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Abstract

Purpose To investigate the association between urinary complement proteins and renal outcome in biopsy-proven diabetic 
nephropathy (DN).
Methods Untargeted proteomic and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses and targeted 
proteomic analysis using parallel reaction-monitoring (PRM)-mass spectrometry was performed to determine the abundance 
of urinary complement proteins in healthy controls, type 2 diabetes mellitus (T2DM) patients, and patients with T2DM 
and biopsy-proven DN. The abundance of each urinary complement protein was individually included in Cox proportional 
hazards models for predicting progression to end-stage renal disease (ESRD).
Results Untargeted proteomic and functional analysis using the KEGG showed that differentially expressed urinary proteins 
were primarily associated with the complement and coagulation cascades. Subsequent urinary complement proteins quantifi-
cation using PRM showed that urinary abundances of C3, C9, and complement factor H (CFAH) correlated negatively with 
annual estimated glomerular filtration rate (eGFR) decline, while urinary abundances of C5, decay-accelerating factor (DAF), 
and CD59 correlated positively with annual rate of eGFR decline. Furthermore, higher urinary abundance of CFAH and lower 
urinary abundance of DAF were independently associated with greater risk of progression to ESRD. Urinary abundance 
of CFAH and DAF had a larger area under the curve (AUC) than that of eGFR, proteinuria, or any pathological parameter. 
Moreover, the model that included CFAH or DAF had a larger AUC than that with only clinical or pathological parameters.
Conclusion Urinary abundance of complement proteins was significantly associated with ESRD in patients with T2DM 
and biopsy-proven DN, indicating that therapeutically targeting the complement pathway may alleviate progression of DN.

Keywords Complement · Urinary proteomics · Diabetic nephropathy · End-stage renal disease

Introduction

The global pandemic of diabetes mellitus (DM) was reported 
to have reached approximately 463 million adults in 2019 
[1]. Diabetic nephropathy (DN), develops in approximately 
21.3% of patients with DM [2], and has become the leading 
cause of end-stage renal disease (ESRD) worldwide. The 
individual and societal costs associated with treating DN 
are very high. The median cost of inpatients with chronic 
kidney disease (CKD) and DM was US $2288 and US 
$2102 per person per year, respectively, according to the 
CKD Network 2015 Annual Data Report [3]. Identifying 
risk factors for progression to ESRD in patients with DM 
is crucial to reduce morbidity, mortality, and the social and 
economic impact of DN burden. Historically, the onset and 
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progression of kidney damage in diabetes widely relied on 
clinical parameters, such as estimated glomerular filtration 
rate (eGFR) and albuminuria [4]. However, recent evidence 
suggests that these parameters have limited value. A high 
frequency of remission of microalbuminuria or regression 
of macroalbuminuria to microalbuminuria was observed in 
type 2 diabetes mellitus (T2DM) [5, 6]. In the setting of 
T2DM, the need to identify novel prognostic biomarkers and 
therapeutic targets for progression in DN is urgent.

The pathogenesis of DN has traditionally been viewed 
to involve renal hemodynamic changes, oxidative stress, 
hypoxia, overactivation of the renin–angiotensin–aldos-
terone system (RAAS), and modification of molecules 
under hyperglycemic conditions (i.e., advanced glycation 
end-products) [7]. Inflammation also plays crucial roles in 
the development of DN, as evidenced by the infiltration of 
immune cells observed in glomeruli and interstitium of renal 
biopsy samples at all stages of DN [8]. Increasing evidence 
indicates that the complement system plays a pivotal role 
in the onset and progression of renal disease, including DN 
[8]. Complement proteins are deposited in the kidneys of 
patients with DN. Increased tubular complement compo-
nent 5 (C5) deposition and glomerular C4 were detected in 
patients with DN, and the intensity of C5 or C4 staining was 
strongly associated with kidney disease progression in these 
patients [9, 10]. Complement activation has been implicated 
in regulation of renal tubulointerstitial injury in patients with 
DM and proteinuric CKD. Notably, experimental models 
of diabetes revealed that blocking C3a/C3aR or C5a/C5aR 
signaling reduced tubulointerstitial fibrosis and alleviated 
inflammation of the injured kidney [10, 11]. These studies 
confirmed a causal link between complement proteins and 
progression of DN under conditions of T2DM.

Urine is a fluid produced by the kidneys that can provide 
information on renal pathophysiology. Moreover, urine is 
easily sampled noninvasively, and urinary proteins are sta-
ble and resistant to sudden degradation [12]. Owing to the 
development of proteomic analysis of kidney diseases, many 
proteomic analyses of urine from diabetic patients were 
conducted to identify urinary biomarkers that can predict 
the progression of nephropathy [13] and early decline in 
eGFR [14]. Notably, in a Mexican–American cohort of 141 
patients with T2DM and proteinuric CKD, quantification 
of urinary levels of 12 complement proteins using parallel 
reaction-monitoring (PRM) liquid chromatography–mass 
spectrometry (LC–MS) revealed urinary abundance of com-
plement C4 and C8, and complement regulatory proteins 
CD59 and factor H-related protein 2 (FHR2) were strongly 
associated with progression to ESRD and all-cause death. 
However, natural history and clinicopathological features 
of DN may differ between patients of different ethnicity. 
A study of biopsied Chinese patients with diabetes found 
that the prevalence of non-diabetic renal disease (NDRD) 

was 35% [15]. Furthermore, urinary proteomic biomarkers 
differed significantly between DN and NDRD [16]. Few 
studies considered the association between the severity of 
renal pathology and complement proteins. Therefore, stud-
ies that analyze the association between urinary comple-
ment proteins and renal histological changes as well as that 
between complement proteins and ESRD in patients with 
biopsy-proven pure DN are needed. In the present study, we 
investigated the association between urinary complement 
proteins and progression to ESRD in patients with T2DM 
and biopsy-proven pure DN. The association between uri-
nary complement proteins and renal histological changes 
was aslo evaluated.

Materials and methods

Patient selection and study design

Diabetic patients who underwent renal biopsy from 2010 
to 2018 at West China Hospital of Sichuan University were 
screened. Indications for renal biopsy were diabetes and 
renal damage with persistent albuminuria or renal dysfunc-
tion, particularly in those with sudden onset overt proteinuria 
or hematuria [15]. Criteria of the American Diabetes Asso-
ciation were used to diagnose T2DM [17]. DN was defined 
according to the standard reported by An et al. [18] in 2015 
and was diagnosed by at least two renal pathologists and/or 
nephrologists based on the Renal Pathology Society (RPS) 
classification [19]. To accurately characterize trajectories 
of eGFR decline, we restricted our analysis to the following 
patients according to our previous study [20]: (1) those in 
whom serum creatinine levels were measured at least three 
times per year during the follow-up period; and (2) all serum 
creatinine assays were performed at our hospital to mini-
mize methodological differences. Therefore, the exclusion 
criteria were: (1) coexisting non-diabetic kidney disease and 
systemic diseases, especially those involving antineutrophil 
cytoplasmic antibodies, such as vasculitis, antiglomeru-
lar basement membrane disease, and lupus nephritis; (2) 
nontype 2 diabetes; (3) progression to ESRD before renal 
biopsy; and (4) lack of trajectory of eGFR decline because 
serum creatinine levels were measured less than thrice annu-
ally at our hospital or performed at other hospitals (Sup-
plementary Fig. 1).

In the untargeted proteomic study, six healthy control 
(HC) participants, six patients with T2DM, and 10 patients 
with T2DM and biopsy-proven DN were enrolled. In the 
targeted proteomic study, 29 HC participants, 22 patients 
with T2DM, and 54 patients with T2DM and biopsy-proven 
DN were enrolled. Trajectories of eGFR decline were 
obtained in the DN cohort during median follow-up dura-
tion of 47 months. All patients and HC participants provided 
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written informed consent, and this study was approved by 
the institutional review board of the West China Hospital of 
Sichuan University. The study also complied with the 1964 
Helsinki declaration and its later amendments or comparable 
ethical standards.

Clinical and laboratory information

Clinical data including age, sex, and use of RAAS inhibitors, 
glucose-lowering agents, and statins were abstracted from 
electronic medical records from the time of renal biopsy to 
one of two endpoints: ESRD, or until April 30, 2020. Labo-
ratory data at the time of renal biopsy were also obtained 
from medical records, including hemoglobin, serum creati-
nine, 24-h proteinuria, and urine albumin-to-creatinine ratio. 
eGFR was evaluated using the CKD Epidemiology Collabo-
ration formula [21, 22]. Serum creatinine concentration was 
measured using the Cobas c702 chemistry autoanalyzer by 
enzymatic creatinine method (Roche Diagnostics, Rotkreuz, 
Switzerland). Subjects attended follow-up appointments 
two–four times annually, depending on their clinical condi-
tion. The primary endpoint of the study was progression to 
ESRD, indicated by eGFR < 15 mL/min/1.73  m2, or use of 
renal replacement therapy [22].

Pathological features in DN

Biopsied renal tissue samples were routinely prepared for 
light microscopy, immunofluorescence, and electron micros-
copy using standard protocols at West China Hospital. Origi-
nal immunofluorescence, microscopic, and electron micro-
scopic images were used to confirm a diagnosis of DN. RPS 
classification and histological scoring [18, 19] under light 
microscopy or electron microscopy were evaluated by two 
nephropathologists, who were blinded to clinical data and 
renal outcomes.

Urine sample collection and processing 
for proteomic analysis

Random urine samples were collected at the time of renal 
biopsy. Urine samples were centrifuged at 3500 rpm for 
30 min to remove debris. The supernatant was collected in 
5 mL tubes and then stored at −80 °C. Before proteomic 
analysis, 300 µL of supernatant from each urine sample was 
thawed. Following centrifugation at 13,000 rpm for 10 min, 
the supernatant was dried using a speed vac with a cold trap 
(CentriVap Cold Traps, Labconco, Kansas City, MO, USA). 
The protein concentration of each urine was measured using 
a Bradford protein assay (cat no. 500-0006, Bio-Rad, USA).

Urine containing 50 µg of protein was placed on 10 kDa 
polyethersulfone filters (PALL Life Science, USA) with 8 M 
urea (Sigma-Aldrich Corp., St. Louis, MO, USA). Protein 

was reduced with 20 mM dithiothreitol (Sigma-Aldrich 
Corp., St. Louis, MO, USA) and alkylated with 50 mM 
iodoacetamide (Sigma-Aldrich Corp., St. Louis, MO, USA). 
The solution was removed by centrifugation at 13,000g 
for 15 min and 200 µL of 50 mM ammonium bicarbonate 
 (NH4CO3) (Sigma-Aldrich Corp., St. Louis, MO, USA) was 
added, and then digested with sequencing grade trypsin 
(Promega, Madison, WI, USA) at a ratio of 25:1 (w/w) for 
16 h at 37 °C. The post-digestion peptide concentration was 
determined using a pierce quantitative colorimetric peptide 
assay kit (Thermo Fisher Scientific, Waltham, MA, USA).

Besides, an acetone precipitation method was also per-
formed to deal with the same urine samples. The pre-cooled 
acetone (Sigma-Aldrich Corp., St. Louis, MO, USA) was 
added to the urine supernatant at a ratio of 3:1 (V/V) at 
−20 °C for 2 h. Then, the proteins were precipitated and 
were collected after centrifugation at 1000 rpm for 10 min, 
at 4  °C. The proteins were freeze dried and suspended 
in 100 µL of 50 mM  NH4CO3. Protein was reduced with 
20 mM dithiothreitol and alkylated with 50 mM iodoacet-
amide. Then, the sequencing grade trypsin was added to 
the mixture at a ratio of 25:1 (w/w) for incubating 16 h at 
37 °C. After desalting using a pipette tip packed with a C18 
membrane, the peptide concentration was determined using 
a pierce quantitative colorimetric peptide assay kit. The pep-
tides were freeze dried for further analysis.

Untargeted proteomics by data‑dependent 
acquisition

The untargeted proteomics by data-dependent acquisition 
(DDA) analysis was performed according to a previous 
study [23]. Briefly, DDA was performed on an Orbitrap 
Fusion Lumos mass spectrometer (Thermo Fisher Scientific, 
Waltham, MA, USA) connected to an EASY-nLC 1200 sys-
tem (Thermo Fisher Scientific, Waltham, MA, USA). The 
peptide separation was performed on an integrated spray-
tip analytical column (75 μm i.d. × 25 cm) packed with 
1.9 μm ReproSil-Pur 120 Å C18 resins (Dr. Maisch HPLC 
GmbH, Ammerbuch, Germany). A binary buffer system 
of 0.1% (v/v) formic acid (Sigma-Aldrich Corp., St. Louis, 
MO, USA) in water (buffer A) and 0.1% (v/v) formic acid 
and 80% acetonitrile (ACN) (Merck, KgaA, Darmstadt, 
Germany) in water (buffer B) was used for separation at a 
flow rate of 300 nL/min. The injection volume is 4 μL. A 
78-min gradient was performed as follows: from 6 to 12% 
B in 8 min, from 12 to 28% B for 50 min, from 28 to 38% 
B for 12 min, from 38 to 95% B in 1 min, and held at 90% 
B for 7 min. The DDA method consisted of a full MS scan 
over m/z range of 350–1550 at a resolution of 120,000 in 
the Orbitrap mass analyzer followed by data-dependent MS/
MS scans with a Top Speed method (3 s). MS/MS was car-
ried out in the Orbitrap mass analyzer with a resolution of 
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15,000 using an isolation window of 2 m/z and high-energy 
collision-induced dissociation (HCD) fragmentation with 
normalized collision energy (NCE) of 35%. The dynamic 
exclusion time was set to 15 s. The Sequest HT node inte-
grated within the Proteome Discoverer (PD) software (Ver-
sion 2.1; Thermo Fisher Scientific, Waltham, MA, USA) 
was applied to search the raw data against the human Uni-
prot fasta database (70,947 entries, downloaded on Mar 10, 
2017) appended with the Biognosys indexed retention time 
(iRT) peptides sequence. A maximum missed cleavages 
of two were allowed. Carbamidomethylation of cysteine 
(+ 57.02 Da) was chosen as static modification, while oxida-
tion of methionine (+ 15.99 Da), deamidation of asparagine 
(+ 0.98 Da), and glutamine (+ 0.98 Da) were set as dynamic 
modifications. The first search mass tolerance was 20 ppm 
and the main search peptide tolerance was 4.5 ppm [24]. 
The false discovery rate (FDR) of peptide spectrum matches 
(PSMs) and proteins were set to < 1%. MaxQuant (Version 
1.5.3.8; Max Planck Gesellschaft, Munich, Germany) was 
applied for the label-free quantification (LFQ) analysis of 
proteins with default settings. The same protein sequence 
database and the same modification parameters were used 
as the PD search. The FDR was controlled as 1% for both 
peptide spectrum matches and proteins.

Targeted proteomics by PRM‑MS

Proteins of interest were quantified using PRM-MS on 
an Orbitrap Fusion Lumos Tribrid mass spectrometer 
(Waltham, MA, USA) connected to an EASY-nLC 1200 sys-
tem (Waltham, MA, USA). Peptides belong to 19 proteins 
were selected from untargeted proteomics. Best peptides by 
chromatographic data were selected for PRM-MS (Supple-
mentary Table 1). Selected peptides were monitored by tar-
geting precursor ions in the quadrupole analyzer (selection 
window 2.0 Da) and full-scan MS/MS after HCD fragmenta-
tion (NCE = 35%) in the Orbitrap analyzer with high resolu-
tion (15,000). Scheduled acquisition with 10-min acquisi-
tion windows was set up for each peptide precursor using 
Skyline (https:// skyli ne. ms/ proje ct/ home/ softw are/ skyli ne/ 
begin. view), allowing a maximum of 30 concurrent PRM 
experiments. Acquired data were processed in Skyline soft-
ware (version 3.7.0), and automated integration was manu-
ally checked. The identity of the chromatographic peaks was 
ascertained by matching the PRM-MS/MS spectra to those 
from the untargeted dataset (dot product 0.0.9 and mass pre-
cision, 5 ppm). Peptide and protein abundance data in the 
targeted proteomics were log10-transformed.

Statistical analysis

Continuous variables are presented as mean and standard 
deviation (SD) if normally distributed, or as median and 

interquartile range (IQR) if non-normally distributed. Cat-
egorical variables are presented as counts and percentages. 
Differences in continuous variables between patients with 
progressive eGFR decline and slow eGFR decline were ana-
lyzed using the Student’s t-test or Wilcoxon test. Differences 
in continuous variables between HC participants, T2DM 
patients, and patients with T2DM and biopsy-proven DN 
were analyzed using one-way ANOVA, while categorical 
variables were analyzed using the chi-square test or Fisher’s 
exact test.

Correlations between the abundance of each urinary pro-
tein and baseline eGFR level, proteinuria, and hemoglobin 
A1c (HbA1c) were assessed using Spearman’s correlation 
analysis. Correlations between abundances of urinary pro-
teins and annual eGFR decline treated as a continuous vari-
able were initially assessed using Spearman’s correlation 
analysis. Univariate and two multivariable linear regression 
analyses were then used to assess the association between 
the abundance of urinary complement proteins and faster 
eGFR decline treated as a binary variable. The two multivar-
iable regression analyses were adjusted for age, sex, baseline 
eGFR, and proteinuria. In the first multivariable regression 
analysis, each urinary complement protein was included 
individually in the model. Next, all significant proteins that 
were associated with faster eGFR decline in the first mul-
tivariable regression model were included in the second 
multivariable regression model. Parameters with p < 0.05 
in the second adjusted multivariable regression model were 
considered to have a significant association with faster eGFR 
decline. Correlations between the abundance of each urinary 
protein and the pathological covariates were evaluated using 
linear regression analysis.

Survival curves were generated using Kaplan–Meier 
methods with a log-rank test. Univariate and multivariable 
Cox proportional hazards models were used to estimate the 
hazard ratios (HRs) of urinary complement proteins for 
renal outcome. The proportional hazard assumption in Cox 
models was tested to determine whether the dataset satis-
fied the basic assumptions of Cox analyses. Subsequently, 
Cox proportional hazards models were used to calculate HRs 
and 95% confidence intervals (CIs) for renal outcome. We 
applied three multivariable Cox proportional hazards mod-
els, all of which included clinical parameters (age, sex, base-
line eGFR, proteinuria, and serum albumin concentration). 
The urinary abundance of each complement protein was 
included individually in the first two Cox proportional haz-
ards models. Age and sex were selected based on biological 
plausibility. The clinical covariates were selected as poten-
tial confounders because of their significance in univariate 
analysis or bacause they were associated with ESRD in a 
previous study [25]. The second multivariable model incor-
porated the above parameters in addition to pathological 
parameters. Parameters with p < 0.05 in the second adjusted 
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model were considered significant predictors of prognosis. 
Parameters with p < 0.05 in the second adjusted model were 
considered significant predictors of prognosis. Finally, a 
third multivariable Cox proportional hazards model, which 
included all proteins that individually remained significantly 
associated with ESRD in the second adjusted model, was 
constructed to assess which proteins represent prognostic 
risk factors for progression to ESRD. Receiver operating 
characteristic (ROC) curve analysis using clinical/pathologi-
cal variables, prognostic urinary complement proteins, or 
these parameters in combination was applied to confirm and 
determine the best predictors of ESRD. The area under the 
curve (AUC) was calculated for each model [26].

All statistical analyses were performed using Stata ver-
sion 14.0 (Stata Corp LLC, College Station, TX, USA). Sta-
tistical significance was accepted at p < 0.05. Other analyses 
were performed in R or with a customized in-house platform 
(https:// www. omics oluti on. org/ wkomi cs/ main/).

Results

Untargeted proteomics

Demographics of participants in the untargeted proteomic 
study are shown in Supplementary Table 2. Compared with 
HC participants, patients with T2DM or DN had higher body 
mass index (BMI) but lower eGFR. In the untargeted pro-
teomics study, of the 600 proteins identified by the afore-
mentioned filter-aided proteome preparation method, 242 
proteins were up-regulated and 272 were down-regulated 
in patients with T2DM and DN compared with those with 
T2DM. Hierarchical cluster analysis shows differences 
in expression of urinary proteins among the three groups 
(Fig. 1a). Functional analysis using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) showed that the urinary 
proteins that differed in expression were mostly linked to 
the complement and coagulation cascades (Fig. 1b). This 

Fig. 1  Urinary untargeted proteomic result by filter-aided proteome 
preparation method. a Hierarchical cluster analysis of the up-regu-
lated and down-regulated urinary proteins in healthy control partici-
pants, patients with type 2 diabetes, patients with type 2 diabetes and 
DN. The red bar in the figure indicated the complement and comple-

ment regulatory proteins. b Functional analysis by KEGG showed 
that urinary proteins that differed in expression are linked to the com-
plement and coagulation cascades. KEGG Kyoto Encyclopedia of 
Genes and Genomes

https://www.omicsolution.org/wkomics/main/
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observation was also verified by the acetone precipitation 
method (Supplementary Fig. 2).

Targeted proteomics

Participants features

Among patients with T2DM and DN, clinical and patho-
logical features were similar between the 54 patients who 
were enrolled and the 89 patients who were not enrolled in 
the targeted proteomic study (Supplementary Table 3). The 
demographic and clinical features of participants, includ-
ing HC participants, T2DM patients, and patients with 
T2DM and DN in the subsequent targeted proteomics study 
are shown in Supplementary Table 4. Average age among 
the three groups was comparable. In the T2DM and DN 
group, the age (mean ± SD) was 52 ± 9 years, and 32 were 
men. Median duration of diabetes was 108 months (IQR, 
48–168). Median baseline eGFR was 71.8 mL/min/1.73  m2, 
which was significantly lower than in HC participants or 
patients with T2DM (p < 0.001). All patients with T2DM 
and DN underwent at least three annual measurements of 
serum creatinine or eGFR. During median follow-up dura-
tion of 47 months, annual eGFR decline in the DN cohort 
was −7.99 mL/min/1.73  m2 (IQR −15.75 to −1.09). Accord-
ing to the median annual rate in eGFR decline, 26 patients 
demonstrated slow decline in eGFR, whereas 28 patients 
demonstrated progressive decline in eGFR. Median annual 
eGFR decline was −15.70 mL/min/1.73  m2 (IQR −23.28 
to −11.06) in progressive eGFR decliners and −1.07 mL/
min/1.73  m2 (IQR −3.70 to 1.98) in slow eGFR decliners 
(p < 0.001). Age, sex distribution, BMI, blood pressure, and 
baseline eGFR were comparable between slow and progres-
sive eGFR decliners. Additionally, there were no significant 
differences in medication use between progressive and slow 
eGFR decliners. However, the diabetes duration was shorter 
and baseline proteinuria was higher in progressive eGFR 
decliners compared with slow eGFR decliners. Furthermore, 
compared with slow decliners, progressive decliners had 
higher percentages of RPS classes IIb and III, and lower per-
centages of class I. Progressive eGFR decliners had higher 
interstitial fibrosis and tubular atrophy (IFTA) scores than 
slow eGFR decliners (Table 1).

3.2.2 Distributions of urinary complement proteins 

among control participants, patients with type 2 diabetes, 

and diabetic patients with associated DN

Distributions of urinary complement proteins per unit of 
total urinary protein (i.e., the fraction of total urinary pro-
tein composed of a given complement protein) among HC 
participants, patients with T2DM, and patients with T2DM 
and DN are shown in Fig. 2. Compared with HC participants 

and patients with T2DM, patients with T2DM and DN had 
higher urinary abundance of complement C2, C3, and C9 
but lower urinary abundance of complement C1QA, C1S, 
C4A, C4B, C5, C6, C7, and C8A. Among complement regu-
latory proteins, urinary abundance of complement factor H 
(CFAH) was significantly higher, whereas complement fac-
tor I (CFAI), decay-accelerating factor (DAF, also known 
as CD55), CD59, and clusterin (CLUS) were significantly 
lower in patients with T2DM and DN compared with HC 
participants or patients with T2DM. The urinary abundance 
of complement factor B, factor H-related protein 1 (FHR1), 
and FHR2 was similar among the three groups.

When stratified by annual rate of eGFR decline, patients 
with T2DM and DN patients with progressive eGFR decline 
had significantly higher levels of urinary complement C2, 
C3, and C9 than those with slow eGFR decline. Urinary 
complement regulatory proteins such as CFAH were sig-
nificantly higher, whereas urinary DAF and CD59 were sig-
nificantly lower in progressive eGFR decliners compared 
with slow eGFR decliners. Urinary abundance of C1QA, 
C1S, C4A, C4B, C5, C6, C7, and C8A, and complement 
regulatory protein CFAI, CFAB, FHR1, and FHR2 were not 
significantly different between patients with progressive or 
slow eGFR decline.

Correlation between urinary complement proteins 

by targeted proteomics and indices of diabetic kidney 

injury

A matrix of the correlation coefficients between complement 
proteins and indices of diabetic kidney injury is showed in 
Fig. 3. 79% (15/19) of the urinary complement proteins were 
associated with baseline eGFR (Fig. 3a). The abundances 
of urinary complement C2, C3, C4A, C4B, C6, C7, C9, 
CFAI, CFAB, CFAH, FHR1, and FHR2 were significantly 
negatively correlated with baseline eGFR (Spearman cor-
relation coefficient [r] =  −0.41 to −0.71). The abundances 
of urinary complement C2, C3, C9, CFAH, and FHR2 were 
significantly positively correlated with baseline proteinuria 
(r = 0.29–0.48). Urinary abundances of complement regula-
tory proteins DAF and CD59 showed a positive correlation 
with baseline eGFR (r = 0.28 and 0.34, respectively), and 
a negative correlation with baseline proteinuria (r =  −0.67 
and −0.68, respectively). However, no urinary complement 
proteins were significantly associated with baseline HbA1c 
(Fig. 3a).

We next analyzed the association between the urinary 
abundance of complement proteins and annual eGFR 
decline in patients with T2DM and DN. Spearman’s corre-
lation analysis showed that urinary abundances of C3, C9, 
and CFAH were negatively correlated with annual eGFR 
decline (r =  −0.31 to −0.40), while the urinary abun-
dance of C5, DAF, and CD59 was positively correlated 
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Table 1  The clinical characteristics of patients stratified by eGFR decline rate

BMI body mass index; SBP systolic blood pressure; DBP diastolic blood pressure; FPG fasting plasma glucose; eGFR estimated glomerular 
filtration rate; HbA1c hemoglobin A1c; uACR  urine albumin-to-creatinine ratio; RAAS renin–angiotensin–aldosterone system; OHA oral hypo-
glycemic agent; RPS Renal Pathology Society; IFTA interstitial fibrosis and tubular atrophy
a Defined by RPS DN classification. Data are presented as means (SDs) for continuous variables with a normal distribution, as medians (25th–
75th percentiles) for continuous variables without a normal distribution, and as percentages for categorical variables

Characteristics Slow eGFR decliners (n = 26) Progressive eGFR decliners 
(n = 28)

p value

Age, mean (SD), y 53 (9) 52 (9) 0.89
Sex, Male, n (%) 17 (65.4) 15 (53.6) 0.44
Smoking, Never/Ex/Current, (n) 14/3/9 20/2/6 0.32
BMI, mean (SD), kg/m2 25.8 (3.2) 24.4 (3.1) 0.43
SBP, mean (SD), mmHg 138 (21) 141 (27) 0.34
DBP, mean (SD), mmHg 81 (13) 84 (12) 0.71
Duration of diabetes, median (IQR), months 132 (96–180) 66 (36–133) 0.04
HbA1c, median (IQR), % 7.6 (6.8–7.9) 7.5 (6.6–9.2) 0.72
FPG, median (IQR), mg/dL 151.6 (112.3–194.9) 135.8 (99.4–161.6) 0.69
Hemoglobin, mean (SD), g/L 133.7 (24.7) 125.5 (24.0) 0.05
Serum albumin, mean (SD), g/L 41.8 (4.7) 35.6 (7.1)  < 0.001
eGFR, median (IQR), mL/min/1.73  m2 67.1 (46.2–92.3) 78.2 (50.2–94.8) 0.37
24-h proteinuria, median (IQR), g/d 1.44 (0.53–2.74) 3.48 (1.50–7.6)  < 0.001
uACR, median (IQR), (mg/g) 739 (164–1488) 1727 (936–3692) 0.04
RAAS inhibitors, No. (%) 23 (88.5) 25 (89.3) 0.90
OHA therapy, No. (%) 15 (57.7) 15 (53.6) 0.76
Insulin therapy, No. (%) 19 (73.1) 18 (64.3) 0.48
Statins, No. (%) 17 (65.4) 19 (67.9) 0.84
RPS  classificationa, n (%) 0.04
 I 5 (19.2) 2 (7.1)
 IIa 6 (23.1) 6 (21.4)
 IIb 4 (15.4) 5 (17.9)
 III 9 (34.6) 12 (42.9)
 IV 2 (7.7) 3 (10.7)

IFTAa, n (%) 0.04
 Score 0 3 (11.5) 2 (7.1)
 Score 1 15 (57.7) 14 (50.0)
 Score 2 7 (26.9) 10 (35.7)
 Score 3 1 (3.8) 2 (7.1)

Interstitial  inflammationa, n (%) 0.22
 Score 0 0 (0) 0 (0)
 Score 1 20 (76.9) 25 (89.3)
 Score 2 6 (23.1) 3 (10.7)

Arteriosclerosisa, n (%) 0.68
 Score 0 3 (11.5) 3 (10.7)
 Score 1 13 (50.0) 11 (39.3)
 Score 2 10 (38.5) 14 (50.0)

Arteriolar  hyalinosisa, n (%) 0.60
 Score 0 1 (3.8) 3 (10.7)
 Score 1 10 (38.5) 9 (32.1)

 Score 2 15 (57.7) 16 (57.1)
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with annual eGFR decline treated as a continuous variable 
(r = 0.27–0.57) (Fig. 3b). Multiple regression analysis to 
assess the association between the abundance of urinary 
complement proteins and faster eGFR decline treated as a 
binary variable also confirmed this result (Supplementary 
Table 5). A further multivariable regression model, which 
included all proteins that were significantly associated 
with faster eGFR decline, showed that high abundance 

of urinary CFAH was a significant independent predictor 
of faster eGFR decline (standardized coefficient (β) 0.20, 
95% CI 0.03–0.34, p = 0.03). Low abundances of urinary 
DAF and CD59 were also significant independent predic-
tors of faster eGFR decline (β −0.47, 95% CI −0.79 to 
−0.06, p = 0.02; β −0.40, 95% CI −0.55 to −0.14, p < 0.01, 
respectively).

Fig. 2  Distributions of urinary 
complement proteins among 
control participants, patients 
with type 2 diabetes, and 
diabetic patients with associated 
DN. DN diabetic nephropathy

Fig. 3  Matrix of correlation coefficients. a Matrix of correlation coef-
ficients between urinary complement proteins and baseline param-
eters of diabetic kidney injury by Spearman’s correlation analysis. b 
Matrix of correlation coefficients between urinary complement pro-
teins and annual eGFR decline during the follow-up period. c Matrix 

of correlation coefficients between urinary complement proteins and 
pathological parameters of DN by linear regression analysis. Cell 
color indicates the strengths and directions of the correlation from 
blue (negative correlation) to white (no correlation) to red (positive 
correlation). DN diabetic nephropathy
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Correlation between uriary complement proteins 

by targeted proteomics and baseline renal pathological 

findings

Linear regression analysis showed that RPS glomerular clas-
sifications were significantly associated with high abundance 
of urinary complement C2, C4A, C9, CFAH, and CLUS 
(R2 = 0.23–0.99, standard β = 0.28–0.31), and low abundance 
of urinary DAF and CD59 (R2 = 0.17, standard β =  −0.35; 
R2 = 0.11 standard β =  −0.21, respectively) (Fig. 3c). IFTA 
scores were significantly associated with high abundance 
of urinary complement C2, C3, C9, CFAI, CFAB, CFAH, 
FHR1, and FHR2 (R2 = 0.08–0.12, standard β = 0.26–0.51). 
The abundance of urinary DAF and CD59 were not signifi-
cantly associated with IFTA scores. The severity of intersti-
tial inflammation, arteriolar hyalinosis, or arteriosclerosis 
was not significantly correlated with any urinary comple-
ment protein (data not shown).

Complement proteins and risk of ESRD

Of patients with T2DM and DN at risk, 35.2% (19/54) pro-
gressed to ESRD. The urinary abundance of each quanti-
fied complement protein was included individually in Cox 
proportional hazards models for predicting progression to 
ESRD (Fig. 4). Univariable Cox proportional hazards analy-
sis showed that urinary complements C2, C3, C4B, C5, C9, 
CFAH, DAF, and CD59 were associated with future ESRD 
(Fig. 4a). After adjusting for age, sex, baseline eGFR, and 
proteinuria, higher abundances of urinary complement C1s, 
C2, C3, C4A, C4B, C9, and CFAH, but lower abundances 
of urinary DAF and CD59 were significantly associated 
with higher risk of progression to ESRD (Fig. 4b). How-
ever, after further adding renal pathological covariates in 
the second multivariable Cox proportional hazards model, 
only higher abundances of urinary complement C2, C3, C9, 
and CFAH were associated with higher risk (adjusted HR, 
range from 3.50 to 9.39) of progression to ESRD, while 
lower abundance of urinary DAF (adjusted HR, 0.06) or 
CD59 (adjusted HR, 0.02) was significantly associated with 
higher risk of progression to ESRD (Fig. 4c). Adding diabe-
tes duration or baseline HbA1c did not alter these findings 
significantly (data not shown). A third multivariable Cox 
proportional hazards model, which included all proteins that 
were individually significantly associated with ESRD in the 
second multivariable model, was then performed. Higher 
abundance of urinary CFAH (adjusted HR, 1.70) but lower 
abundance of urinary DAF (adjusted HR, 0.07), was signifi-
cantly associated with higher risk of progression to ESRD 
(Fig. 4d) in patients with T2DM and DN.

The ROC AUC for prediction of ESRD according to 
clinical and pathological parameters, and urinary comple-
ment proteins CFAH or DAF are shown in Fig. 5. Urinary 

abundance of CFAH and DAF had a larger AUC than that for 
eGFR and proteinuria (Fig. 5a). Moreover, the ROC AUC 
for urinary abundance of CFAH and DAF was larger than 
that for any pathological parameter (Fig. 5b). The model that 
included CFAH or DAF had a larger AUC than the model 
with only clinical parameters (eGFR and proteinuria) or only 
pathological parameters (RPS classification, IFTA, intersti-
tial inflammation, arteriosclerosis, and artery hyalinosis) 
(Fig. 5c, d).

Discussion

Targeted and untargeted proteomic studies revealed abnor-
mal abundances of urinary complement proteins in patients 
with T2DM and DN compared with those with T2DM and 
HC participants. In patients with T2DM and DN, urinary 
complement C2, C9, CFAH, DAF, CD59, and CLUS cor-
related strongly with RPS glomerular classification, while 
C2, C3, C9, and CFAH correlated well with IFTA. Mul-
tivariable Cox proportional hazards analysis revealed that 
higher urinary abundance of complement CFAH, and lower 
urinary abundance of DAF were associated with greater risk 
of progression to ESRD when adjusting for age, sex, base-
line renal function, and renal pathological covariates, includ-
ing RPS glomerular classification and IFTA score. Urinary 
abundance of CFAH and DAF had a larger AUC than that of 
eGFR, proteinuria, or any pathological parameter. Moreover, 
the model that included CFAH or DAF had a larger AUC 
than the model with only clinical or pathological param-
eters, indicating that urinary abundance of CFAH and DAF 
provided added value for predicting progression to ESRD in 
patients with T2DM and biopsy-proven DN.

The complement system serves as part of the innate 
immune system required for host defense, and is activated 
via the classical, alternative, or mannose-binding lectin path-
ways [27, 28]. Inappropriate activation of the complement 
pathway leads to kidney damage [28]. Recent evidence indi-
cates that complement activation is associated with devel-
opment of glomerular and tubulointerstitial injury [29–31]. 
Complement system-mediated progression of renal disease 
may occur via both immune and non-immune pathways [27]. 
Changes of urinary complement proteins may reflect com-
plement overproduction, secretion, and/or deposition in the 
diabetic injured kidney [32].

A key finding of this study was that higher urinary abun-
dance of CFAH was associated with higher risk of onset 
of ESRD in patients with T2DM and biopsy-proven DN. 
CFAH, an abundant serum glycoprotein, is one of the most 
important circulating regulators of the alternative pathway. It 
is expressed constitutively in liver and locally expressed by 
endothelial cells, epithelial cells, and podocytes [33]. CFAH 
serves as an essential cofactor for CFAI-mediated C3b 
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cleavage. It also accelerates decay of the alternative path-
way C3 convertase [34]. Clinical studies showed an asso-
ciation between CFAH polymorphisms and adverse clinical 
outcomes in diabetic patients [35, 36]. Experimental studies 
addressed the fact that in the absence of CFAH, spontaneous 
activation of the alternative pathway of complement occurs 
in plasma, which leads to consumption of complement C3, 
secondary plasma C3 deficiency, and massive accumulation 
of C3 along the glomerular basement membrane [37]. In 
cultured immortalized human podocytes and primary human 

podocytes from a known Arg1182Ser (G3546T) CFAH 
mutant patient, CFAH was confirmed to be expressed by 
podocytes. Moreover, expression of CFAH was up-regulated 
in injured podocytes [33]. As a molecule of 150 kDa, CFAH 
is prevented from filtration by a healthy glomerular filtration 
barrier. Our findings did not identify the source of urinary 
CFAH. It may have been derived from injured podocytes 
or epithelial tubular cells, or filtered through an impaired 
glomerular filtration barrier [38]. If high urinary CFAH level 
was a consequence of increased renal CFAH production, its 

Fig. 4  Association of urinary complement proteins with renal out-
come in patients with type 2 diabetes and DN. Univariable (a) and 
two multivariable (b, c) Cox proportional hazards models by individ-
ual complement proteins at the renal endpoint. (d) The third multivar-
iable Cox proportional hazards model included all proteins that were 
individually significantly associated with ESRD in the second multi-
variable model. aAdjusted for age, sex, baseline log2 (baseline eGFR) 

and log2 (baseline urinary protein concentration); bAdjusted for age, 
sex, baseline log2 (baseline eGFR) and log2 (baseline urinary protein 
concentration), Renal Pathology Society glomerular classification, 
interstitial fibrosis and tubular atrophy. CFAI complement factor I; 
CFAB complement factor B; CFAH complement factor H; FHR1 fac-
tor H-related protein 1; FHR2 factor H-related protein 2; DAF decay-
accelerating factor; CLUS clusterin
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association with greater risk of progression to ESRD indi-
cates insufficient CFAH-mediated protection from proteinu-
ria-induced complement activation, resulting in progressive 
eGFR decline and ultimately, ESRD. In contrast, the strong 
association between urinary CFAH excretion and proteinuria 
suggests high urinary CFAH because impaired glomerular 
permeability cannot be excluded.

DAF is a glycophosphatidylinositol-anchored protein 
expressed both on podocytes and epithelial tubular cells [39] 
that regulates the C3 and C5 convertases of the classical 
and alternative pathways [40]. DAF accelerates decay and 

inhibits the reformation of surface-bound C3 convertases, 
together with retraining amplification of the cascade [39]. 
In streptozotocin-induced diabetic glomerulosclerosis, 
podocyte-specific deficiency of DAF activated C3a/C3aR 
signaling, causing actin cytoskeleton rearrangement and 
podocyte injury [39]. Furthermore, DAF mRNA and pro-
tein expression were down-regulated in glomeruli in diabetes 
[39, 41]. A streptozotocin-induced diabetic animal model 
showed increased DAF cleavage on the podocyte membrane, 
resulting in low levels of DAF in renal tissue and urine [39]. 
Combined with previous studies, the association between 

Fig. 5  Area under the receiver operating characteristic curve for pre-
diction of ESRD. Urinary abundance of CFAH and DAF had a larger 
AUC than clinical (a) or pathological parameters (b). The model con-
tains covariates and CFAH or DAF had lager AUC than that of the 
model that only contains clinical parameters (c) or only pathological 
parameters (d). Covariates 1 were baseline eGFR and proteinuria. 

Covariates 2 were RPS glomerular classification, IFTA, interstitial 
inflammation, arteriosclerosis, and AH. ESRD end-stage renal dis-
ease; AUC  area under the curve; CFAH complement factor H; DAF 
decay-accelerating factor; eGFR estimated glomerular filtration rate; 
RPS Renal Pathology Society; IFTA interstitial fibrosis and tubular 
atrophy; AH artery hyalinosis
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lower abundance of urinary DAF and higher risk of ESRD 
in our DN cohort indicated an important protective effect on 
kidney disease progression exerted by DAF. In the present 
study, although CD59 was not an independent risk factor for 
predicting future ESRD, it predicted faster eGFR decline in 
patients with T2DM and DN. CD59 is a transmembrane pro-
tein that inhibits formation of the membrane attack complex 
(MAC), thereby protecting cells from complement-mediated 
injury. Vaisar et al. reported that lower urinary CD59 was an 
independent predictor of higher risk of future ESRD and all-
cause mortality in a Mexican–American cohort with T2DM 
and CKD [32]. Transgenic mice expressing human DAF and 
CD59 had reduced C3 and C9 deposition in the kidney and 
inhibition of terminal complement pathway [42], suggest-
ing that targeting DAF and CD59 may prevent renal injury.

In this study, higher levels of urinary complement C2 and 
C3 were significantly associated with higher risk of future 
ESRD by multivariable Cox proportional hazards analysis. 
This result suggests a degree of activity from the lectin and 
classical complement pathways may be associated with 
shorter renal survival in patients with T2DM and DN. Our 
previous study using single-nephron proteomic analysis and 
immunohistochemical staining suggested complement fac-
tors such as C3, C8, and C9 are overactivated in solidified 
glomerulosclerosis in patients with DN. Solidified glomeru-
losclerosis was shown to be an independent pathological 
finding that predicts future diabetic ESRD [43]. C9 binds 
C8 in the C5b-8 complex and forms the MAC that causes 
cellular and organ damage. Previous studies showed that 
urinary MAC excretion correlates well with eGFR decline 
in DN [44, 45], while glomerular MAC deposition correlates 
with the severity of DN and microvascular and interstitial 
lesions [46]. Therefore, a promising approach to delaying 
progression of DN may be to block the lectin and classical 
pathways by targeting C2 or C3, or by inhibiting MAC for-
mation by targeting C9.

This study revealed that patients with progressive eGFR 
decline had more severe pathological features than those 
with slow eGFR decline. Early validation studies showed 
that higher-grade lesions, assessed using the RPS clas-
sification, were associated with greater risk of ESRD and 
requirement for dialysis in patients with T2DM [15, 18, 47]. 
A strong structural–functional relationship existed in both 
T1DM and T2DM. A Japanese nationwide multicenter study 
that analyzed kidney biopsy samples found that pathologi-
cal features, including glomerular, interstitial, and vascular 
lesions, were more severe in high-risk categories and were 
highest in the red group (based on the CKD heatmap cat-
egory according to baseline eGFR and albuminuria level) 
[48]. Although diabetes duration was shorter in rapid eGFR 
decliners than slow eGFR decliners, the association between 

duration of diabetes and eGFR decline was controversial. 
Previous studies showed that the differences in duration 
between progressors and nonprogressors were similar [26, 
49, 50]. A cross-sectional study of 17 patients with T2DM 
and DN showed that histopathological changes were not 
significantly associated with duration of diabetes [51]. The 
absence of an association between renal structural alterations 
and diabetic duration may be explained by the high hetero-
geneity and insidious onset of T2DM. Numerous individuals 
have undiagnosed diabetes or impaired glucose tolerance for 
extended periods of time, which leads to inaccurate assess-
ment of diabetes duration [52]. Many patients have delayed 
diagnosis and treatment of diabetes. Lack of disease aware-
ness in these patients may lead to rapid progression of kid-
ney injury. This observation reemphasizes the importance 
of early screening and intervention for delaying progression 
of diabetes.

An advantage of this study was the comprehensive 
quantification of urinary complement proteins using a 
targeted mass spectrometric method. Patients had patho-
logic diagnosis of diabetic glomerulosclerosis, and we 
excluded those with evidence of any other glomerular 
disease. The correlation between urinary complement pro-
teins and renal outcome was carefully adjusted for demo-
graphic parameters, clinical covariates, and pathological 
confounders. A limitation of the study was the limited 
number of patients with biopsy-proven DN. Additionally, 
quantification of complement protein expression in serum 
and kidney tissue was not performed. Given our results, 
we propose alteration of urinary complement proteins may 
be associated with more severe inflammatory status and 
may lead to poor renal outcome in patients with T2DM 
and DN, This implies therapeutically targeting the comple-
ment system may help improve the renal outcome of DN 
in clinical practice. Nonetheless, the specific mechanism 
underlying overactivation of the complement system need 
more experimental and clinical evidence to verify.

In conclusion, compared with patients with T2DM and 
HC participants, the complement system was overacti-
vated in patients with T2DM and DN, and was reflected 
as abnormal urinary excretion of complement proteins. 
Higher abundance of urinary CFAH was strongly asso-
ciated with higher risk of progression to ESRD, while 
lower abundance of DAF was associated with greater risk 
of future ESRD. These findings indicated that activation 
of different arms of the complement pathway may be asso-
ciated with higher risk of progression to ESRD. Conse-
quently, therapeutically targeting the complement pathway 
may alleviate progression of DN.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40618- 021- 01596-3.
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