally produced
naturally occurring antioxidant: eNO and endothelial
dysfunction. This process is also occurring within the
microvascular bed at the level of the capillary within vari-
ous affected hypertensive and diabetic end organs
[19,51,52] (figure 4).

Nitric oxide and vitamin C have each been shown to
inhibit the prooxidant actions of uric acid during copper-
mediated LDL-C oxidation [38,55].

The ANAi acronym

We have devised an acronym, to better understand the
increase in SUA synthesis within the accelerated athero-
sclerotic plaque termed: ANAi. A – apoptosis, N – necro-
sis, A – acidic atherosclerotic plaque, angiogenesis (both
induced by excessive redox stress), i – inflammation,
intraplaque hemorrhage increasing red blood cells – iron
and copper transition metal ions within the plaque.

This acronym describes the excess production of purines:
(A) adenine and (G) guanine base pairs from RNA and
DNA breakdown due to apoptosis and necrosis of vascu-
lar cells in the vulnerable – accelerated atherosclerotic
plaques; allowing SUA to undergo the antioxidant –
prooxidant urate redox shuttle (figure 3).

Reactions involving transitional metal ions such as copper
and iron are important to the oxidative stress within
atherosclerotic plaques. Reactions such as the Fenton and
Haber- Weiss reactions and similar reactions with copper
lead to an elevated tension of oxidative – redox stress.

FENTON REACTION:

Fe2+ + H
2
O

2 
→ Fe3+ + OH• + OH-

Uncoupling of the eNOS reactionFigure 4
Uncoupling of the eNOS reaction. It is important to understand the role of endothelial dysfunction in accelerated athero-
sclerosis and even more important to understand the role of eNOS enzyme uncoupling and how it relates to MS, PD, T2DM, 
and non-diabetic atherosclerosis. Oxygen reacts with the eNOS enzyme in which the tetrahydrobiopertin (BH4) cofactor has 
coupled nicotinamide dinucleotide phosphate reduced (NAD(P)H) emzyme with L-arginine to be converted to nitric oxide 
(NO) and L-citrulline. When uncoupling occurs the NAD(P)H enzyme reacts with O2 and the endothelial cell becomes a net 
producer of superoxide (O2

•) instead of the protective endothelial NO. This figure demonstrates the additional redox stress 
placed upon the arterial vessel wall and capillaries in patients with MS, PD, and overt T2DM.
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Fe3+ + H
2
O

2 
→ Fe2+ + OOH• + H+

HABER – WEISS REACTION:

H
2
O

2 
+ O

2
- → O2 + OH- + OH

H
2
O

2 
+ OH- → H

2
O + O

2
- + H+

The hydroxyl radicals can then proceed to undergo further
reactions with the production of ROS through addition
reactions, hydrogen abstraction, electron transfer, and
radical interactions. Additionally, copper (Cu3+ - Cu2+ -
Cu1+) metal ions can undergo similar reactions with for-
mation of lipid peroxides and ROS. This makes the leak-
age of iron and copper from ruptured vasa vasorum very
important in accelerating oxidative damage to the vulner-
able accelerated atherosclerotic plaques, as well as,
providing a milieu to induce the SUA antioxidant –
prooxidant switch within these plaques [42].

These same accelerated – vulnerable plaques now have the
increased substrate of SUA through apoptosis and
necrosis of vascular cells (endothelial and vascular
smooth muscle cells) and the inflammatory cells (prima-
rily the macrophage and to a lesser extent the
lymphocyte).

Endothelial function and endothelial nitric oxide (eNO)

The endothelium is an elegant symphony responsible for
the synthesis and secretion of several biologically active
molecules. It is responsible for regulation of vascular tone,
inflammation, lipid metabolism, vessel growth (angio-
genesis – arteriogenesis), arterial vessel wall – capillary
sub endothelial matrix remodeling, and modulation of
coagulation and fibrinolysis. One particular enzyme sys-
tem seems to act as the maestro: The endothelial nitric
oxide synthase (eNOS) enzyme and its omnipotent prod-
uct: endothelial nitric oxide (eNO) (figure 2).

The endothelial nitric oxide synthase (eNOS) enzyme
reaction is of utmost importance to the normal function-
ing of the endothelial cell and the intimal interstitium.
When this enzyme system uncouples the endothelium
becomes a net producer of superoxide and ROS instead of
the net production of the protective antioxidant proper-
ties of eNO (table 6) (figure 4).

There are multiple causes for endothelial uncoupling in
addition to hyperuricemia and the antioxidant –
prooxidant urate redox shuttle: A-FLIGHT -U toxicities,
ROS, T2DM, prediabetes, T1DM, insulin resistance, MS,
renin angiotensin aldosterone activation, angiotensin II,
hypertension, endothelin, dyslipidemia – hyperlipi-
demia, homocysteine, and asymmetrical dimethyl
arginine (ADMA) [19,39,43].

Xanthine oxidase – oxioreductase (XO) has been shown
to localize immunohistochemically within atherosclerotic
plaques allowing the endothelial cell to be equipped with
the proper machinery to undergo active purine metabo-
lism at the plasma membrane surface, as well as, within
the cytoplasm and is therefore capable of overproducing
uric acid while at the same time generating excessive and
detrimental ROS [56] (figure 3,4). To summarize this
section:

The healthy endothelium is a net producer of endothelial
nitric oxide (eNO).

The activated, dysfunctional endothelium is a net pro-
ducer of superoxide (O2

-) associated with MS, T2DM, and
atheroscleropathy [43].

Uric acid and inflammation
Uric acid and highly sensitive C reactive protein (hsCRP)
each now share a respected inclusion as two of the novel
risk markers – risk factors associated with the metabolic
syndrome. It is not surprising that these two markers of
risk track together within the MS. If there is increased

Table 6: The positive effects of eNOS and eNO

• Promotes vasodilatation of vascular smooth muscle.

• Counteracts smooth muscle cell proliferation.

• Decreases platelet adhesiveness.

• Decreases adhesiveness of the endothelial layer to monocytic WBCs (the "teflon effect").

• Anti-inflammatory effect.

• Anti-oxidant effect. It scavenges reactive oxygen species locally, and acts as a chain-breaking antioxidant to scavenge ROS.

• Anti-fibrotic effect. When NO is normal or elevated, MMPs are quiescent; conversely if NO is low, MMPs are elevated and active.

MMPs are redox sensitive.

• No inhibits prooxidant actions of uric acid during copper-mediated LDL oxidation.

• NO has diverse anti-atherosclerotic actions on the arterial vessel wall including antioxidant effects by direct scavenging of ROS – RNS acting as 
chain-breaking antioxidants and it also has anti-inflammatory effects.
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apoptosis and necrosis of vascular cells and inflammatory
cells in accelerated – vulnerable atherosclerotic plaques as
noted in the above section then one would expect to see
an increase in the metabolic breakdown products of RNA
and DNA with arginine and guanine to its end product of
uric acid. SUA elevation may indeed be a sensitive marker
for underlying vascular inflammation and remodeling
within the arterial vessel wall and capillary interstitium.

Is it possible that SUA levels could be as similarly predic-
tive as hsCRP since it is a sensitive marker for underlying
inflammation and remodeling within the arterial vessel
wall and the myocardium [57].

Should the measurement of SUA be part of the national
cholesterol educational program adult treatment panel III
and future IV (NCEP ATPIII or the future NCEP ATPIV)
clinical guidelines (especially in certain ethnic groups
such as females and in the African Americans)?

Uric acid is known to induce the nuclear transcription fac-
tor (NF-kappaB) and monocyte chemoattractant protein-
1 (MCP-1) [58]. Regarding TNF alpha it has been shown
that SUA levels significantly correlate with TNF alpha con-
centrations in congestive heart failure and as a result
Olexa P et al. conclude that SUA may reflect the severity of
systolic dysfunction and the activation of an inflamma-
tory reaction in patients with congestive heart failure [59].
Additionally, uric acid also stimulates human mononu-
clear cells to produce interleukin-1 beta, IL-6, and TNF
alpha [11].

Tamakoshi K et al. have shown a statistically significant
positive correlation between CRP and body mass index
(BMI), total cholesterol, triglycerides, LDL-C, fasting glu-
cose, fasting insulin, uric acid, systolic blood pressure, and
diastolic blood pressure and a significant negative correla-
tion of CRP with HDL-C in a study of 3692 Japanese men
aged 34–69 years of age. They conclude that there are a
variety of components of the MS, which are associated
with elevated CRP levels in a systemic low-grade inflam-
matory state [60].

CRP and IL-6 are important confounders in the relation-
ship between SUA and overall mortality in elderly per-
sons, thus when evaluating this association the potential
confounding effect of underlying inflammation and other
risk factors should be considered [61].

Uric acid and chronic renal disease
Hyperuricemia can be the consequence of increased uric
acid production or decreased excretion. Any cause for
decreased glomerular filtration, tubular excretion or
increased reabsorption would result in an elevated SUA.
Increased SUA has been found to predict the development

of renal insufficiency in individuals with normal renal
function [11]. In T2DM hyperuricemia seems to be asso-
ciated with MS and with early onset or increased progres-
sion to overt nephropathy, whereas hypouricemia was
associated with hyperfiltration, and a later onset or
decreased progression to overt nephropathy [62]. An ele-
vated SUA could be advantageous information for the cli-
nician when examining the global picture of T2DM in
order to detect those patients who might gain from more
aggressive global risk reduction to delay or prevent the
transition to overt nephropathy. Elevated SUA contributes
to endothelial dysfunction and increased oxidative stress
within the glomerulus and the tubulo-interstitium with
associated increased remodeling fibrosis of the kidney
and as noted earlier in this discussion to be pro-athero-
sclerotic and proinflammatory. This would have a direct
effect on the vascular supply affecting macrovessels,
particularly the afferent arterioles. The glomeruli would
be affected also through the effect of uric acid on the
glomerular endothelium with endothelial dysfunction
due to oxidative – redox stress and result in glomerular
remodeling. SUA's effect on hypertension would have an
additional affect on the glomeruli and the tubulo-intersti-
tium with remodeling changes and progressive deteriora-
tion of renal function. Increased ischemia – ischemia
reperfusion would activate the xanthine oxidase mecha-
nism and contribute to an increased production of ROS
through H2O2 generation and oxidative stress within the
renal architecture with resultant increased remodeling.
Hyperuricemia could increase the potential for urate crys-
tal formation and in addition to elevated levels of soluble
uric acid could induce inflammatory and remodeling
changes within the medullary tubulo-interstitium.

A recent publication by Hsu SP et al. revealed a J-shaped
curve association with SUA levels and all-cause mortality
in hemodialysis patients [63]. They were able to
demonstrate that decreased serum albumin, underlying
diabetic nephropathy, and those in the lowest and highest
quintiles of SUA had higher all-cause mortality. It is inter-
esting to note that almost all of the large trials with SUA
and cardiovascular events have demonstrated this same J
shaped curve regarding all-cause mortality with the nadir
of risk occurring in the second quartile [11].

Johnson RJ et al. have speculated that the increased risk for
the lowest quartile reflects a decreased antioxidant activ-
ity, while the increased risk at higher levels reflects the role
of uric acid in inducing vascular disease and hypertension
through the mechanism of the previously discussed anti-
oxidant prooxidant urate redox shuttle. This would sug-
gest that treatment with xanthine oxidase inhibitors
(allopurinol) should strive to bring levels to the 3–4 mg/
dl range and not go lower [11].
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Nutritional support for hyperuricemia
While it is not within the scope of this review to discuss
this important topic with an in- depth examination, it is
important to discuss some prevailing concepts and pro-
vide some clinical nutritional guidelines for hyperuri-
cemia (table 8).

Moderation is the key element in any diet approaching
hyperuricemia. The nutritional "gold standard" for the
treatment of hyperuricemia has been "the low purine
diet". This traditional diet has recently come into question
as it may limit the intake of high purine vegetables and
fruits. Vegetables and fruits are important for the fiber
they supply in addition to naturally occurring
antioxidants. Recently, of greater importance is control-
ling obesity through generalized caloric restriction and
increased exercise to combat the overnutrition and under-
exercise of our modern-day society, as well as, controlling
the consumption of alcohol [64].

Nutritional support by the nutritionist and the diabetic
educator (an integral part of the health care team) is of

utmost importance when dealing with the metabolic syn-
drome, T2DM, and the cardiovascular atherosclerotic
afflicted patients in order to obtain global risk reduction,
because we are what we eat.

Conclusion
From a clinical standpoint, hyperuricemia should alert the
clinician to an overall increased risk of cardiovascular dis-
ease and especially those patients with an increased risk of
cardiovascular events. Hyperuricemia should therefore be
a "red flag" to the clinician to utilize a team effort in
achieving an overall approach to obtain a global risk
reduction program through the use of the RAAS acronym
(table 7).

SUA may or may not be an independent risk factor espe-
cially since its linkage to other risk factors is so strong,
however there is not much controversy regarding its role
as a marker of risk, or that it is clinically significant and
relevant.

Table 7: The RAAS Acronym: GLOBAL RISK REDUCTION

R Reductase inhibitors (HMG-CoA). Decreasing modified LDL-cholesterol, i.e., oxidized, acetylated LDL-cholesterol. Decreasing 
triglycerides and increasing HDL-cholesterol.
Improving endothelial cell dysfunction. Restoring the abnormal Lipoprotein fractions.
Thus, decreasing the redox and oxidative stress to the arterial vessel wall and myocardium.

Redox stress reduction

A AngII inhibition or receptor blockade:
ACEi-prils. ARBs-sartans. Both inhibiting the effect of angiotensin-II locally as well as systemically. Affecting hemodynamic stress 
through their antihypertensive effect as well as the deleterious effects of angiotensin II on cells at the local level – injurious stimuli -
decreasing the stimulus for O2

• production. Decreasing the A-FLIGHT toxicities. The positive effects on microalbuminuia and 
delaying the progression to end stage renal disease. Plus the direct-indirect antioxidant effect within the arterial vessel wall and 
capillary. Antioxidant effects.
Aspirin antiplatelet, anti-inflammatory effect on the diabetic hyperactive platelet.
Adrenergic (non-selective blockade) in addition to its blockade of prorenin → renin conversion.
Amlodipine – Felodipine with calcium channel blocking antihypertensive effect, in addition to their direct antioxidant effects.

Redox stress reduction

A Aggressive control of diabetes to HbA1c of less than 7. This usually requires combination therapy with the use of insulin 
secretagogues, insulin sensitizers (PPAR-gamma agonists), biguanides, alpha-glucosidase inhibitors, and ultimately exogenous insulin.
Decreasing modified LDL cholesterol, i.e., glycated-glycoxidated LDL cholesterol. Improving endothelial cell dysfunction. Also 
decreasing glucotoxicity and the oxidative-redox stress to the intima and pancreatic islet.
Aggressive control of blood pressure, which usually requires combination therapy, including thiazide diuretics to attain JNC 7 
guidelines.
Aggressive control of homocysteine with folic acid with its associated additional positive effect on re-coupling the eNOS 
enzyme reaction by restoring the activity of the BH4 cofactor to run the eNOS reaction via a folate shuttle mechanism and once again 
produce eNO.
Aggressive control of uric acid levels with xanthine oxidase inhibitors (allopurinol and oxypurinol) should be strongly considered 
in view of the prevailing literature in order to achieve more complete: Global Risk Reduction

Redox stress reduction

S Statins. Improving plaque stability (pleiotropic effects) independent of cholesterol lowering. Improving endothelial cell dysfunction. 
Moreover, the direct/indirect antioxidant anti-inflammatory effects within the islet and the arterial vessel wall promoting stabilization 
of the unstable, vulnerable islet and the arterial vessel wall.
Style. Lifestyle modification (weight loss, exercise, and change eating habits).
Stop Smoking.

Redox stress reduction
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Regarding the MS and epidemiologic evaluations: A mul-
tivariate model could well eliminate hyperuricemia as an
independent risk factor even if it were contributing to the
overall phenotypic risk of the syndrome. Additionally, we
must remember that it was Reaven that called for the
inclusion of hyperuricemia to Syndrome X we now call
MS – insulin resistance syndrome -IRS in 1993 [18].

A quote by Johnson RJ and Tuttle KR is appropriate for the
concluding remarks:

"The bottom line is that measuring uric acid is a useful test
for the clinician, as it carries important prognostic
information. An elevation of uric acid is associated with
an increased risk for cardiovascular disease and mortality,
especially in women" [64].
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