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ence phenomena and proteolysis are integrmns and uPARs3 (CD87),
respectively.

Integrmns are heterodimeric membrane glycoproteins composed of

noncovalently associated a and @3chains (7â€”9).(31integrmns include at
least six distinct heterodimers (CD49a-f/CD29) that recognize ECM
components including laminin, collagen, and fibronectin (7â€”9).On the
other hand, 133integnns include a vitronectin receptor (CD51/CD61)
and the platelet glycoprotein IIbIIIIa (CD4I/CD61). These integrins
have been found on tumor cell surfaces, where they participate in
various aspects of tumor cell adhesion, invasion, and metastasis (1â€”3).

Invasion of malignant cells also requires the proteolytic degradation

of extracellular materials. One key system initiating pencellular pro

teolysis is plasminogen activation. Plasminogen activators catalyze
the activation of plasminogen to plasmin, which is a broad-spectrum
protease that subsequently activates latent collagenases and elastases;
this proteolytic cascade catalyzes the degradation of most extracellu
lar proteins (4â€”5).The uPA is produced by invasive malignant cells
(6), implanting trophoblastic cells (10) and monocytes (11). uPA

binds to the cell surface uPAR, which is a GPI-linked membrane
protein (12, 13). Recent studies show that uPAR expression is mark
edly increased on invasive tumor cells in comparison to noninvasive
cells (14, 15). uPAR is apparently required for tumor cell invasion and
metastasis (16, 17).

In previous studies, we and others have shown that uPAR physi
cally interacts with the @2integrin CR3 on leukocyte membranes (18,
19). These interactions may participate in leukocyte invasive events.
Thus, we hypothesize that j3@and/or (33 integnns of tumor cells may
physically interact with uPAR molecules to regulate pericellular pro
teolytic processes. We now report that uPAR and 13@integrmns asso
ciate on tumor cells adherent to fibronectin, laminin, and vitronectin
but not to polylysine and that uPAR and (3@integrins associate on
tumor cells adherent to vitronectin. Thus, integrin-uPAR interactions

in tumor cell membranes may account for cytoskeletal associations of
uPA (20), uPA and uPAR clustering at focal contacts (21â€”23),and the
focusing of pericellular proteolysis at specific extracellular sites (24).

MATERIALS AND METHODS

Materials. Fructose, NADG, and poly-L-lysine were obtained from Sigma

Chemical Co. (St. Louis, MO). fn and lm were obtained from Life Technol
ogies, Inc. (Grand Island, NY). vn was purchased from Boehringer Mannheim

(Indianapolis, IN). TRITC and FITC-conjugated anti-mouse IgG antibodies
were obtained from Cappel-Organon Teknika Corp. (Malvern, PA).

Cell Cultures. The human fibrosarcoma cell line HT1O8O(Ref. 25;
CCL121; American Type Culture Collection) was obtained from the American
Type Culture Collection (Bethesda, MD) and grown at 37Â°Cin DMEM (Life
Technologies, Inc.) supplemented with 10% FCS (Hyclone Laboratory, Inc.,
Logan, UT) and 100 @g/mlgentamicin (Life Technologies, Inc.).

3 The abbreviations used are: uPAR, urokinase-type plasminogen activator receptor;

ECM, extracellular matrix; GPI, glycosylphosphatidyl inositol; NADG, N-acetyl-o-glu
cosamine; fn, fibronectin; lm, laminin; vn, vitronectin; TRITC, tetramethylrhodamine
isothiocyanate; mAb, monoclonal antibody; RET, resonance energy transfer; DIC, differ
ential interference contrast.
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ABSTRACT

We have shown previously that the urokinase-type plasminogen acti
vator receptor (uPAR) physically associates with@ integrins on human
leukocyte membranes. We now report that UPAR associates with certain

members of the@ and IJ@integrin families expressed by a nonhemato
poietlc fibrosarcoma cell line (HT1OSO) when adherent to certain extra
cellular matrix molecules. Flow cytometry studies indicated that HT1OSO
cells expressed UPAR and fi1 and 1@3integrins. Double staining immuno
fluorescence was used to label UPAR and@ and fi@integrins. The staining
patterns of uPAR and@ integrins were strikingly similar when attached
to fibronectin,laminin,orvitronectinbutnotpolylysine-coatedsubstrates.
Resonance energy transfer (RET) between uPAR and I3@integrins was
observed, especially at focal adhesion plaques; this indicates that these
molecules are within about 7 mu of each other on these cell membranes.

uPAR and 1J3integrin coclustering and RET were also observed on tumor
cells adherent to vitronectin but not to fibronectin, laminin, or polylysine
coated surfaces. Because N-acetyl-D-glucosamine was found previously to
inhibit 1@2integrin-uPAR association, we tested the effect ofsaccharides on
the 131-uPARand @3-uPARcolocalization and RET. Colocalization and
RET between uPAR and@ or 1@3integrms were effectively inhibited by
N-acetyl-D-glucosamine on extracellular matrix-coated surfaces. To better
definewhichmembersof Ã˜@andIi@integrinfamiliesassociatewithUPAR,
we studied the association ofseveral a subunits with uPAR on tumor cells.
We found that: (a) a@colocalizes with uPAR on cells attached to fibronec
tin-coated surfaces (b) a5 and a@colocalize with UPAR on cells adherent
to vitronectin; and (c) a3 and a@associate with UPAR on cells attached to
laminin. In further support of physical associations between Integrins and
uPAR on tumor cells, UPAR was found to coimmunoprecipitate with@
integrins in BrIJ-58 lysates of HT1OSO cells (as detected by anti-uPAR
Western blotting of material isolated from an anti-f!1 integrin immune
aft@@ column). Thus, UPAR may laterally associate with integrins of
tumor cells when attached to specific extracellular matrix elements to

enable directional proteolysis for tumor cell migration and invasion.

INTRODUCTION

Malignant tumor cells invade surrounding tissues by penetrating
basement membranes, connective tissues, and cellular planes (1â€”3).
Subsequent metastasis requires distribution via the lymphatic or blood
circulatory systems, followed by extravasation and invasion. The
invasive program of malignant cells requires the complex interplay of

various cell surface molecules participating in adhesion, detachment,
and proteolytic disruption of neighboring structures (1â€”6).Thus,
tumor cells coordinate the complementary functions of cell-cell/cell
matrix adherence and pericellular proteolysis to promote invasion.
Two membrane components participating in the regulation of adher
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INTEGRIN@UPARINTERACTIONS

Antibodies. Anti-uPAR mAb (anti-Mo3f, clone 3B10) was prepared as
described previously (26, 27). An IgG fraction of a rabbit anti-human uPAR

was obtained as described (13) for use in Western blotting procedures. HRP

conjugated goat anti-rabbit IgG Ab was obtained from Life Technologies, Inc.
Goat anti-mouse IgG was obtained from Cappel-Organon Teknika Corp.
(Malvern, PA).

mAb directed against integrin subunits were obtained from various sources.
mAbs directed against@ integrin (CD29, clone P4C1O;Ref. 28), a@subunit
(CD49c, clone P1B5; Ref. 29), a4 subunit (CD49d, clone P4G9; Ref. 30), and

a@ (CD5I, clone VNRI47; Ref. 31) subunits were obtained from Life Tech

nologies, Inc. Anti-@33(CD6I, clone GPIIIA) mAb was obtained from Dako
Corp. (32). Anti-a1 (CD49a, clone TS2/7) was obtained from M. Hemler of
Harvard Medical School, Boston MA (33). Anti-a2 integrin (CD49b, clone
l2Fl) was obtained from V. Woods of the University of California at San
Diego, La Jolla, CA (34). Rat anti-human a5 (CD49e, clone BIIG2) was
obtained from C. Damsky ofthe University ofCalifornia at San Francisco, San
Francisco, CA (35). Rat anti-human a6 (CD49f, clone GoH3 was obtained
from A. Sonnenberg of the Netherlands Cancer Institute, Amsterdam, the
Netherlands (36).

Flow Cytometry. Indirect immunofluorescence was performed as de
scribed (26) using Abs directed at uPAR (26, 27),@ f3@,and several a
subunits. Briefly, cells were incubated with a saturating concentration of Ab or
an equivalent concentration of isotype-matched control Ab that was not di
rected against these cells at 4Â°Cfor 30 mm. Cells were washed once and then
incubated with a saturating concentration of FITC-conjugated polyclonal goat
anti-mouse Ab (Tago, Burlingame, CA) at 4Â°Cfor 30 ruin. Cells were washed
twice and fixed with 1% formaldehyde in PBS and then analyzed on an Epics
C flow cytometer(CoulterCorporation,Hialeah,FL).

Indirect Immunofluorescence Staining for Microscopy. HT1O8O tumor

cells were allowed to attach for 2 h to variously coated glass coverslips.

Coverslips were coated with poly-L-lysine (10 ,.@g/ml),fn (10 @g/ml),Im (10
@g/ml),or vn (5 p@g/ml)in PBS (pH 7.2) by incubating overnight at 4Â°Cor for

2 h at 37Â°C,followed by extensive washing. After cells had attached and
spread on these surfaces, they were fixed with 3% paraformaldehyde for 15
rain at room temperature. Each coverslip was then washed several times with

HBSS. Samples were then treated with murine mAb against uPAR at a
concentration of 10 @g/mlfor 1 h at room temperature. Isotype-matched
control experiments were performed (10 @g/ml)to rule out artifactual labeling.

After three washes with HBSS, the cells were incubated with TRITC-conju
gated goat anti-mouse IgG (Jackson Immuno Research Labs, Inc., West Grove,
PA) diluted 1:50 for I h at room temperature. The cells were then fixed again
with 3% paraformaldehyde and blocked with 3% BSA in HBSS, followed by
staining with FITC-conjugated purified mouse mAb against @1.(3@,or a
subunits for I h at room temperature. After three additional washes, the
coverslips were inverted and mounted on slides. The stained cells were
observed using epifluorescence microscopy.

Fluorescence Microscopy and Data Quantitation. Cells were observed
using an axiovert inverted fluorescence microscope (Carl Zeiss, Inc., New
York, NY) with mercury illumination interfaced to a Perceptics (Knoxville,
TN) Biovision image processingsystem. RET microscopywas performedas
described previously (37â€”39).A narrow bandpass discriminating filter set
(Omega Optical, Brattleboro, VT) was used with excitation at 485/22 nm and
emission at 530/30 nm for FITC and an excitation of 540/20 am and emission
of 590/30 nm for TRITC. Long-pass dichroic mirrors of 510 and 560 nm were
used for FITC and TRITC, respectively. To observe RET images, the 485/22
nm narrow bandpass discriminating filter was used for excitation, and the
590/30 nm filter was used for emission. The fluorescence images were col

lected with an intensified charge-coupled device camera (Geniisys; Dage-MTI,
Michigan City, IN). DIC photomicrographs were taken using Zeiss polarizers

and a charge-coupled device camera (Model 72; Dage-MTI). RET data were
quantitated with a photon counting system (Photochemical Research Associ
ates, Inc., London, Ontario, Canada) coupled to a microscope via a Products

for Research, Inc. (Danvers, MA) photomultiplier housing containing a pho
tomultiplier tube (Hamamatsu, Bridewater, NJ) that was cooled using a Peltier
system (Photochemical Research Associates) and a water circulator (Forma
Scientific, Marietta, OH; Ref. 40). RET photon count rates were obtained by
calculating the difference between the photon count rate of a cell and the
background count rate. Approximately 60â€”80cells were quantitated in each
experiment. Photon count rates (photons/s) are given as the mean Â± SE. Ps

were calculated using the Stats Plus (Human Systems Dynamics, Northridge,
CA) software package.

Preparation of Anti-fl1 Integrin Affinity Column. Anti-f3l mAb ascites
(5 s.d) or normal control mouse ascites (Sigma; 5 p1) were coupled to goat
anti-mouse IgG affinity gel (Cappel-Organon Teknika Corp.) by overnight
incubation at 4Â°Cfollowed by washing three times with PBS.

Immunoprecipitation and Inununoblotting. Adherent HTIO8O cells
were detached from flasks by Puck's EDTA solution. The cells were lysed in
a lysis buffer containing 20 misi Iris (pH 8.2), 140 mM NaCI, 2 mM EDTA, 1%
Brij-58 (Pierce, Rockford, IL), 5 mMiodoacetamide, 10 @g/mlaprotinin, 10
g.@g/mlpepstatin A, 10 @g/mlleupeptin, and 1 mxi phenylmethylsulfonyl
fluoride overnight at 4Â°C(19). In a second set of experiments, HT1O8O cells
were incubated with Im at 10 @g/ml(â€”l0@cells) for 2 h and then directly lysed
by adding 0.5 ml of lysis buffer followed by incubation for 4 h or overnight at

4Â°C.The lysates were subjected to immunoprecipitation by loading lysates
onto anti-j31 affinity or control ascites (Sigma) chromatography columns
overnight at 4Â°C,washed with lysis buffer three times, and then eluted with 2 X
SDS sample buffer. The chromatography columns consisted of goat anti
mouse IgG covalently coupled to Sepharose (Cappel-Organon Teknika Corp.)
loaded with specific mAb or control ascites. The eluted fractions were assayed
for protein content using a microassay protein kit (Bio-Rad, Hercules, CA).
Samples (total protein, 50 @g)were then analyzed by SDS-PAGE and trans
ferred to polyvinylidene difluoride membranes (Bio-Rad). The membrane was
blocked for 1 h in 5% nonfat milk and stained by sequential incubation with
anti-uPAR rabbit Ab or normal rabbit serum as Western blotting control,
followed by horseradish peroxidase-conjugated goat anti-rabbit Ab. A chemi
luminescence-enhanced detection system (ECL; Amersham Corp., Arlington
Heights, IL) was used for visualization of labeled proteins.

RESULTS

Although uPAR is expressed as a GPI-linked membrane protein
and thereby lacks transmembrane and cytoplasmic sequences, it is
localized to adherence sites of tumor cells (2 1, 22). Because previous
studies demonstrated physical and functional interactions between
uPAR and the @2integrin CR3 on leukocytes (18, 19, 41â€”43),we
hypothesized that in tumor cells lacking CR3, other integrins might
physically interact with uPAR to focus pericellular proteolysis at these
sites. We have tested this hypothesis using cell biological, biophysi
cal, and biochemical methods.

Expression of uPAR and@ and@ Integrins by Fibrosarcoma
Cells as Detected by Flow Cytometry. To study the possible phys
ical associations between uPAR and 13@or /33integrins on tumor cells,
we first selected a tumor cell line that expresses these molecules. The
expression of uPAR (CD87), @1(CD29), and f3@(CD61) integrins
were detected by immunofluorescence flow cytometry. Fig. I shows
that HT1O8O tumor cells express these molecules, although f33integrin
expression is lower than@ integrin or uPAR expression. Further
more, cells were positive for all a chains tested, including a1, a2, a3,

a4, a5, a6, and a,,.

Colocalization and Physical Proximity of UPAR with@ and@
Integrins on Tumor Cells Attached to Specific Extracellular Ma
trix Molecules. Because several integrin subclasses participate in
tumor cell metastasis and invasion (1â€”3),we first investigated the
potential interactions of uPAR with the (3@and (33 integrin families.
The colocalization of uPAR with (3@or @33integrins on the surface of
HT1O8O cells was examined using indirect immunofluorescence mi
croscopy. HT1O8O cells attached to substrate-coated coverslips were
fixed and then labeled with monoclonal murine anti-uPAR antibody,
followed by TRITC-conjugated goat anti-murine IgG. The cells were
fixed again, blocked, and then stained with FITC-conjugated murine
anti-@1 or FITC-conjugated-murine anti-j33 integrin mAb. Fig. 2

shows uPAR and f3@integrin staining patterns of HT1O8O cells ad
herent to polylysine (controls)-, fn-, lm-, and vn-coated substrates.
The cells were well spread on fn and vn but were mostly elongated in
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INTEGRIN.UPAR INTERACTIONS

proximity. RET microscopy has been used to detect molecular prox
imity (37â€”39).Fig. 2, RET, shows RET micrographs of cells attached
to polylysine-, fn-, vn-, and im-coated surfaces. Although controls
showed no RET, /3@integrin-to-uPAR RET was qualitatively observed
on cells attached to ECM components, especially at adherence sites.

A similar series of experiments was performed using anti-/33 inte
grin labeling. Colocalization and RET between uPAR and f3@integrin
labels was observed on the tumor cells attached to vn, but not fn, lm,
or polylysine-coated surfaces. Fig. 3 illustrates the colocalization and
RET between uPAR and f33 on HT1O8Ocells. Overlapping staining
patterns of both adherence sites and the cell body were observed.
Colocalization of uPAR and @33at adherence sites was found on cells
attached to vn, but not to fn, lm, or polylysine. The overlap in the
uniform labeling pattern, for example on cells attached to lm, is not
indicative of membrane association because most receptors are uni
formly distributed in membranes. Similarly, RET was observed on
cells attached to vn but not on cells attached to fn, lm, or polylysine.
These results contrast sharply with those described above for@
integrins.

Quantitative RET. To provide a quantitative measure of RET,
RET intensities were measured using quantitative microfluorometry.
Experiments were performed on HT1O8O cells labeled with FITC
conjugated anti-@1 or anti-@3 integrmn mAb and TRITC conjugated
anti-uPAR. Table 1 shows that the average RET photon count rate of
anti-f31 and uPAR were significantly higher on the cells attached to fn,
lm, and vn than on polylysine, although no significant difference
among these three ECM components was found. In contrast, signifi
cantly enhanced RET between uPAR and (33 was observed on cells
attached to vn but not fibronectin, lm, or polylysine (Table 1).

Association of UPAR with Certain a Subunits of Integrins of
Tumor Cells Attached to ECM Components. To study the rela
tionship between uPAR and individual members of the f3@or @33
integrmn families, we performed double immunofluorescence staining
experiments using mAbs against different a subunits of integrins and
uPAR on tumor cells adherent to various substrates. Our results
showed that (15colocalizes with uPAR on the cells adherent to fn (Fig.
4) and vn (Fig. 5) but not to polylysine (data not shown). Indeed, on

fn-coated surfaces, all a subunits were negative except for the a5
subunit. a,, associates with uPAR on cells adherent to vn (Fig. 5) but
not to fn (Fig. 4) or polylysine (data not shown). a3 and a6 but not
other a subunits, associate with uPAR on cells adherent to lm (Fig. 6).

I@ a2, and a4 have not been found to colocalize with uPAR on tumor

cells adherent to any of the tested substrates (Table 2).
Inhibition of Cell Spreading and Receptor Colocalization by

NADG. We have found previously that cocapping of f32 integrins
and uPAR can be inhibited by certain saccharides such as NADG
and mannose but not by other saccharides such as sucrose and
fructose ( 18). To test if similar interactions also exist between
uPAR and@ or f33 integrins, tumor cells were plated onto various
substrates in the presence or absence of 0. 15 M NADG or fructose
followed by double immunofluorescence staining, as described
above. Representative photomicrographs of tumor cells attached to
fn (Fig. 7) or vn (Fig. 8) in the presence of NADG or fructose are
shown. Colocalization and RET between uPAR and 13@or @33
integrins were significantly decreased in comparison with controls
(Table 3). However, these saccharides had no effect on cell via
bility as judged by trypan blue exclusion (data not shown), as
reported previously for leukocytes (18). Furthermore, in the pres
ence of NADG, cells showed markedly decreased spreading and
polarization on fn, lm, and vn.

Association of uPAR with@ Integrins of Tumor Cells by
Immunoprecipitation and Western Blotting. To further test the
physical association of uPAR and integrins within tumor cell mem
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I

â€”FluorescentIntensity
Fig. I . Expression of uPAR.@ @,and a subunits on the tumor cell line HT1O8O.

Indirect immunofluorescence of individual molecules on the cells was performed with
either a test mAb or an isotype-matched control mAb at 4'C for 30 mm. After washing,
the cells were incubated with goat anti-mouse Ab at 4'C for 30 mm. Cells were washed
with PBS, fixed with 1% formaldehyde, and then analyzed on a Epics flow cytometry. The
histograms shown represent indirect immunofluorescence with Abs directed at uPAR,@
integrin, f33 integrin, and a1, a2, a3, 04, a,, a@, and a,, (cross.hatched traces), and with
appropriate isotype-matched control mAbs (open traces).

shape on lm substrates. The staining patterns, especially at filopodia
and adhesion plaques, are similar for uPAR and@ on cells attached
to fn, lm, and vn. However, cells attached to polylysine display a
spherical shape with no similarity in staining patterns. Although these
colocalization experiments demonstrate that uPAR and j3@integrins
collect at the same membrane sites, they do not demonstrate molecular
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DIC 131 uPAR RET

Fig. 2. Colocalization and RET of (3@and uPAR on HT1O8O
tumor cells adherent to different substrates. HT1O8Ocells at
tached to various substrate-coated coverslips were examined by
immunofluorescence staining. The primary antibodies included
mouse FITC-conjugated anti-@1(B, F, J, and N) mAb and
mouse anti-uPAR (C. G, K, and 0) mAb. TRITC-conjugated
goat-anti-mouse Ab was used as the second-step Ab. Columns
iâ€”4.DIC, FITC fluorescence of anti-@31mAb, fluorescence of
TRITC-anti-uPAR, and RET, respectively. In row I, A-D,
polylysine was used as substrate. In row 2, Eâ€”H,fn was used as
substrate. In row 3, /â€”L,Im was used as substrate. In row 4.
Mâ€”P,vn was used as substrate.

Fn

Lm

Vn

branes, we performed immunoprecipitation and Western blotting to
detect the presence of uPAR in a fraction eluted from an anti-@1
iinmunoaffinity chromatography column. j3@integrins were chosen for
this study because they are much more abundant on HT1O8O cells than
@33integrins (Fig. 1). The HT1O8O cells were detached from flasks by
Puck's EDTA to avoid the digestion of membrane proteins by trypsin.
Cells were solubilized using the mild detergent Brij-58 and then
subjected to immunoprecipitation, followed by Western blotting with

rabbit anti-uPAR Ab and visualization with a second step reagent.
Using this protocol, we detected the presence of uPAR in the precip
itates ofthe anti-j31 affinity column but not from normal mouse ascites
column (Fig. 9), further supporting the association of uPAR with /31
integrins on tumor cells. This result is consistent with the previous

observation of Bohuslav et a!. (19), who showed the coprecipitation of
uPAR with /32 integrins from human monocytes with this method.
Similar results were obtained with fn (data not shown). Interestingly,

DIC 03 uPAR RET

Fig. 3. Colocalization and RET of@ and uPAR on
HT1O8Otumor cells adherent to different substrates. The
procedures were the same as above except that FITC
conjugated mouse anti-@3integrin was used instead of
anti-@31mAb. The primary antibodies included mouse
FITC-conjugated anti-@3 (B, F, J, and N) mAb and mouse
anti-uPAR (C, G, K, and 0) mAb. TRfl'C-conjugated
goat-anti-mouse Ab as second Ab. Columns iâ€”4, DIC,
FITC fluorescence of anti-f33 mAb, fluorescence of
TRITC-anti-uPAR, and RET, respectively. In row I. A-D,
polylysine was used as substrate. In row 2, Eâ€”H,fn was
used as substrate. In row 3, Iâ€”L,lm used as substrate. In
row 4, Alâ€”P.vn was used as substrate.
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Table IQuantitative summary ofRE!' levels betweenuPAR and @or@ integrinsSubstrates13@p3NCNRET

(counts/s)PNaCNRET(counts/s)PPolylysine

fn
Im
vn4

4
4
4106

110
102
10518.7

Â±4.2 X l0@

48.6 Â±5.3 X l0@
45.2 Â±4.8 x l0@
43.1 Â±3.8 X i0@@<0.001

<0.001
<0.0013

4

3
4100

1 1 I
101
10617.3

Â±3.7 X i0'@
19.4 Â±4.1 X 10@
19.8 Â±4.5 X l0@
42.2 Â±4.6 X l0@>0.05

>0.05
<0.001a

N, the number ofindependenttrials; CN,the number of cells measured.

j@1@@Iâ€˜

,@4-
@\

@;, @_t
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certain ECM-coated surfaces are competent to induce uPAR-to-inte
grin interactions.

Three distinct lines of evidence support the proposed uPAR-to
/3@//33 integnn interactions: (a) colocalization of uPAR with /3@or f3@

uPAR a Subunits RET

uPAR a Subunits RET

u?AR.a3

uPAR-aS

uPAR..c2v

Fig. 4. Colocalization and RET of uPAR and a@ integrin families on HTIO8O cells
adherent to fn. HTIO8Ocells attached to fn-coated coverslips were studied by immuno
fluorescence staining. Cells were labeled with mouse anti-a,, -a5, and -a, subunit (B, E.
and H) mAb followed by a second-step TRITC-conjugated goat-anti-mouse Ab. Cells
were then labeled with FITC-conjugated anti-uPAR (A, D, and G) mAb. Columns 1â€”3,
FITC fluorescence of anti-uPAR mAb, fluorescence of TRITC-anti-a subunits, and RET,
respectively.

uPAR-ci3

uPAR-aS

uPAR-av

I
Fig. 5. Colocalization and RET of uPAR and cr13 integrin families on HTIO8O cells

adherent to vn. HTIO8O cells attached to vn-coated coverslips were examined by immu
nofluorescence microscopy. Cells were labeled with mouse anti-a1, -a5, and -a, subunit
(B, E, and H) mAb followed by a TRITC-conjugated goat-anti-mouse Ab. Cells were then

labeled with FITC-conjugated anti-uPAR (A, D, and G). Columns 1â€”3,FITC fluorescence
of anti-uPAR mAb, fluorescence of TRITC-anti-a subunits, and RET, respectively.

when HT1O8O cells were allowed to incubate in suspension with lm
(10 @tg/l07cells) for 2 h at 37Â°Cbefore cell extraction, a substantially
more intense uPAR band was seen in comparison to untreated cells.
This may explain why there is no detectable RET between f3@and
uPAR when HTIO8O cells were adherent to polylysine, but RET
between f3@or 133and uPAR can be readily detected when cells adhere
to ECM components.

DISCUSSION

The present study suggests that: (a) uPAR specifically associates
with certain members of the@ and /3@integrmn families of membrane
proteins on adherent tumor cells; and (b) ECM components specifi
cally induce select integrin-uPAR associations. uPAR-to-integrin as
sociations were especially prominent at adhesion plaques, filopodia,
and pseudopodia. Evidence supporting these associations was gleaned
from: (a) double-labeling immunofluorescence microscopy of uPAR
and /3@or /3@integrins, (b) qualitative and quantitative RET micros
copy; and (c) coimmunoprecipitation of uPAR with /3@ integrins.

HT1O8O tumor cells are a useful system to investigate the colocaliza
tion of uPAR with (3J1f33integrins because this is a nonhematopoietic
tumor line that does not express /32 integrins. Moreover, others have
shown that uPAR, f3@,and f3@integrins participate in the tumor cell
invasiveness and metastatic processes (1â€”6,14â€”17).Specificity is
indicated by the facts that: (a) only certain members of the /31 and (3@
integrin families are competent to interact with uPAR; and (b) only

uPAR-al

UPAR.a3

uPAR.c@

p

Fig. 6. Colocalization and RET of uPAR and a@ integrin families on HTIO8O cells
adherent to Im. HTIO8O cells attached to Im-coated coverslips were studied using
immunofluorescence microscopy. Cells were labeled with mAb directed agalnst a1 (Aâ€”C),
a3 (Dâ€”F),and a6 (Gâ€”f),followed by a second-step TRITC-conjugated anti-murine IgG.
Cellswerethenlabeledwithanti-uPAR.Columns1â€”3,fluorescenceof anti-uPAR(A,D,
and G), anti-a subunits (B, E, and H), and RET between these labels (C, F, and I).
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Table 2 Sununary of a subunit specificities and coclustering/RET with uPAR on ECMcomponents'@Labeling

uPAR +a

subunit specificity fn vn

vn lm Coclustering RET Coclustering RETImCoclusteringRETfna1+
â€” â€” â€”â€”--a2+
â€” â€” â€”â€”-â€”a3++
â€” â€” â€”â€”++a4+-

- ----a5++

-1- ++â€”â€”a6+
â€” â€” â€”â€”++a,,++

â€” â€” ++â€”â€”a

These data, which summarize themorphological results shown in Figs. 4 through 6, were reproduced on three to eight separate experiments.

@2I!@@

j'j@@,t@:j1v@-

.@4;@,

INTEGRIN.UPAR INTERACTIONS

mtegrins at cell surfaces has been demonstrated by immunofluores
cence microscopic analysis using specific antibodies. The presence of
uPAR and /3@and/or /3@subunits in focal adhesion plaques suggests

that they participate in adherence-related functions of HTIO8O tumor
cells. In contrast, colocalization was not observed on cells attached to
polylysine, suggesting that ECMs trigger the colocalization of uPAR
and f.3@or /33 inte@fln5. Furthermore, as discussed below, only certain
integrin-ECM combinations were effective in promoting integrin
uPAR colocalization; (b) RET experiments demonstrated that, on
appropriate ECM-coated surfaces, uPAR-to-/31 or /3@integrin molec

ular proximity existed. Thus, the labels were within roughly 7 nm of
one another, suggesting that they are nearest neighbors within cell
membranes; (c) using the Bohuslav et a!. (19) procedure, we found
that uPAR coimmunoprecipitated with /3@integrmns of HT1O8O cells.
Furthermore, to demonstrate the ECM dependence of this interaction,
we added Im to HT1O8O cells in suspension and found an increased
level of coimmunoprecipitation, consistent with our results using
attached cells. Thus, morphological, biophysical, and biochemical
methods agree that uPAR is capable of associating with integrins in
tumor cell membranes.

Previous studies have shown that uPA and uPAR cluster at focal

Fig. 7. Saccharide-specific inhibition of colocalization of UPAR
and@ on HT1O8Otumor cells attached to fibronectin. HT1O8O
tumor cells were treated with 0.15 M NADG or fructose before the
cells were plated onto fibronectin. Double staining with mAb anti
uPAR and anti-al Ab were performed as described above. Columns
1â€”4,DIC, FITC fluorescence of anti-@1 mAb, fluorescence of
TR1TC-anti-uPAR, and RET, respectively. In row 1, Aâ€”D,tumor
cells were pretreated with 0.15 MNADG. In row 2, Eâ€”H.tumor cells
were treated with 0.15 Mfructose. ru@@ose

contacts (21â€”23).Similarly, uPAR has been found to accumulate near
vinculin-rich regions of membranes (20). However, because uPAR is
expressed as a GPI-linked membrane protein at cell surfaces and
thereby lacks transmembrane and cytosolic domains (12, 13), the
mechanism responsible for restraining uPAR at adherence sites is
unknown. One potential contributing factor in the accumulation of
uPAR at adherence sites is interaction with ECM components. How
ever, the NADG inhibition results would suggest that uPAR interac
tions with ECM components cannot completely account for uPAR
clustering. Moreover, because uPAR and uPA are apparently not
receptors for fn and Im, the ability of uPAR to focus at adhesion sites
on these surfaces must be a property of the cell, not the surface. Our
previous studies and those of others have shown that /@2integrins
physically interact with uPAR (18, 19) and other GPI-linked proteins
as well (38). The present study has demonstrated that other integrins
participate in uPAR clustering on tumor cells. This dramatically
broadens our work to include members of the (3@and /3@integrin
families. In contrast to our earlier work on /32 integrins, the /3, and j3@
integrin-to-uPAR interactions are inducible by ligation of integrins by
ECM components.

The association of specific a chains with uPAR molecules was also

DIC 131 uPAR RET

DIC 61 uPAR RET

Fig. 8. Saccharide-specific inhibition of colocalization of uPAR and@
on tumor cells HTIO8Ocells attached to vn. HT1O8Otumor cells were
treated with 0. 15MNADG or fructose before the cells were plated onto
vn. Double staining with mAb anti-uPAR and anti-@5Ab were per
formed as described above. Columns 1â€”4.DIC, FITC fluorescence of
anti-@5mAb, fluorescence of TRITC-anti-uPAR, and RET, respec
tively. In row I, Aâ€”D,tumor cells were pretreated with 0. 15 MNADG.
In row 2, Eâ€”H,tumor cells were treated with 0. 15 Mfructose.

NADG

Fructose
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Table3Inhibitionofcolocali@ationof uPAR and @,@33onadherent tumor celIs on d(fferent substratesbyNADGSubstratesinhibitors131p3NaCN%

polarized% RETNCN% polarized%RETPolylysine3106102310096PolylysineNADG31

1093310193PolylysineFructose31021
11310184fn4112887741098315fnNADG4115221341101918fnFructose41

10837941078516lm3108857531028122imNADG3107201531012114lmFructose3108867331007917vn41

11847741108075vnNADG411218II41051718vnFructose4109847841078576

INTEGRIN.UPAR INTERACTIONS

a N. the number of independent trials; CN, the number of cells measured. Polarized cells are defined as those nonspherical cells exhibiting pseudopod formation and other

asymmetries. RET-positive cells are defined as the percentage of cells with RET levels above background.

studied by immunofluorescence and RET microscopy. Because ECM
ligand binding specificity is primarily determined by the integrins' a
subunit (1â€”3,7, 8), we performed immunofluorescence staining using
a panel of anti-a subunit mAbs and anti-uPAR mAbs. Although a3/31,
a4/31, and a5/31 are fn receptors (Table 4), only the a5 subunit, a
component of the classic fn (a5f31) receptor, was seen to colocalize
with uPAR on cells adherent to fn. a5f3, appears to be the major fn

receptor and is responsible for the assembly of focal contacts, whereas
a3/31 is not (44). Interestingly, a5 integrin subunit was also found to
be associated with uPAR on the cells adherent to vn; this was
surprising because a5 does not possesses the ability to bind vn.
Previous studies have reported that uPAR is a receptor for vn (45).
Thus, colocalization of a5 with uPAR may be secondary to the
binding of uPAR to vn. Colocalization of a,, with uPAR was only seen

140-

83-

45-

32-

on cells plated on vn but not fn, lm, or polylysine. a3f31 and a6/31
contribute to lm binding (1â€”3,7, 8). Our colocalization studies
showed that uPAR colocalized with a3 and a6 but not other integrin
families such as a1 and a2 on cells adherent to lm. It might be possible
that@ 13@and a2/31 may play a more active role in mediating cell
binding to collagen.

Our experiments have defined the a and (3 subunits and ECM
conditions required for integrin-uPAR associations on HT1O8O cells.

We have not, however, precisely defined the participating het
erodimers. Nonetheless, the known subunit associations (7) and the
ECM specificities noted above suggest the participation of certain
heterodimers. For example, a5(31 likely binds to uPAR on fn-coated
surfaces. Similarly, a,j33 is a vn receptor and may account for a,,-

uPAR associations on vn-coated surfaces. Because a3 specifically
interacts with 13, a3f31 likely participates in binding uPAR on lm
substrates. However, because a6 forms heterodimers with both f3@and
/34 subunits, it is not possible to distinguish between these two

integrins at present. The integrins a5/31, aj33, and a3f31 are likely
important participants in regulating the spatial locations of uPAR
molecules on tumor cell membranes.

We have shown previously that certain saccharides reduce (32
integrin interactions with uPAR (18). Earlier studies by Ross et a!.
(46, 47) showed that /32 integflns possess a lectin-like site. Thus, to
investigate the possible mechanism of interaction between uPAR and
131or /3@integrmnson tumor cells, receptor coclustering experiments
were performed in the presence of various saccharides. The saccharide
NADG, but not fructose, was found to dramatically inhibit uPAR/
integrmn colocalization. This suggests that saccharides of the uPA

and/or uPAR molecules may participate in interreceptor interactions.
Thus, it seems possible that lectin-saccharide-like interactions may
also exist in uPAR-to-j31 or -f3@associations. This is also consistent
with the observed selectivity among a subunits. However, we have
not yet rigorously shown that certain saccharides act at the level of the
a subunits of integrins. Nonetheless, this work suggests that anti
integrin drugs affecting inflammation may also possess antimetastatic
activity.

The association of uPAR with (3@integrmnswas confirmed by cohn
munoprecipitation experiments. Bohuslav et a!. (19) recently coimmuno
precipitated uPAR and 132@fltu@flflSfrom Brij-58 lysates ofhuman mono
cytes. Using this protocol, we detected the presence of uPAR in (3@
immunoprecipitates from tumor cells. Because the colocalization and
RET of uPAR with /31 and (33 mtegrin were observed on the cells
adherent to specific substrates but not readily detected on cells attached to
polylysine or nonadherent cells, we speculate that substrates promote the
association of uPAR and integrmns.Tumor cells were, therefore, incu
bated with lm prior to cell extraction. In comparison to untreated cells,

1688

abcd

â€¢1

Fig. 9. Coimmunoprecipitation of uPAR with @1integrins. Four to 6 X l0@adherent
HTIO8O cells were detached from flasks with Puck's EDTA solution. Cells were extracted
using a lysing buffer containing Brij-58 (19). In a parallel experiment, the same number
of HTIO8O tumor cells were incubated with Im (10 @.sgtotal) and then extracted as
described above. 13@integrins were precipitated by loading the cell lysates onto anti-@1
affinity chromatography columns. The precipitates were transferred to polyvinylidene
difluoride membrane and analyzed by immunoblotting with rabbit anti-uPAR or control
Ab. Samples were visualized using enhanced chemiluminescence, as described in â€œMa
terials and Methods.â€•Lane a, Im-treated HT1O8Ocells. A control Im-treated HT1O8O
experiment in which anti-@1mAb matrix was replaced with an ascites control is given in
Lane b. Lane c. uPAR coimmunoprecipitates from a sample not exposed to ECM
components. Lane d, an untreated HTIO8Oexperiment in which the specific mAb was
replaced with ascites control. Lm-treated samples consistently exhibited heavier bands
after SDS-PAGE (n 3).
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INTEGRIN-UPAR INTERACTIONS

lm-treated tumor cells exhibited increased levels of uPAR in (3@integrmn
immunoprecipitates, suggesting that the association of uPAR and (3@
integrins is inducible by specific ligands, consistent with our microscopic

studies. We also attempted coprecipitation of uPAR with f3@integrins
using this same protocol, but no detectable uPAR was found in (3@
immunoprecipitate. Effective (3@mtegrin immunoprecipitation was con
firmed by the small amount of (3@integrin immunoprecipitated from
biotin-labeled cell surfaces. The low level of /33 integnn expression by
this cell line may account for our inability to coprecipitate uPAR and (3@
mtegrins. Alternatively, the association of uPAR and /3@may be less
stable than uPAR-/31 integrmnassociations.

Our work suggests that in addition to membrane recognition and
signaling, integrins spatially regulate uPAR distribution. Thus, redis
tribution of the uPAR in response to ECM components provide a
mechanism to achieve polarized uPAR expression and, hence, pen
cellular proteolysis. This allows cells to focus degradation of ECM
components at specific sites that is likely required for the migration of
tumor cells across tissue barriers.
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