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Metabolomic studies of increased fat oxidation showed increase in circulating acylcarnitines C2, C8, C10, and C12 and decrease
in C3, C4, and C5. We hypothesize that urinary F2-isoprostanes re�ect intensity of fatty acid oxidation and are associated with
circulating C2, C8, C10, and C12 directly and with C3, C4, and C5 inversely. Four urinary F2-isoprostane isomers and serum
acylcarnitines are quanti�ed using LC-MS/MS within the Insulin Resistance Atherosclerosis Study nondiabetic cohort (n =
682). Cross-sectional associations between fasting urinary F2-isoprostanes (summarized as a composite index) and the selected
acylcarnitines are examined using generalized linear models. F2-isoprostane index is associated with C2 and C12 directly and with
C5 inversely: the adjusted beta coe�cients are 0.109, 0.072, and −0.094, respectively (P < 0.05). For these acylcarnitines and for F2-
isoprostanes, the adjusted odds ratios (ORs) of incident diabetes are calculated from logistic regression models: the ORs (95% CI)
are 0.77 (0.60–0.97), 0.79 (0.62–1.01), 1.18 (0.92–1.53), and 0.51 (0.35–0.76) for C2, C12, C5, and F2-isoprostanes, respectively. 	e
direction of the associations between urinary F2-isoprostanes and three acylcarnitines (C2, C5, and C12) supports our hypothesis.
	e inverse associations of C2 and C12 and with incident diabetes are consistent with the suggested protective role of e�cient fat
oxidation.

1. Introduction

Urinary F2-isoprostanes are validated indices of human
oxidative status, re�ecting an overall generation of free
radicals, among them reactive oxygen species (ROS) [1–
3]. Commonly, any statistically signi�cant elevation of sys-
temic F2-isoprostanes (by any amount) is interpreted as
harmful oxidative stress [1]. A prominent example is the
conventional view that the elevated F2-isoprostane levels
in obesity represent obesity-induced oxidative stress and a
mechanistic link between obesity and cardiovascular risk [4].
In contrast, our research found that elevated urinary F2-
isoprostanes levels present a favorable trait predicting lower
risks of weight gain and type 2 diabetes [5, 6]; and the

�ndings on the risk of weight gain have been independently
con�rmed in another cohort [7]. To reconcile the two aspects
of urinary F2-isoprostanes, that is, as favorable metabolic
trait and as systemic indices of ROS, we hypothesized that
mitochondrial oxidativemetabolism is themain determinant
of urinary F2-isoprostane levels [8], because mitochondria
are the major endogenous source of ROS [9]. We also
hypothesized that fatty acid oxidation plays the predominant
role in the connection between mitochondrial metabolism
and urinary F2-isoprostane levels, because mitochondrial
fatty acid oxidation (a) produces higher levels of ROS [10]
and (b) largely accounts for the peripheral tissue oxidative
metabolism [11]. 	is hypothesis builds upon the protective
roles that the intensive mitochondrial metabolism, fatty acid
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oxidation, and physical activity play against obesity and type
2 diabetes [12] and the well-known fact that physical activity
induces increases in F2-isoprostane levels [13, 14].

In earlier publications, we examined several epidemio-
logical evidences supporting the hypothesized connection
between urinary F2-isoprostanes and fat oxidation.We found
that a racial group with lower levels of fat oxidation, that
is, African Americans [15], congruently has lower levels of
urinary F2-isoprostanes [16]. We also demonstrated that
fasting levels of nonesteri�ed fatty acids, which are known to
stimulatemuscle fat oxidation, correlate directly with urinary
F2-isoprostanes [17]. Further exploration of our hypothesis
has become possible due to the recent metabolomic studies
of circulating metabolites in conditions with intensi�ed fat
oxidation, namely, during fasting and moderate intensity
exercise [18, 19]. Speci�cally, themetabolomic study of fasting
demonstrated that circulating levels of C3 (propionylcarni-
tine), C4 (butyrylcarnitine), and C5 (valerylcarnitine), all
derivatives of amino acid oxidation, decline, whereas C2
(acetylcarnitine) levels increase [18]. 	e study of moderate
intensity exercise found that a 60–120min run resulted in a
transient increase of C8 (octanoylcarnitine), C10 (decanoyl-
carnitine), and C12 (dodecanoylcarnitine) levels [19]. If
urinary F2-isoprostanes correlate with the intensity of fat
oxidation, it is logical to expect that these biomarkers are
associated with C2, C8, C10, and C12 directly and with
C3, C4, and C5 inversely. We also hypothesized that these
same acylcarnitines are associated with incident type 2
diabetes congruently with the inverse association between
F2-isoprostanes and type 2 diabetes [6]. We explored these
questions by examining both F2-isoprostane and acylcarni-
tine data from the Insulin Resistance Atherosclerosis Study
(IRAS) multiethnic cohort.

2. Research Design and Methods

2.1. Study Population. 	e IRAS is a well-characterized
multiethnic cohort described in detail [17]. 	e analytical
cohort includes the baseline nondiabetic participants with
normal (NGT) or impaired glucose tolerance (IGT) only,
with available measurements of urinary F2-isoprostanes and
acylcarnitines (� = 682), among them 114 participants
developing type 2 diabetes during the follow-up.

2.2. Measurements. All subjects fasted for 12 hours and
refrained from heavy exercise, smoking, and alcohol con-
sumption for 24 hours before the visit. 	e metabolic
and anthropometric measurements were described earlier
[17]. Participants had a frequently sampled glucose tol-
erance test for which insulin sensitivity (�I) and acute
insulin response (AIR) were calculated. Four isomers of
F2-isoprostanes—iPF2�-III, 2,3-dinor-iPF2�-III, iPF2�-VI,
and 8,12-iso-iPF2�-VI—are quanti�ed in morning spot urine
samples (stored at −70∘C) by liquid chromatography with
tandem mass spectrometry detection (LC-MS/MS) as pre-
viously described. F2-isoprostane levels are corrected by
urinary creatinine to account for di�erences in urine dilution
[3].

Acylcarnitines are also measured by LC-MS/MS.
Deuterium-labeled internal standards were added to 25
microliters of serum and the mixture was solubilized in
methanol followed by a crash extraction and then injected
onto an Atlantis HILIC Column connected to a Waters
Xevo triple quadrupole mass spectrometer (Waters, MA).
Acylcarnitines were ionized via positive electrospray and
the mass spectrometer was operated in the tandem MS
mode. 	e absolute concentration of each acylcarnitine is
determined by comparing the corresponding peak to that of
the relevant internal standard.

2.3. Statistical Analysis. Spearman correlation coe�cient is
used to examine crude correlations between acylcarnitines.
For F2-isoprostanes, we calculated a composite index that
ranks individuals based on all four measurements: [(X1� −
M1)/SD1 + (X2� − M2)/SD2 + (X3� − M3)/SD3 + (X4� −
M4)/SD4]/4, where “�” is a notation for a participant; values
of four F2-isoprostanes species (X1–4) were standardised by
subtracting estimated mean (M1–4) and divided by standard
deviation (SD1–4). For acylcarnitines, we use natural-log
transformed variables to reduce the in�uence of high values.

Adjusted beta coe�cients for the associations between
F2-isoprostane index and the acylcarnitines are calculated
from generalized linear models. 	e minimally adjusted
models include demographic variables (age, gender, and
race/ethnicity) and BMI; the fully adjusted models include
additional metabolic variables (IGT, insulin sensitivity
[log(�I + 1)], and AIR). 	e association between the
acylcarnitines and incident diabetes (� = 114) is quanti�ed
by odds ratios calculated from logistic regression models,
with the covariates selected by our previously published
analysis [6].

3. Results

Our study population is metabolically and ethnically diverse,
with 43% Non-Hispanic and 32% Hispanic Whites and 25%
African Americans and 26% normal, 44% overweight, and
29% obese (Table 1). One third of the study population is
NGT with two-thirds being IGT. 	e observed correlations
between the examined acylcarnitines are in agreement with
the �ndings from the metabolomics studies [18, 19]. As
expected, the strongest correlations are found between C8,
C10, and C12 (0.82 ≤ � ≤ 0.97, � < 0.05) and between C3,
C4, and C5 (0.43 ≤ � ≤ 0.59, � < 0.05). C2 correlates most
strongly with C12 (� = 0.41, � < 0.05) as compared to other
acylcarnitines.

Examining the associations between fasting levels of F2-
isoprostanes (expressed as composite index) and acylcar-
nitines, we �nd that beta coe�cients are consistently positive
for the associationswithC2, C8, C10, andC12, whereas forC3,
C4, and C5 the beta coe�cients are negative (Table 2). 	ree
acylcarnitines show statistically signi�cant associations: �
values for the beta coe�cients are 0.03 for C2, C5, and C12.
	emagnitude of the beta coe�cients and the standard errors
are generally consistent between the minimally and the fully
adjusted models (Table 2). For example, beta coe�cients for
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Table 1: Characteristics of the study population (� = 682).

Characteristics
Mean (SD) or
number (%)

Age (years) 54.5 (8.4)

Sex, female (number, %) 385 (56.5)

Ethnicity (number, %)

Non-Hispanic White 291 (43)

African American 174 (25)

Hispanic White 217 (32)

Normal glucose tolerance, NGT (number, %) 226 (33)

Impaired glucose tolerance IGT (number, %) 456 (67)

BMI (kg/m2)

Normal (<25) 179 (26)

Overweight (25–29.9) 303 (44)

Obese (≥30) 199 (29)

Missing 1

iPF2�-III (ng/mg creatinine) 0.25 (0.20)

2,3-dinor-iPF2�-III (ng/mg creatinine) 4.32 (3.05)

iPF2�-VI (ng/mg creatinine) 6.46 (4.08)

8,12-iso-iPF2�-VI (ng/mg creatinine) 4.19 (2.92)

F2-isoprostane composite index 1.41 (0.80)

Acetylcarnitine, C2 (nmole/g) 7.16 (2.45)

Propionylcarnitine, C3 (nmole/g) 0.37 (0.12)

Butyrylcarnitine, C4 (nmole/g) 0.19 (0.11)

Valerylcarnitine, C5 (nmole/g) 0.15 (0.05)

Octanoylcarnitine, C8 (nmole/g) 0.17 (0.12)

Decanoylcarnitine, C10 (nmole/g) 0.33 (0.29)

Dodecanoylcarnitine, C12 (nmole/g) 0.21 (0.11)

Mean (SD) presented for continuous variables; F2-isoprostane composite
index was calculated using all four F2-isoprostane measurements as follows:
each value was standardized (divided by the standard deviation) and mean
of the four standardized values was calculated for each participant.

the association between F2-isoprostanes and C2 correspond
to 9.8% and 10.9% increase of mean F2-isoprostane index per
standard deviation of C2 distribution.

	e three acylcarnitines that are signi�cantly associated
with F2-isoprostanes (C2, C5, and C12) are examined as
predictors of incident diabetes (Table 3). C2 and C12 are
inversely associated with type 2 diabetes risk (� values 0.03
and 0.06, resp.); and C3 shows a nonsigni�cant positive
association (� value 0.19). 	e estimated magnitudes of the
associations with C2 and C12 are very close (odds ratios
are 0.77 and 0.79, resp.). As expected, the association with
the composite index of F2-isoprostanes con�rms the inverse
relationships with type 2 diabetes risk in this analytical cohort
(Table 3).

4. Discussion

	is analysis is inspired by the recent metabolomic studies
that examined changes in circulating metabolites within the
physiological conditions incurring increased fat oxidation

[18, 19]. We hypothesized that urinary F2-isoprostane levels
re�ect a greater ability to oxidize fat and therefore are
associated directly with C2, C8, C10, and C12 and inversely
with C3, C4, and C5. 	e detected trends are consistent
with our hypotheses. Signi�cant associations are found for
urinary F2-isoprostanes C2, C12, and C5. Acylcarnitine C5
is a metabolite related to catabolism of branched chain
amino acids (BCAAs), which is thought to be negatively
regulated by mitochondrial fatty acid oxidation [20]. In
fact, the metabolomic study of fasting showed an increase
in circulating levels of BCAAs, which could result from a
decreased catabolism of BCAAs in the condition of increased
fat oxidation [18]. Acylcarnitine C2, while potentially derived
from multiple fuel sources that generate acetyl-CoA, is
known as a metabolite increased by exercise and fasting due
in large part to increased fatty acid oxidation [21, 22]. Impor-
tantly, the detected associations between F2-isoprostane and
acylcarnitines are stable, as shown by the minimally and
fully adjusted models in Table 2. 	is in conjunction with no
�ndings contradicting our hypothesis insures the consistency
of these results.

Additional support for our hypothesis comes from the
prospective analysis of type 2 diabetes risk. Our results
indicate a trend of inverse associations of C2 and C12 with
incident type 2 diabetes, whereas C5 shows an opposite
trend. 	ese �ndings are in agreement with the expectations
based on the results in Table 2, demonstrating the overall
consistency of our results. 	ey also support the suggested
protective role of e�cient fat oxidation in etiology of type
2 diabetes. Importantly, this analysis utilizes the data from
the well-characterizedmultiethnic cohort, which provides an
opportunity to adjust the results for potential confounders
and assumes generalizability. In summary, our results provide
additional support to the hypothesis that urinary levels of F2-
isoprostanes are related to the intensity of fatty acid oxidation.
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Table 2: Association between F2-isoprostane index and selected acylcarnitines (� = 682).

Acylcarnitines
Beta coe�cient (95% CI)

Minimally adjusted model Fully adjusted model

Acetylcarnitine, C2 0.098 (0.042, 0.154) 0.109 (0.051, 0.167)

Propionylcarnitine, C3 −0.027 (−0.089, 0.034) −0.024 (−0.088, 0.040)
Butyrylcarnitine, C4 −0.010 (−0.067, 0.048) −0.010 (−0.069, 0.049)
Valerylcarnitine, C5 −0.093 (−0.156, −0.030) −0.094 (−0.159, −0.029)
Octanoylcarnitine, C8 0.010 (−0.046, 0.066) 0.014 (−0.044, 0.073)
Decanoylcarnitine, C10 0.016 (−0.040, 0.071) 0.020 (−0.039, 0.079)
Dodecanoylcarnitine, C12 0.065 (0.009, 0.122) 0.072 (0.013, 0.132)

Beta coe�cients show di�erences in F2-isoprostanes index associated with a change in acylcarnitines (log-transformed) equal to standard deviation.Minimally
adjusted models included the demographic variables (age, gender, and race/ethnicity) and BMI; fully adjusted models included additional metabolic variables
(IGT-status, insulin sensitivity, and AIR). Statistically signi�cant results (� < 0.05) are in bold.

Table 3: Association of the baseline F2-isoprostane index and three
selected acylcarnitines with incident type 2 diabetes (114 cases).

OR (95% CI)

F2-isoprostane composite index 0.51 (0.35, 0.76)

Acetylcarnitine, C2 0.77 (0.60, 0.97)

Valerylcarnitine, C5 1.18 (0.92, 1.53)

Dodecanoylcarnitine, C12 0.79 (0.62, 1.01)

ORs adjusted for age, gender, ethnicity, clinic and baseline BMI, and
IGT-status and scaled to SD of F2-isoprostanes or acylcarnitines (log-
transformed).
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