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 40 

ABSTRACT 41 

Purpose: To evaluate the feasibility of using an objective computer aided system to assess 42 

bladder cancer stage in CT Urography (CTU). 43 

Materials and Methods: A data set consisting of 84 bladder cancer lesions from 76 CTU cases 44 

was used to develop the computerized system for bladder cancer staging based on machine 45 

learning approaches. The cases were grouped into two classes based on pathological stage ≥T2 46 

or below T2, which is the decision threshold for neoadjuvant chemotherapy treatment clinically. 47 

There were 43 cancers below stage T2 and 41 cancers at stage T2 or above. All 84 lesions were 48 

automatically segmented using our previously developed auto-initialized cascaded level sets (AI-49 

CALS) method. Morphological and texture features were extracted. The features were divided 50 

into subspaces of morphological features only, texture features only, and a combined set of both 51 

morphological and texture features. The data set was split into Set 1 and Set 2 for two-fold cross 52 

validation. Stepwise feature selection was used to select the most effective features. A linear 53 

discriminant analysis (LDA), a neural network (NN), a support vector machine (SVM), and a 54 

random forest (RAF) classifier were used to combine the features into a single score.  The 55 

classification accuracy of the four classifiers was compared using the area under the receiver 56 

operating characteristic (ROC) curve (Az

Results: Based on the texture features only, the LDA classifier achieved a test A

). 57 

z of 0.91 on Set 58 

1 and a test Az of 0.88 on Set 2. The test Az of the NN classifier for Set 1 and Set 2 were 0.89 59 
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and 0.92, respectively. The SVM classifier achieved test Az of 0.91 on Set 1 and test Az of 0.89 60 

on Set 2. The test Az

Conclusion: The predictive model developed in this study shows promise as a classification tool 64 

for stratifying bladder cancer into two staging categories: greater than or equal to stage T2 and 65 

below stage T2.  66 

 of the RAF classifier for Set 1 and Set 2 was 0.89 and 0.97, respectively. 61 

The morphological features alone, the texture features alone, and the combined feature set 62 

achieved comparable classification performance. 63 

 67 

Keywords: Radiomics, Computer-Aided Diagnosis, CT Urography, Bladder Cancer Staging, 68 

Segmentation, Feature Extraction, Classification, Machine Learning. 69 

 70 

 71 

1. INTRODUCTION 72 

Bladder cancer is one of the most common cancers affecting both men and women1.  It can cause 73 

substantial morbidity and mortality among the patients with the disease. In 2017, it is estimated 74 

that there will be 79,030 new cases and 16,870 deaths from bladder cancer1. One in 42 75 

Americans will be diagnosed with bladder cancer in their lifetime and 9 out of 10 patients with 76 

this cancer are over the age of 551,2. The average age of diagnosis is 731. Approximately half of 77 

all bladder cancer cases are first found while the cancer is still confined to the inner wall of the 78 

bladder and has not invaded into deeper layers or distant parts of the body1. Bladder cancer has a 79 

recurrence rate of 50-80 percent and requires constant surveillance. This makes it the most 80 

expensive cancer to treat, requiring a total of $4.1 billion yearly, on a per patient basis in the 81 

United States2. Bladder cancer can be divided into three categories that include noninvasive, 82 

superficial, and invasive. The initial treatment for bladder cancer is transurethral resection of the 83 

bladder tumor (TURBT), which removes the tumor from the bladder and also helps provide 84 

information regarding the stage of the cancer3-5. Bladder cancer is staged in order to determine 85 

treatment options and estimate a prognosis for the patient. Accurate staging provides the 86 

physician with information about the extent of the cancer. The tumor stages T refer to the depth 87 

of the penetration of the tumor into the layers of the bladder. T0 indicates no primary tumor, T1 88 

indicates that the tumor has invaded the connective tissue under the epithelium, T2 indicates that 89 

the tumor has invaded the bladder muscle, T3 indicates that the tumor has invaded the fatty 90 
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tissue around the bladder, and T4 indicates that the tumor has spread beyond the fatty tissue into 91 

other areas such as the pelvic wall, uterus, prostate or abdominal wall6 (Fig. 1). An example of 92 

bladder cancer stage T2 is presented in Fig. 2.  93 

The accurate staging of bladder cancer is crucial to providing proper treatment to the patient. 94 

Superficial diseases (under stage T2) can be managed with less aggressive treatment than 95 

invasive diseases (stage T2 and above)3-5. There are two types of staging for bladder cancer - 96 

clinical and pathological. The clinical stage is the physicians’ best estimate for the extent of the 97 

cancer based on physical exams and imaging. The pathological stage is determined by analysis 98 

of the tissue collected from the cancer after biopsy, tumor resection or bladder cystectomy. The 99 

accuracy of the staging depends on the complete resection of the tumor. Incomplete resection of 100 

the tumor may reduce the reliability of the staging at the beginning of the tumor management 101 

process7. Bladder cystectomy ensures that the entire bladder tumor is present for pathological 102 

review; therefore, the pathological staging is based on the histological review of the cystectomy 103 

specimen6. Adjuvant chemotherapy is used in patients with locally advanced bladder cancer in 104 

order to reduce the chances of cancer recurrence following radical cystectomy8. Neoadjuvant 105 

chemotherapy is used prior to radical cystectomy in order to reduce the tumor size before 106 

surgical removal; for example, a cisplatin-based regimen has been shown to decrease the 107 

probability of finding extravesical disease and improve survival when compared to radical 108 

cystectomy alone8-10.  109 
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Figure 1.  Bladder cancer stage grading scale definition.  

 110 

Correct staging of bladder cancer is crucial for the decision of neoadjuvant chemotherapy 111 

treatment and minimizing the risk of under-treatment or over-treatment. Patients with stage T2 to 112 

T4 carcinomas of the bladder are recommended for treatment with neoadjuvant chemotherapy. 113 

Studies found that up to 50% of the patients who are estimated to have a T1 disease at clinical 114 

staging are under-staged and later upstaged after radical cystectomy11-14. This inaccuracy in 115 

staging can partly be attributed to the subjectivity and variability of clinicians in utilizing various 116 

diagnostic information. The purpose of this study is to develop an objective decision support 117 

system that can potentially reduce the risk of under-treatment or over-treatment by merging 118 

radiomic information in a predictive model using statistical outcomes and machine learning. 119 

 120 
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Figure 2.  Urinary Bladder CT. The bladder cancer is marked and clearly visible. The cancer 

stage is T2.  

 121 

 122 

 123 

2. MATERIALS AND METHODS 124 

2.1 Data Set 125 

The data collection protocol was approved by our institutional review board and is HIPAA 126 

compliant. Patient informed consent was waived for this retrospective study. Our data set 127 

consisted of 84 bladder cancer lesions from 76 bladder cancer CTU cases collected from patient 128 

files without additional imaging for research purpose.  The CTU scans in this data set were 129 

acquired at an image slice interval of 0.625 to 1.25 mm using 120 kVp and 120-280 mA. The 130 
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data set consisted of 22 non-contrast cases (22 lesions), 22 early phase contrast-enhanced cases 131 

(22 lesions), and 32 delayed-phase contrast-enhanced cases (40 lesions). Per imaging protocol, 132 

the early phase contrast-enhanced images are obtained 60 seconds following the initiation of a 133 

contrast injection.  The delayed-phase contrast-enhanced images are obtained 12 min after the 134 

initiation of contrast injection. The type of scan a patient receives is determined by the protocol 135 

of the hospital performing the scan. Our data set includes patients referred to our hospital for 136 

treatment so that some scans were performed at outside hospitals and followed different scanning 137 

protocols, resulting in scans with inconsistent contrast-enhancement phase. A patient may also 138 

get a non-contrast scan due to risk factors, such as allergy to the contrast media, asthma, renal 139 

insufficiency, significant cardiac disease, or anxiety15. 140 

For all cases, clinical and pathological staging were performed during the patient’s 141 

clinical care.  Cystectomy was performed after completing the course of neoadjuvant 142 

chemotherapy.  The primary chemotherapy regimen used for the patients in our data set were 143 

MVAC, which is a combination of four medications: Methotrexate, Vinblastine, Doxorubicin, 144 

and Cisplatin. Stage T2 is identified to be clinically important as a decision threshold for 145 

neoadjuvant chemotherapy treatment. The stage at the beginning of the tumor management 146 

process, based on the clinical staging and pathological staging was used as a reference standard 147 

of the tumor stage for our study.   148 

In addition, for all bladder cancer lesions a radiologist measured the longest diameter on 149 

the pre-treatment scans by using an electronic caliper provided by an in-house developed 150 

graphical user interface. 151 

  The 84 bladder cancer lesions were separated into two classes. The first class consisted 152 

of 41 cancers that were stage T2 or above and the patients were treated with neoadjuvant 153 

chemotherapy. The second class consisted of 43 cancers that were below stage T2 and patients 154 

were not referred to neoadjuvant chemotherapy treatment. The data set was then split randomly 155 

by case into two sets with 42 cancers each while keeping the proportion of cancers between the 156 

two classes similar. The first set (Set 1) consisted of 22 cancers below stage T2 and 20 cancers 157 

stage T2 or above. The second set (Set 2) consisted of 21 cancers below stage T2 and 21 cancers 158 

stage T2 or above.  159 
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(a) (b) 

3.  Distribution of tumor sizes (the longest diameters) for Set 1 and Set 2. (a) Set 1: The average 

tumor sizes of stage < T2 and ≥ T2 were 26.4±17.3 mm and 45.6±19.1 mm respectively. (b) Set 2: The 

average tumor sizes of stage < T2 and ≥ T2 were 27.3±10.8 mm and 40.6±17.3 mm respectively. 

 

 160 

In Set 1, two patients had two lesions and one patient had three lesions. In Set 2, three patients 161 

had two lesions. In Set 1, the average tumor sizes (the longest diameters) of stage <T2 and >T2 162 

were 26.4±17.3 and 45.6±19.1 mm, respectively (Fig. 3a). In Set 2, the average tumor sizes (the 163 

longest diameters) of stage <T2 and >T2 were 27.3±10.8 mm and 40.6±17.3 mm, respectively 164 

(Fig. 3b). 165 

 166 

2.2 Segmentation of Bladder Lesions on CT Urography 167 

Our previously developed method for bladder lesion segmentation using an auto-initialized 168 

cascaded level set (AI -CALS) was used16. Briefly, the system consists of three stages that include 169 

preprocessing, initial segmentation, and 3D level set segmentation (Fig. 4). The segmentation of 170 

bladder lesions is often difficult as some lesions are located in the non-contrast enhanced region 171 

of the bladder such that contrast between the lesion and the surrounding background was low. 172 

Additionally, lesions often have irregular boundaries and can be very small and subtle. Each 173 
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lesion in the data set was marked by a bounding box as an input volume of interest (VOI). The 174 

lateral dimensions of the box were determined by an adjustable rectangle within the image slice 175 

that contains the best view of the lesion. The top and bottom slices are marked to completely 176 

enclose the lesion. The AI -CALS segmentation is then automatically performed in the VOI. In 177 

the pre-processing stage, image processing techniques including smoothing, anisotropic 178 

diffusion, gradient filters, and a rank transform of the gradient magnitude are used to generate 179 

sets of smoothed images, gradient magnitude images, and gradient vector images.  The initial 180 

segmentation surface is obtained by combining information from these images. Three 181 

dimensional (3D) flood fill algorithm, morphological dilation filter, and morphologic erosion 182 

filter are applied to the initial segmentation surface to connect nearby components, which is then 183 

used to initialize the level set segmentation. The initial contour is propagated toward the lesion 184 

boundary using a bank of cascaded level sets. The level sets help refine the initial contour.  The 185 

details of the AI-CALS method can be found in our previous paper16. 186 

 187 
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Figure 4. Block diagram of the auto-initialized cascaded level sets (AI -CALS) method. 

 188 

 189 

 190 

3. CLASSIFICATION 191 

3.1 Feature Extraction  192 

Following automated computer segmentation, texture features and morphological 193 

features were extracted to characterize the lesion. The mass size was measured as its 3D volume. 194 

Five morphological features were extracted based on the normalized radial length (NRL). NRL is 195 
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defined as the radial length normalized relative to the maximum radial length for the segmented 196 

object17. The NRL features extracted include zero crossing count, area ratio, standard deviation, 197 

mean, and entropy. In addition, ten contrast features and a number of features including 198 

circularity, rectangularity, perimeter-to-area ratio, Fourier descriptor, gray level average, 199 

standard deviation of gray level, mean density, eccentricity, moment ratio, and axis ratio were 200 

extracted as shape descriptors.  201 

The texture of the tumor margin can provide important information about its 202 

characteristics. We calculated texture features from the rubber band straightening transform 203 

(RBST) images18 of the tumor margin including those from the run-length statistics matrices, 204 

filtered Dasarathy east-west direction and filtered Dasarathy horizontal direction19,20. The texture 205 

feature set also included the gray level radial gradient direction features.  206 

In total, 91 features were extracted to form the feature space, including 26 morphological 207 

features and 65 texture features.  208 

 209 

3.2 Feature Selection/Classification  210 

A block diagram of the machine learning based bladder cancer staging system is shown 211 

in Fig. 5. Stepwise feature selection was used to select the best subset of features to create an 212 

effective classifier21. A number of different classification experiments were performed to 213 

determine the best collection of input features. The classification performance was compared in 214 

three feature spaces: (1) morphological features only, (2) texture features only, and (3) 215 

morphological and texture features combined. A two-fold cross validation was conducted by 216 

partitioning the data set into Set1 and Set 2. In the first fold, Set 1 was used for feature selection 217 

and classifier training. The trained classifier was then tested on Set 2. In the second fold, feature 218 

selection and classifier training were performed on Set 2 and then tested on Set 1.  219 

When training on a given fold (for example, Set 1) a leave-one-case-out resampling 220 

scheme with stepwise feature selection was used to reduce the dimensionality of the feature 221 

space. In stepwise feature selection, one feature is entered or removed in alternate steps while 222 

their effect is analyzed using the Wilks’ lambda criterion21.  The significance of the change in the 223 

Wilks’ lambda when a feature is included or removed was estimated by F statistics. Fin, Fout, and 224 

tolerance are the parameters of the stepwise feature selection, which define the thresholds for 225 

inclusion or exclusion of a given feature. A range of Fin, Fout, and tolerance values is evaluated 226 
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by using an automated simplex optimization method. The set of Fin, Fout, and tolerance values 227 

that lead to the highest classification result with the lowest number of features based on the 228 

training set are selected. A smaller number of features are preferred in order to reduce the chance 229 

of overfitting.  Once the set of Fin, Fout

Four different classifiers were evaluated in this study. The same partitioning of Set 1 and 234 

Set 2 was used for all classifiers.  We compared the four classifiers for this classification task.  235 

The first classifier was linear discriminant analysis (LDA)

, and tolerance is selected, the stepwise feature selection 230 

with the selected parameter set is applied to the entire training fold to select a single set of 231 

features and train a single classifier.  After the classifier is fixed it is applied to the test fold (for 232 

example, Set 2) for performance evaluation.  233 

22,23. The LDA with the stepwise 236 

feature selection was used to determine the most effective features using the training set in each 237 

fold, as described above.  The second classifier was a back-propagation neural network (NN) 24 238 

with a single hidden layer and a single output node. The selected features from LDA were used 239 

for this classifier and they determined the number of input nodes to the NN. The parameters for 240 

the NN were adjusted using the training set, and the best performing network was applied to the 241 

test set. The third classifier was a support vector machine (SVM)25,26 with a radial basis kernel. 242 

Using training data, a SVM determines a decision hyperplane to separate the two classes by 243 

maximizing the distance, or the margin, between the training samples of both classes and the 244 

hyperplane. The width of the SVM radial basis kernels γ was varied between 0.02 to 0.14 for the 245 

experiments. The best parameters for the SVM kernels for a specific experiment were selected 246 

using the training set, which were then applied to the test set. The LDA selected features were 247 

also used as the input to the SVM.  The fourth one is the Random Forest (RAF) classifier27.  We 248 

used the WEKA28  implementation and selected 50 to 100 trees and 5 to 7 features per tree for 249 

our classification task using the training set in each fold. The parameters for the random forest 250 

classifier were determined experimentally using the training sets. All 91 features were used as an 251 

input to the RAF. 252 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



13 

 

This article is protected by copyright. All rights reserved 

   

 

Figure 5. Block diagram of our machine learning based staging system. We compared the linear 

discriminant analysis (LDA), back-propagation neural network (NN), Support vector machine 

(SVM), and Random forest classifiers (RAF) in the classification stage for this study.  

 253 

3.3 Evaluation Methods  254 

 Lesion segmentation performance was evaluated using radiologists’ 3D hand-segmented 255 

contours as reference standards. The hand outlines of all 84 lesions were obtained from an 256 

experienced abdominal radiologist (RAD1). Hand outlines for a subset of 12 lesions were 257 

obtained from a second experienced abdominal radiologist (RAD2). The average distance and 258 

the Jaccard index29 were calculated between the computer outlines and the hand outlines. The 259 

average distance, AVDIST, is defined as the average of the distances between the closest points 260 

of the two contours: 261 
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 ������(�,�) = 1

2
�∑ min{�(�, �):� ∈ �}�∈� �� +

∑ min{�(�,�): � ∈ �}�∈� �� �, (1) 

where G and U are two contours being compared. NG and NU

 The Jaccard index is defined as the ratio of the intersection between the reference 268 

volume and the segmented volume to the union of the reference volume and the segmented 269 

volume: 270 

 denote the number of voxels on G 262 

and U, respectively. The function d is the Euclidean distance. For a given voxel along the 263 

contour G, the minimum distance to a point along the contour U is determined. The minimum 264 

distances obtained for all points along G are averaged. This process is repeated by switching the 265 

roles of G and U.  AVDIST is then calculated as the average of the two average minimum 266 

distances.  267 

 �������3� = �� ∩ ���� ∪ �� , (2) 

A value of 1 indicates that VU completely overlaps with VG, whereas a value of 0 implies VU 271 

and VG

To evaluate the classifier performance, the training and test scores output from the 273 

classifier were analyzed using the receiver operating characteristic (ROC) methodology

 are disjoint. 272 

30. The 274 

classification accuracy was evaluated using the area under the ROC curve, Az

31

.  The statistical 275 

significance of the differences between the different classifiers and feature spaces were estimated 276 

by the CLABROC program using ROC software by Metz et al.,32. 277 

 278 

 279 

4. RESULTS 280 

The lesion segmentation performance of the AI-CALS compared to the radiologist hand outlines 281 

for the 84 lesions are shown in Table 1. Table 2 shows the computer segmentation performance 282 

compared to two different radiologists’ hand outlines for a subset of 12 lesions. 283 

Table 1. Segmentation performance of the 84 

lesions compared to hand-outlines performed 

by radiologist 1 (RAD1). A
u
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 AI-CALS vs RAD1 

Average distance 

AVDIST 
4.9 ± 2.7 mm 

Jaccard index 

JACCARD3D 
43.5 ± 14.0% 

 

 284 

Table 2. Segmentation performance for a subset of 12 lesions compared to hand-outlines 

performed by two different radiologists (RAD1, RAD2) 

 AI-CALS vs RAD1 AI-CALS vs RAD2  RAD1 vs RAD2 

Average distance 

AVDIST 
5.2 ± 2.5 mm 4.1 ± 1.5 mm 2.9 ± 1.1 mm 

Jaccard index 

JACCARD3D 
43.2 ± 13.2% 50.1 ± 14.7% 58.7 ± 11.1% 

 

 285 

The performance of the classifiers based on different machine learning techniques, the 286 

LDA, NN, SVM, and RAF, is summarized in Table 3. Different feature spaces containing the 287 

morphological features, the texture features, and the combined set of both morphological and 288 

texture features were used for classification. The features selected with LDA were used in the 289 

SVM and NN classifiers. The LDA classifier with morphological features achieved a training Az 290 

of 0.91 on Set 1 and a test Az of 0.81 on Set 2. For training on Set 2 it achieved a Az of 0.97 and 291 

a test Az of 0.90 on Set 1. The selected features on the training sets included volume, a contrast 292 

feature, and gray level feature. The test Az of the NN for Set 1 and Set 2 was 0.88 and 0.91 293 

respectively. The SVM achieved test Az of 0.88 on Set 1 and test Az of 0.90 on Set 2. The test 294 

A z of the RAF for Set 1 and Set 2 was 0.83 and 0.88 respectively. The distribution of the 295 

discriminant scores from the four classifiers for testing on Set 1 and Set 2 in two fold cross-296 

validation in the morphological feature space are presented in Fig 6. It can be observed that most 297 

of the classifiers were able to provide a relatively good separation between the two classes.  298 
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By using the texture features the LDA classifier achieved a test Az of 0.91 on Set 1 and a 299 

test Az of 0.88 on Set 2. When trained on Set 1 or Set 2 the stepwise feature selection procedure 300 

selected subsets of the filtered Dasarathy east-west direction features, the filtered Dasarathy 301 

horizontal direction features and the gray level radial gradient direction features. The test Az of 302 

the NN classifier for Set 1 and Set 2 was 0.89 and 0.92, respectively. The SVM classifier 303 

achieved test Az of 0.91 on Set 1 and test Az of 0.89 on Set 2. The test Az

When the morphological and the texture features were combined, the LDA classifier 306 

achieved a test A

 of the RAF classifier 304 

for Set 1 and Set 2 was 0.89 and 0.97, respectively. 305 

z of 0.89 on Set 1 and a test Az of 0.90 on Set 2. When trained on Set 1 or Set 2 307 

the stepwise feature selection procedure selected a contrast feature, subsets of the filtered 308 

Dasarathy horizontal direction features, and subsets of the gray level radial gradient direction 309 

features. The test Az of the NN classifier for Set 1 and Set 2 was 0.91 and 0.95, respectively. The 310 

SVM classifier achieved test Az of 0.92 on Set 1 and test Az of 0.89 on Set 2. The test Az

The differences in the A

 of the 311 

RAF classifier for Set 1 and Set 2 was 0.86 and 0.96, respectively. The test ROC curves for all of 312 

the classifiers when tested on Set 1 and Set 2 in the two fold cross-validation in the different 313 

feature spaces are shown in Fig. 7. 314 

z values between pairs of classifiers did not achieve statistical 315 

significance.  The classifiers achieved slightly higher Az

 320 

 values in the texture and combined 316 

feature spaces than in the morphological feature space; however, the differences did not achieve 317 

statistical significance after Bonferroni correction for the multiple comparisons (p-value < 318 

0.05/18=0.0028 to be considered significant). 319 

 321 

Table 3. Summary results for LDA, NN, SVM and RAF classifiers in morphological, texture, 322 

and combined feature spaces. The column “Number of Features” did not apply to the 323 

RAF classifier. All features were used for the RAF classifier. The differences in the Az

  328 

 324 

values between pair-wise comparison of the different classifiers did not achieve 325 

statistical significance after performing Bonferroni correction for the 18 comparisons 326 

(p>0.0028).   327 
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Feature Type 

Number 

of 

Features 

Training Testing Training Testing Training Testing Training Testing 

Morphological 

Features        
  

Training (Set 1) 

Testing (Set 2) 
4 0.91 0.81 0.96 0.91 0.95 0.90 1 0.88 

Training (Set 2) 

Testing (Set 1) 
4 0.97 0.90 0.98 0.88 0.97 0.88 1 0.83 

Texture 

Features        
  

Training (Set 1) 

Testing (Set 2) 
2 0.91 0.88 0.95 0.92 0.92 0.89 1 0.97 

Training (Set 2) 

Testing (Set 1) 
7 1 0.91 1 0.89 1 0.91 1 0.89 

Combined 

Features        
  

Training (Set 1) 

Testing (Set 2) 
3 0.92 0.90 0.97 0.95 0.92 0.89 1 0.96 

Training (Set 2) 

Testing (Set 1) 
7 1 0.89 1 0.91 1 0.92 1 0.86 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 
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Figure 6. Distribution of the classifiers discriminant scores for testing on Set 1 and Set 2 in two-fold 
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cross validation using the morphological features. (a) LDA (Set 1) Az = 0.90, (b) LDA (Set 2) Az = 0.81, 

(c) SVM (Set 1) Az = 0.88, (d) SVM (Set 2) Az = 0.90, (e) NN (Set 1) Az = 0.88, (f) NN (Set 2) Az = 

0.91, (g) RAF (Set 1) Az = 0.83, (h) RAF (Set 2) Az

 337 

 = 0.88. 
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Figure 7.  ROC curves for testing on Set 1 and Set 2 in two-fold cross validation for LDA, SVM, NN, 

and RAF classifiers: Left column: testing on Set 1, right column: testing on Set 2.  (a) and (b) 

morphological features; (c) and (d) texture features; (e) and (f) combined features. 

 340 

 341 

5. DISCUSSION 342 

The agreement between the AI -CALS lesion segmentation and the radiologists’ manual 343 

segmentation was slightly lower than the agreement between two radiologists’ hand outlines, 344 

indicating that the computer segmentation will need to be further improved. Both the 345 

morphological and the texture features were important for classifying the bladder cancer stage. 346 

When only morphological features were used in the classifier, volume and contrast features were 347 

always selected. Volume was the primary feature used to describe lesion size.  When the 348 

classifier used only the texture features, the features from the 3 main groups, the filtered 349 

Dasarathy east-west direction features, the filtered Dasarathy horizontal direction features, and 350 

the gray level radial gradient direction features were consistently selected. There was essentially 351 

no change in classification accuracy when the morphological features were added to the texture 352 

features in the combined set.  353 
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The LDA, SVM, and NN classifiers all led to relatively consistent results. There was no 354 

statistically significant difference in the performances between pairs of the classifiers. The best 355 

overall results for the two-fold cross validation were obtained when a combined feature set was 356 

used with an NN classifier. Using Set 1 for training, the training Az was 0.97 and the test Az was 357 

0.95. Using Set 2 for training, the training Az was 1.00 and the test A z

The RAF classifier showed greater imbalance between Set 1 and Set 2 than the other 359 

classifiers. When training was done on Set 2 and testing on Set 1, the A

 was 0.91.  358 

z were substantially 360 

lower than the Az values when training was done on Set 1 and testing on Set 2. For example, the 361 

test Az 

Examples of bladder cancers with stages ≥ T2 or < T2 and the corresponding classifier 366 

scores are shown in Fig. 8. The reported scores are test scores for the LDA, SVM, NN, and RAF 367 

classifiers based on the morphological features. In Fig. 8a, b and Fig. 8c, d are shown T1 stage 368 

cancers of different sizes that were correctly classified with low scores by all classifiers. Note 369 

that the output score ranges are different for different classifiers so that the score values should 370 

not be compared across classifiers.  T3 stage and T2 stage cancers that were correctly classified 371 

with high scores from all classifiers are presented in Fig. 8e, f and Fig 8g, h, respectively.  A case 372 

that was clinically identified as T1 stage pre-surgery but later was identified as a T2 stage cancer 373 

post-surgery is shown in Fig. 8k, l. The classifiers classified the cancer as ≥T2 with high scores. 374 

Fig. 8m, n show a T2 stage cancer that was incorrectly identified by the LDA, SVM, and NN 375 

classifiers with low scores, but correctly identified by the RAF with a high score. 376 

decreased from 0.88 to 0.83 for morphological features, from 0.97 to 0.89 for texture 362 

features only, and from 0.96 to 0.86 for the combined features. This imbalance between the two 363 

sets could be due to the fact that RAF utilized all the features in the subspace whereas the other 364 

three classifiers involved feature selection.  365 
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 377 

We also have extracted features from the manually segmented bladder lesions and 378 

applied the 4 different types of classifiers with the different feature sets to the cancer stage 379 

(a) (b) (c) (d) 

LDA= -1.85;  SVM= -0.95;  NN= 0.04;  RAF= 0.28 LDA= -2.44;  SVM= -1.50;  NN= 0.05;  RAF= 0.20 

  

    

(e) (f) (g) (h) 

LDA= 7.46;  SVM= 2.13;  NN= 1.00;  RAF= 0.86 LDA= 1.62;  SVM= 1.73;  NN= 0.91;  RAF= 0.54 

  

    

(k) (l) (m) (n) 

LDA= 3.42;  SVM= 1.50;  NN= 1.00;  RAF= 0.82 LDA= -0.97;  SVM= -0.55;  NN= 0.33;  RAF= 0.69 

Figure 8. Examples of bladder cancers with stages ≥ T2 or < T2. The blue outlines represent the AI -CALS 

segmentation. The reported scores are test scores for the LDA, SVM, NN, and RAF classifiers based on the 

morphological features.  Note that the output score ranges are different for different classifiers so that the score 

values should not be compared across classifiers. The two cases in (a)(b) and (c)(d) both contained was a T1 

stage cancer that was properly classified with low scores from all classifiers. (e)(f) was a T3 stage case that was 

properly classified with high scores from all classifiers. (g)(h) was a T2 stage case that was properly classified 

with high scores from all classifiers. (k)(l) was a case that was clinically identified as T1 pre-surgery but was 

identified as a T2 stage cancer post-surgery. The classifiers classified the cancer as ≥T2 with high scores. 

(m)(n) was T2 stage cancer that was incorrectly identified by the LDA, SVM, and NN classifiers with low 

scores and correctly identified by the RAF with a high score. A
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prediction.  The classifiers using features extracted from the manually segmented lesions 380 

performed similarly to the classifiers using features extracted from the AI-CALS segmented 381 

lesions. The test Az

The main limitation of the study is the small data set.  Another limitation is that we have 388 

not applied the deep learning convolution neural network (DLCNN) to this bladder cancer 389 

staging task.  DLCNN has been shown to be superior to conventional classifiers in many 390 

classification tasks, especially the classification of natural scene images with millions of training 391 

samples. It also shows promise in number of medical imaging applications

 values ranged from 0.77 to 0.95. For 6 out of the 24 experiments the 382 

classifiers using features extracted from the manually segmented lesions performed better than 383 

classifiers using features extracted from the AI-CALS segmentations. However, the differences 384 

did not reach statistical significance. Therefore, although the performance of the AI-CALS lesion 385 

segmentation was slightly lower than the radiologists’ hand outlines the final classification 386 

results were similar. 387 

33,34 including bladder 392 

segmentation35 and bladder cancer treatment response monitoring36.   However, our experience 393 

with DLCNN also indicates that it is not always the best, perhaps limited by the relatively small 394 

annotated training set in medical imaging, even with transfer learning.  As the performances of 395 

the four conventional classifiers used in this study were quite high, it would not be a fair 396 

comparison for DLCNN if we do not have adequate training for the latter.  We will continue to 397 

collect additional cases and compare the conventional classifiers with DLCNN for bladder 398 

cancer staging in a future study. 399 

 400 

6. CONCLUSION 401 

In this preliminary study we proposed machine learning methods for prediction of 402 

bladder cancer stage. It was found that the morphological features and texture features were 403 

useful for assessing the stage of bladder lesions. The LDA, SVM, and NN classifiers all led to 404 

relatively consistent results. There was a trend that the SVM and NN classifier slightly 405 

outperformed the LDA classifier. The best overall results for the two-fold cross validation were 406 

obtained when a combined feature subspace was used with the NN classifier. Further studies are 407 

under way to improve the staging of bladder cancer and test the classifier on a larger data set, 408 

and to investigate the potential of improving the predictive model by combining imaging 409 

biomarkers with non-imaging biomarkers.  410 
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