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UROPA: a tool for Universal RObust 
Peak Annotation
Maria Kondili1, Annika Fust1, Jens Preussner1, Carsten Kuenne1, Thomas Braun2 & Mario 

Looso1

The annotation of genomic ranges of interest represents a recurring task for bioinformatics analyses. 

These ranges can originate from various sources, including peaks called for transcription factor binding 

sites (TFBS) or histone modification ChIP-seq experiments, chromatin structure and accessibility 
experiments (such as ATAC-seq), but also from other types of predictions that result in genomic ranges. 
While peak annotation primarily driven by ChiP-seq was extensively explored, many approaches remain 
simplistic (“most closely located TSS”), rely on fixed pre-built references, or require complex scripting 
tasks on behalf of the user. An adaptable, fast, and universal tool, capable to annotate genomic ranges 

in the respective biological context is critically missing. UROPA (Universal RObust Peak Annotator) is a 
command line based tool, intended for universal genomic range annotation. Based on a configuration 
file, different target features can be prioritized with multiple integrated queries. These can be sensitive 
for feature type, distance, strand specificity, feature attributes (e.g. protein_coding) or anchor 
position relative to the feature. UROPA can incorporate reference annotation files (GTF) from different 
sources (Gencode, Ensembl, RefSeq), as well as custom reference annotation files. Statistics and plots 
transparently summarize the annotation process. UROPA is implemented in Python and R.

Many bioinformatic analyses result in the de�nition of genomic regions of interest, generated by a variety of 
methods. Minimally, they consist of a chromosome, a start position, and an end position, but can also contain a 
range of additional data such as the strand of the region. For this type of data, the Browser Extensible Data (BED, 
https://genome.ucsc.edu/FAQ/FAQformat#format1) format became the de facto standard format, and a wide 
range of tools that are able to handle and produce this datatype were developed. In the context of the extensively 
used chromatin immunoprecipitation and sequencing (ChIP-seq) method, the regions of interest are commonly 
referred to as peaks, denoting regions of high coverage of reads produced by the experiment. Peaks are generated 
by computational tools named “peak callers” (such as MACS21 or MUSIC2) and denote potential binding sites of 
the protein under investigation. Frequently, investigated proteins are transcription factors (TF) or histones with 
speci�c modi�cations. In order to interpret these binding sites, a set of peak annotation tools such as Homer3, 
Goldmine4, GREAT5 or ChIPpeakAnno6 were developed. As these tools are mainly focused on the assignment of 
TFs or histone modi�cations to the corresponding gene, they apply methods to calculate the closest distance of a 
peak to the transcription start site of genes located in the direct neighborhood.

However, annotation of peaks can become complex (Fig. 1A), especially in regions where multiple genes are 
located in close proximity or if features are supposed to be treated preferentially based on their category or relative 
localization.

�e biological origin of peaks can render the annotation step even more complex. In an epigenetics context, 
the ChIP-seq method is o�en used to interpret the state of chromatin by the parallel investigation of a number 
of di�erent histone modi�cations such as methylation, acetylation or phosphorylation on distinct sites7. �ese 
marks of open or condensed chromatin are known to in�uence transcription regulation. In addition, the combi-
nation of such histone marks can be used to identify regulatory regions like enhancers, which can be located up to 
1 Mb distant from the gene they regulate, thus requiring special care considering optimal annotation.

While ChIP-seq peaks are one-dimensional in relation to the protein of interest, more recently devel-
oped methods are intended to produce information about the global structure of the chromatin (ATAC-seq, 
FAIRE-seq, DNase-seq, Mnase-seq), giving a detailed footprint on regions that are accessible or closed. However, 
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peaks resulting from such methods implicitly include additional information such as TF and histone binding 
patterns8. In order to meaningfully interpret these data, the annotation of these peaks needs to be adapted to 
combine e.g. genes, TF binding sites and other known regulatory regions.

Here, we present UROPA (Universal RObust Peak Annotator) as a versatile tool to annotate peaks or other 
genomic regions. UROPA supports a JavaScript Object Notation (JSON) based con�guration �le format (Fig. 1B) 
for simple application, optionally incorporating multiple annotation queries. �e tool permits linkage of indi-
vidual queries including prioritization. Arbitrary features in the reference annotation �le can be addressed in 
a granular way, such as absolute searches for overlaps or searches with distance thresholds for start, center or 
end position of individual features. Filtering on additional annotation columns in the reference annotation �le 
is supported as well. UROPA generates publication ready graphical statistics on peak annotation rates, feature 
distribution, and query assessment (Additional File 1).

Figure 1. (A) Example of a complex annotation situation: region of interest (peak, black bar) overlaps multiple 
candidate features (blue). �ese include protein coding genes (PLOD1, MFN2, MIIP, TNFRSF8) with exon 
(block) and intron (line) structure and non-coding genes (Y-RNA, RN7SL649P, RNU6-777P). Depending on 
the origin of the peak region the optimal annotation will vary. (B) Example on JSON formatted con�guration 
�le with two queries: I) begin and end of query section (purple); II) �rst query targeting gene features with 
multiple conditions and output �lters (key:value pairs, blue); III) second query relating to UTR features (green); 
IV) global parameters on input �les and prioritization. (C) Query and feature scheme: Illustration of an oriented 
feature (orange) and peaks (light and dark blue) that are �ltered according to a query with asymmetrical 
distances as given on top. According to this query, green indicates the valid region around the queried start 
anchor of the feature. Dark blue peaks centered outside of the green region are never assigned to the feature 
(upper row, “invalid hits”). Dark blue as well as light blue peaks centered in the green region are assigned to the 
feature (lower row, “valid hits”). If “internals” key of the query is set to TRUE, light blue peaks given in the upper 
row are assigned to the feature.
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Results
Overview. UROPA is a freely available command line application depending on three �les: a con�guration 
�le (JSON format), a reference annotation �le in General Feature Format (GTF, http://www.ensembl.org/info/
website/upload/g�.html) and a �le containing genomic ranges (BED format, e.g. peaks). Beside the widely used 
genomic annotation �les from Gencode, Ensembl, or RefSeq, any custom reference information can be included 
here, as long as it adheres to the GTF speci�cation (a script to generate GTF �les from tab delimited �les is 
provided: see UROPA_to_GTF section in methods). In order to permit simple con�guration even for complex 
annotation problems (Fig. 1C), we chose JSON format for the con�guration �le as shown in (Fig. 1B). Individual 
queries can be generated that are interpreted one by one for each individual peak under investigation based on 
the algorithm outlined in Fig. 2.

Multi query support and prioritization. �e queries listed in the con�guration �le de�ned by the user 
are �exible statements that allow �ltering for all values found in a reference annotation �le. UROPA can parse 
custom generated GTF �les with arbitrary keywords as well (see annotation examples below). Within each query 
line, the user de�nes �lters as key:value pairs. �ese independent pairs are linked with a logical AND operation 
within each row. If multiple values are present for a speci�c key, these values can be inquired by a list operator 
(Fig. 1B). Valid keys are the features (e.g. exon, gene, etc.) and attributes (e.g. gene_type, gene_status, etc.) of inter-
est, the distance that should be used for scanning, the feature anchor that should be taken into account for distance 
calculation, and the strand of a peak. �e feature anchor key speci�es the region of a feature that should be used 
for annotation (e.g. start, end, or center of the feature). �is option represents a valuable improvement consid-
ering peaks which are located at the end of a gene (feature anchor:end; e.g. histone modi�cation H3K9me39), or 
throughout gene bodies (feature anchor:center; e.g. H3K36me39). �e default annotation mode for many present 
tools focuses only on the distance to the transcription start site (TSS) (feature anchor:start).

By default, the set of queries speci�ed by the user is connected by an OR operator, attributing the same weight 
to all queries and giving precedence to the most closely located feature of any query. �is behavior can be changed 
by the global priority �ag, leading to a hierarchical processing of queries. Here, the �rst query resulting in a valid 
candidate feature for a peak will abort any further searches for this peak. �is annotation mode is highly versa-
tile, as it permits annotation of peaks with respect to quality levels (e.g. increasing distance sets with respect to 
TSS), preferred categories (e.g. �rst protein_coding, then lncRNA, etc.), or exclusive assignments (either genic 
or intergenic). In order to achieve high quality annotations, two identical queries could be de�ned with respect 
to the TSS, that di�er considering distance. �e �rst one would be de�ned with a very strict/small distance, the 

Figure 2. Outline of the UROPA algorithm. (1) For each peak all queries are consecutively checked for features 
satisfying various optional criteria. (2) �e resulting candidate features are ranked for each query based on 
the distance of the peak center to the feature anchor(s) of interest (e.g. start, end, center of the feature). (3) All 
candidate features resulting from any query are stored in the”all hits” table. (4) �e best candidate feature for 
each query is stored in the “best hits” table. (5) Only the one best feature among all queries is stored in the “�nal 
hits” table. �is step can optionally include prioritization of queries to ensure a desired precedence (e.g. prefer 
protein_coding genes even if they are located farther away from the peak). �ese three output �les cover various 
granularities considering the desired outcome.

http://www.ensembl.org/info/website/upload/gff.html
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latter with a more relaxed value. In combination with priority:true, two groups of peaks would be generated in 
the result �les, one re�ecting peaks that are located directly on the TSS (query 0), the second group located in 
moderate proximity (no hit for query 0, only a hit for query 1). �e exclusive priority feature is unique to UROPA 
(see Table 1).

Relative localization. UROPA can handle a range of cases considering the relative localization of peaks 
and features versus each other. �e strand of peaks can be 1) ignored to retrieve target features on both strands, 
2) honored to only retrieve features on the same strand, or 3) can be interpreted to only retrieve features on the 
opposite strand. �ese options establish compatibility with various experimental protocols.

Additionally, we introduced a direction key to be set to upstream or downstream, enabling the assignment 
of ranges depending on their relative location before or behind a target feature. �is option can assist to assign 
cis-regulatory elements such as transcription factor binding sites to nearby TSS, enforcing candidate genes to be 
located downstream of the binding site.

Another useful parameter called internals optionally ignores the distance calculation versus candidate features 
if the peak center is located inside the feature (or vice versa). �is exception is supposed to handle cases where 
large genes fail the distance �lter, despite completely overlapping a peak. �is option can result in reported dis-
tances greater than the maximum distance permitted. �e result �les report on internal location of the peak inside 
a feature and vice versa (see also Fig. 1C).

Granularity and further result customization. �e interacting attributes �lter attribute and attribute 
value are unique to UROPA and allow another �ltering step during the annotation. �ose two keys concern the 
attributes column of the reference annotation �le. �e �lter attribute corresponds to di�erent attributes within 
this column, e.g. gene_biotype, and the attribute value equates to the value of this attribute, e.g. protein coding. 
Together these can be used to limit the features returned to those of a certain category.

�e two main result �les of the tool provide summarizing steps that can either include multiple valid candidate 
features for the selected queries intended for more complex �ltering tasks that the user may apply later, or a �nal 
annotation of only one feature per peak (Additional File 1, Table 1 to 4). �ese tables can optionally be condensed 
further to summarize all valid candidate annotations per peak in one row. If multiple queries are given in the con-
�guration �le, an additional intermediate result �le is generated, providing the best feature annotation for each 
query and for each respective peak.

�e output annotation columns can be selected by the user. As indicated in Fig. 1B, the show.attributes key 
allows the de�nition of columns that should be reported in the result �les. Furthermore, UROPA optionally 
generates a global summary report, visualizing characteristics of annotations for a set of input peaks. It generates 

Homer GREAT ChiPpeakAnno Goldminer UROPA

Annotation Database Refseq
UCSC 
(internal 
database)

Pre-calculated 
sets, e.g. “EnsDb.
Hsapiens.v75”

All genomic range 
�les

All GTF formatted �les

Helper script to 
generate annotation �le

assignGenomeAnnotation N N makeGRanges() UROPAtoGTF-tool

Target for distance 
calculation

TSS only TSS only
Start/Center/End 
of selected feature

Overlap
Start/Center/End of selected 
feature

Select feature type in 
annotation �le

N N Y (N)* Y

Limitation on 
characteristics, e.g. 
“protein_coding”

N N N (N)* Y

De�nition of multiple 
annotation queries

N N N N Y

Prioritization of queries N N
(Y) no exclusive 
ranking 
(precedence)

(Y) within gene 
model context, 
but not globally

Y

Limit results to 
upstream/downstream 
of selected features

N N N N Y

Granularity of resulting 
annotations

N N
Shows all hits, no 
aggregation to the 
best hit

Clear result 
structure, but 
single best hit is 
o�en missing

All hits, best hits per query, 
and merged best hits among 
all queries

Parallelization N N N N Y

Simple customizing  
(no programming)

N
Y (only in 
web-based 
version)

N N Y

Audience Bioinformatician/Biologist Biologist Bioinformatician Bioinformatician Bioinformatician/Biologist

De�nition of distance 
cuto�

N N Y N Y

Table 1. Comparison matrix of popular annotation tools: the �rst column de�nes features supported by the 
respective tools given in column 2–5. Available/not available features are coded as Y or N, respectively. In case of 
comparable features, explanations/details are given as key words. *Indicates “only via additional programming”.
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a number of charts summarizing the occurrences for each feature, the distance for each feature, and the relative 
position of peaks (Fig. 3A–C). If UROPA was con�gured with multiple queries, additional plots comparing the 
characteristics and overlaps of the individual queries are generated (Fig. 3D–F). Together, these graphics rep-
resent a valuable instrument to interpret the annotation, and can serve to de�ne optimal parameters for future 
analyses.

While built-in �lter functions of UROPA focus on the distance of the peak center to a target feature, the 
so�ware furthermore computes overlap percentages between peak and feature, and vice versa. �ese values can 
be employed for downstream analyses by the user to perform additional �ltering on the annotation candidates 
to enforce selected amounts of intersection. �is can be useful in the ChIP-seq context, e.g. if peaks of a TF are 
annotated with a custom reference annotation �le hosting the location of TF binding sites as features, where a 
complete overlap of the pattern and peak marks high quality hits.

Comparison and benchmarking. In order to demonstrate the universal character as well as the novel 
features of UROPA, we selected the well-established tools Homer, GREAT, Goldmine and ChIPpeakAnno for 
a detailed feature comparison and benchmarking (Table 1). As illustrated, UROPA not only combines a set of 
individual features given by one or some of the other tools in one place, but also considerably extends the func-
tionality of peak annotation processes by features like “free selection of feature characteristics”, “de�nition of 
multiple additive or concurrent queries”, “exclusive prioritization”, “limitation to up/downstream locations” and 
“computational parallelization”. While some of these functions can be manually scripted with methods of existing 
tools, UROPA reduces the e�ort by the user signi�cantly, as it is designed to be used without programmatic access 
and fully encapsulates complex work�ows.

As UROPA is intended to be able to annotate arbitrary regions of interest in a universal manner, it can be 
con�gured to simulate the behavior of other annotation tools. We performed a pairwise comparison to the 
tools named above with a published peak �le resulting from a POLR2A ChIP-seq experiment (14989 peaks, see 
Methods) to prove that we can cover a wide range of existing functionality.

In our �rst comparison we used the full reference annotation �le of Homer and generated a custom reference 
�le from it to perform annotation with UROPA. As Homer annotates all peaks via the closest feature without any 
distance limits, we con�gured UROPA accordingly. As shown in Fig. 4A, all peaks were annotated via both tools. 
When we checked for the respective hits for each peak, we found a perfect annotation overlap for 100% of the 
peaks. Due to these results, we conclude that UROPA is able to simulate the behavior of Homer.

In our second comparison to Goldmine, we used the Gencode hg19 version as reference annotation �le. It 
was downloaded directly from the Gencode website for UROPA, while the getUCSCTable() function was used 
for Goldmine. We used one query targeting the feature gene, activated the internals parameter and set a distance 
threshold of 100000 for UROPA in order to simulate the basic operation mode of Goldmine (“target closest gene 
TSS; count overlapping gene as a hit ignoring distance”). As indicated in Fig. 4B, the results of the tools are very 

Figure 3. UROPA graphical summary report. (A) �e distance to the feature anchor is displayed as a fraction 
of the total peaks annotated using a density plot. �is information can be useful to determine optimal distance 
settings for annotation. (B) Relative localization of peaks in relation to the annotated feature (one pie chart 
plot per feature). (C) Bar plot of total occurrence of individual features (one plot per query). (D) All queries 
are included in a pairwise comparison to show possible overlaps. Assuming multiple concurrent queries, the 
amount of exclusively and commonly annotated peaks can be deduced. (E) Distance histogram in relation 
to query and feature where each query is depicted separately. (F) �e Chow Ruskey plot represents an area-
proportional Venn diagram. It reveals the distribution of peaks that could be annotated per query and works for 
up to 5 queries.
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similar, as only a small number of 8 peaks were exclusively annotated by Goldmine. We found all these peaks to 
be located in a greater distance than demanded by our threshold. When we had a closer look on the single peak 
annotations, we found seven peaks assigned to di�erent target genes (see Additional File 2). For six of the genes 
assigned to these peaks we found no entry in the Gencode version from the website, indicating slight di�erences 
between the annotation �les. One peak (peak 6230) was annotated to be intergenic with a distance >100000 bp 
to the next gene in Goldmine, although it overlaps the start position of TLN2, which was assigned via UROPA. 
Furthermore, we found a considerable number of peaks (~10600) annotated with a distance of 0 in the Goldmine 
result �le that were reported with larger distances in the UROPA result �le (see Additional File 2). From these, we 
found ~6% to be >10000 bp away, containing two extreme examples (peak_11600 and peak_13322, Additional 
File 2) with a distance of 260766 and 116902 to the TSS by UROPA respectively.

For comparison to GREAT, we utilized the reference annotation �le provided at the GREAT homepage for 
UROPA. Again, we designed the query of UROPA in order to simulate the basal plus extension mode of operation 
of GREAT (see methods). As indicated in Fig. 4C, UROPA showed an identical annotation for 99% of the peaks, 
while ~40% were not annotated by both tools. All annotated peaks were assigned to the identical genes. Due to 
these results, we conclude that UROPA can simulate the algorithm of GREAT.

Finally, we benchmarked UROPA against ChIPpeakAnno, a tool that is capable to utilize arbitrary reference 
annotation �les and supports extensive variability considering available parameters. We used an Ensembl based 
reference annotation �le (Homo_sapiens.GRCh37.75), and a comprehensive con�guration �le (see Methods). As 
shown in Fig. 4D, the tools annotated ~72% of all peaks. Within the annotated peaks, we found a large overlap of 
~95%, while peaks exclusively annotated by UROPA and ChIPpeakAnno accounted for 2–3% of the total. When 
we investigated the exclusive peak groups, we found all 200 peaks exclusive to UROPA to be located downstream 
of features. We thus assume that ChIPpeakAnno removes peaks located downstream of features, ignoring the 
selected distances. Most of the 320 peaks exclusive to ChIPpeakAnno were located inside or overlapping a fea-
ture. As ChIPpeakAnno reports a distance of 0 for these peaks, we were not able to further evaluate this group. 
However, when we performed a second comparison (Additional File 3) with our internals:true key, we were able 

Figure 4. Global comparison of UROPA to other peak annotation tools. White circles represent peaks without 
any annotation, blue circles represent the number of peaks exclusively annotated by the respective tool, red 
circles represent peaks exclusively annotated by UROPA, and violet circles represent peaks annotated by both 
tools. (A) Comparison of UROPA and Homer, no tool speci�c peaks are reported. (B) Comparison of UROPA 
and Goldminer. (C) Comparison of UROPA and GREAT. (D) Comparison of UROPA and ChIPpeakAnno.
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to reduce the number of ChIPpeakAnno speci�c peaks to 103, while the UROPA speci�c peak number increased 
to 3166 peaks. In this comparison the latter number was comprised of ~95% of peaks that are located inside of 
features and ~5% were the already identi�ed downstream assignments. Within the group of annotated peaks, all 
peaks refer to identical features.

While we used the same peak �le for all comparisons, we found the total number of annotated peaks to be 
variable (Fig. 4C and D outer circles). �is is assumed to result from di�erences considering reference annotation 
�les and annotation strategies. Although we were not able to generate a 100% overlap with all reference peak 
annotation so�wares, the benchmark demonstrates that UROPA subsumes basic functions of popular tools.

Complex use case. Recent method development in the epigenetics context gave rise to applications that 
permit the investigation of chromatin structure and accessibility. Assay for Transposase Accessible Chromatin 
with high-throughput sequencing (ATAC-seq) is one of the latest developments able to report on open chromatin 
regions. We chose a public dataset from ENCODE (see methods) on megakaryocyte erythroid progenitor (MEP) 
cells. �e progenitor cells give either rise to mature megakaryocytes or erythroid cells. �e �rst lineage speci�ca-
tion is driven by a transcription factor (TF) cocktail comprising Runx1, Gabp-alpha and Fli1, while the latter is 
driven by c-Myc, p300 and Klf110 (Fig. 5A).

�e origin of this ATAC-seq dataset suggests that regions with open chromatin will include binding sites of 
megakaryocyte related TFs and that these binding sites should be located in proximity to protein coding genes. 
In order to test this assumption, we predicted all potential binding sites for selected TFs (Gabp-alpha, Fli1, Klf1) 
in the mouse genome in silico and visualized the degree of accessible chromatin around these potential binding 
positions with heat maps and pro�le plots (Fig. 5B). As illustrated, megakaryocyte related TFs revealed a clear 
set of binding sites with accessible chromatin (upper part of the heatmaps, colored dark blue) as well as binding 
sites that are completely closed (colored in red). Furthermore, the heatmap shows a di�ering width of the opened 
chromatin locations, varying from almost 2 kb (upper heatmap) to smaller ranges of ~200 bp (width of dark blue 
signal). As a control, we included transcription factor Pax7, which is not intended to play a role in megakaryocyte 
development but is indicated in fetal development and cancer growth11. As expected, the predicted potential Pax7 
binding sites were mostly found to be closed (Fig. 5B right heatmap). �e general degree of chromatin accessi-
bility at the respective sites (shown in the ATAC-seq coverage pattern above heatmaps, Fig. 5B) is at least a 4 fold 
higher for the MEP related TFs when compared to the Pax7 control. In order to test our hypothesis expecting 
proximity of open binding sites to protein coding genes, we clustered the individual heatmaps and generated lists 
of open and closed potential TF binding sites, respectively. As functional open TF binding sites should be mostly 
located within the promotor, we annotated the respective lists of genomic positions with an advanced UROPA 
con�guration. We made use of multiple promotor de�nitions concerning size and localization (small symmetric 
regions around the TSS and larger asymmetric regions upstream of the TSS (see Methods) in order to unravel 
the location of TF binding sites in an unbiased way. As expected, we found a large percentage (up to 92%) of the 
open TF binding sites in the classical promotor regions of protein coding genes, while the corresponding closed 
TF binding sites are depleted for promotor regions (≪11%). Table 2 exemplarily illustrates the distribution of 
promotor associated binding sites for Gabp-alpha in the open chromatin (c1) and closed chromatin (c2) regions, 
while the remaining TFs are listed in Additional File 4. Correspondingly, we examined the results on the Pax7 
control TF. We clustered for open and closed binding sites again and annotated the respective groups via UROPA 
as described before. Not surprisingly, we found a signi�cantly smaller number of open sites that could be assigned 
to promotors (30–45% for c1, Additional File 4), indicating a more randomized set of open chromatin locations 
compared to the megakaryocyte related TFs. In the closed group c2 of Pax7, a similarly low percentage of sites 
were assigned to promotors as in case of the megakaryocyte related TFs.

Performance. As annotation is a reoccurring analysis step applied for many use cases, UROPA supports 
parallel processing in order to balance computational load and runtime. As shown for a large BED �le with 
>100000 peaks and a complex query set (Additional File 5), multithreading e�ciency approximates a linear 
trend. For our performance test, we utilized one to sixteen cores on a single socket machine while RAM assign-
ments were constant for all runs. As it was not possible to adjust all tools to perform an identical comparison 
task, excluding hard-coded additional computations, we decided to not include misleading runtime benchmarks. 
Nonetheless, we noted that UROPA using 16 threads was approximately twice as fast as the fastest competitor 
(Goldmine) when annotating peaks with the closest TSS based on Gencode genes, excluding one-time indexing/
caching procedures.

Discussion
�e correlation of enrichment peaks resulting from ChIP-seq/ATAC-seq or other sequencing based techniques 
with known features for annotation purposes is a central task for bioinformatics pipelines in the �eld. Many 
downstream analyses steps rely on the successful attribution of peaks to the relevant genetic features, which 
serve as connectors to facilitate pathway enrichment analyses, transcription correlation, network analyses, and 
other secondary analyses. Especially peaks deriving from histone ChIP-seq experiments present a challenge here, 
as histone modi�cations can result in data with variable pro�les, targeting not only TSS of genes, but also gene 
bodies or transcription termination site. Furthermore, di�erent reference annotation �les exist which can vary 
considering gene de�nitions12. Depending on the biological background under investigation, the best reference 
genes are not necessarily the total set, as non-coding genes may be of lesser interest when compared to protein 
coding genes or vice versa. Additionally, many peaks do not allow a clear attribution to exactly one reference 
feature, as multiple valid candidate features may be in range.

http://4
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Figure 5. (A) Megakaryocyte di�erentiation, from le� to right: Megakaryocyte progenitor cells (MPC) 
di�erentiate to erythrocytes (upper branch) or megakaryocytes (lower branch), while speci�c transcription 
factors for each branch drive the di�erentiation process (�gure adapted from10). (B) Heatmaps on four in silico 
predicted transcription factor binding sites in the mm10 mouse genome assembly. Binding sites are located 
in the center, surrounded by the ATAC read signal from −1 kb to +1 kb. A globally normalized color scale 
represents the strength of the respective ATAC signal. �e binding pro�le is shown at the top of each heatmap. 
Heatmaps from the le� to the right represent Gabp-alpha, Fli1and Klf1 as Megakaryocyte progenitor speci�c 
transcription factors and Pax7 as Megakaryocyte unrelated factor.
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�e most popular tools for this class of tasks are arguably Homer and GREAT, which are limited to annota-
tions focused on TSS of the most closely located gene and use �xed reference annotation �les that can only be 
changed with considerable e�ort. �e annotation of peaks resulting from histone modi�cations not targeting 
the TSS will invariably lead to inaccurate assignments using these tools. When comparing an annotation run 
relative to the TSS with another one focusing on the gene center for histone modi�cation H3K36me3, which 
is mostly enriched in the gene body, we found that ca. 25% of the peaks were annotated with a di�erent gene 
when using the full Gencode annotation for reference (Analysis of GEO dataset GSM733733, Additional File 6). 
ChIPpeakAnno and Goldmine can be adjusted to hone such constraints, but require a certain level of pro�ciency 
in the R statistical programming language. Finally a range of other atomic tools like BEDTOOLS13 and BEDOPS14 
could be chained to e�ect similar results as provided by UROPA. However, utilizing these tools requires extensive 
scripting, to combine outputs of multiple separate runs.

Apart from classical peaks resulting from sequencing based methods as stated above, other genomic ranges of 
interest exist, where classical peak annotation tools fail. One common example in the epigenetics context are CpG 
sites, known to be targeted by methyltransferases in order to activate or repress gene transcription. Using UROPA, 
CpG sites can be easily classi�ed hierarchically as promotor, gene internal, or distal based on three queries.(i: 
promotor region upstream of protein coding genes; ii: gene body of protein coding genes itself with distance to 
feature center is zero and internals key set to TRUE; iii: all genes without distance limitation upstream and down-
stream) and priority key set to TRUE. As a result, one would receive a �nal annotation �le, where each CpG site is 
classi�ed hierarchically as promotor (i), gene internal (ii), or distal (iii). Similar annotation or classi�cation steps 
might be carried out for single nucleotide permutations (SNPs). UROPA can be applied with even greater �exi-
bility when employing custom generated reference annotation �les. �e reference annotation �le could host e.g. 
TFBS for multiple TFs to annotate open chromatin regions derived from ATAC-seq. Another possible application 
is the correlation of peaks of multiple histone modi�cations with each other to identify and classify enhancers.

While there can be a certain amount of complexity involved in setting up a con�guration �le for a speci�c task 
in UROPA, there will be considerable time savings when compared to scripting the underlying agglomerations 
manually using existing tools. Extensive tutorials are included with UROPA bearing a number of examples for 
reasonable con�gurations. As UROPA is fully implemented in Python (only the additional visualization features 
use R), the installation process is straightforward, while computational load and runtime can easily be adjusted to 
match the computational resources available.

Summarizing, UROPA can replace popular tools for peak annotation while considerably extending the func-
tionality and reducing the e�ort by the user (see Table 1). Particularly ChIP-seq and ATAC-seq datasets can pro�t 
from a more dynamic annotation incorporating the speci�c properties of the respective experiment.

Methods
UROPA tool. �e tool UROPA was implemented in Python and R. Additionally, we integrate the open-
source package tabix15 for indexing genomic ranges. R is mainly employed for the summary statistics, utilizing 
the libraries ggplot216, gplots17, gridExtra18, jsonlite19, VennDiagram20, and Vennerable21 in their latest version. If 
multiprocessing is used, the package snow22 is needed.

�e pipeline is freely available for local execution from our online source repository located at https://github.
molgen.mpg.de/loosolab/UROPA. Any GTF formatted reference annotation �le as well as any BED formatted 
regions of interest �le can be used as input data. A detailed explanation of all input and output �les is available at 
our online documentation http://uropa.readthedocs.io/en/latest/. �e UROPA project is licensed under the MIT 
license.

Benchmarking. For tool comparison and benchmarking, we utilized a POLR2A peak �le (ENCFF001VFA, 
assembly hg19, UCSC, version 1.2 from https://www.encodeproject.org/).

Homer. �e annotatePeaks.pl program from Homer Version 4.7 was used for this comparison. �e full annota-
tion �le provided during installing Homer (data/genomes/hg19/hg19. full.annotation) was reformatted to GTF 
format (uropa.to.gtf.R) and used for the UROPA annotation run. Since Homer does not support distance settings, 
UROPA was also started with the default distance, the query is given below:

Query Feature - �lter attribute Anchor Distance

Gabpa

Cluster 1 Cluster 2

0 gene - protein coding start 1000:500 86 4

1 gene - protein coding start 2000:500 87 6

2 gene - protein coding start 3000:500 88 8

3 gene - protein coding start 5000:500 89 11

4 gene - pseudogene start 5000:500 1 2

5 gene - protein coding start 100000 100 78

Table 2. Gabp-alpha associated, in silico predicted binding sites: Binding sites are clustered by ATAC-seq signal 
into open (c1) and closed (c2) regions. For each query indicated as rows, the percentage of peaks with respective 
annotation is listed. Query 0 to 4 re�ect typical promotor de�nitions, query 5 re�ects open intergenic regions. 
Table is based on the best per query result �le.

http://6
http://uropa.readthedocs.io/en/latest/
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. . .queries show attributes homer anno feature anchor start“ ”: [{“ ”: “ ”, “ ”: “ ”}]

GREAT. �e GREAT run was performed via the web interface (http://bejerano.stanford.edu/great/public/html/) 
in ‘basal plus extension’ mode with the following parameters: Proximal 5.0 kb upstream, 5.0 kb downstream, plus 
Distal up to 0.0 k (upstream and downstream of TSS). As the resulting annotation �le contained annotations with 
a distance larger than 5 kb, we manually removed these to achieve equivalence with UROPA. For the UROPA run, 
we selected the available gene annotation used by GREAT (available at http://bejerano.stanford.edu/help/down-
load/attachments/2752609/hg19.great3.0.genes.txt? version=1&modi�cationDate=1443465966000&api=v2) 
a�er reformatting (uropa.to.gtf.R). �e con�guration �le for UROPA is given below:

.

.

queries feature gene distance 5000 show attributes

gene name feature anchor start

“ ”: [{“ ”: “ ”, “ ”: , “ ”

:“ _ ”, “ ”: “ ”}]

ChIPpeakAnno. ChIPpeakAnno supports all reference annotation �les available in R, e.g. the package Homo_
sapiens.GRCh37.75. �is �le needed translation to GRanges prior usage. �e function annoPeaks (peaks, annoGR, 
bindingType = “startSite”, bindingRegion = c(−5000, 5000), ignore.peak.strand = TRUE) was used for the compari-
son to UROPA. Homo_sapiens.GRCh37.75 is identical to the Ensembl GTF �le, which was used for the UROPA 
annotation with the following query:

.

.

queries feature gene distance 5000 show attributes

gene name gene id feature anchor start

“ ”: [{“ ”: “ ”, “ ”: , “ ”

:[“ _ ”, “ _ ”], “ ”: “ ”}]

For the comparison displayed in the Additional File 3, the internals key was set to TRUE.

UROPA to GTF. �e preprocessing tool was implemented in R to transform �les that do not adhere to the 
standard GTF �le format. Files intended for reformatting need to include a header line with information about 
the genomic location (chromosome, start, and end), and may provide further standard GTF columns. Given 
columns are kept while missing columns are �lled with dots. All columns not required for the GTF format will be 
combined and kept as the attribute column. �e tool can either transform one �le or a folder of �les. Running the 
tool requires the input �le(s) and accepts three more parameters (source, feature, and threads).

Example command line call:

.

= = = .

Rscript UROPAtoGTF R directory of various files source

UCSC feature TFBS threads 5

/ / / /

Use case ATAC-seq. ATAC-seq FASTQ/BAM/BIGWIG/BED �les were downloaded from www.encodepro-
ject.org/ (accession ENCSR229QKB). �e replicates were aligned using STAR23.

Position weight matrices obtained from JASPAR24 were utilized for TFBS prediction in the mouse genome 
(assembly mm10) in silico. Brie�y, all positions across the mouse genome with a 95% match for respective TFs 
were identi�ed utilizing the R packages TFBSTools25 and JASPAR 201626. TF binding patterns related to meg-
akaryocyte progenitor cells (Gabp-alpha(MA0062.2), Fli1 (MA0475.2), Klf1 (MA0493.1)) and megakaryocyte 
unspeci�c TF Pax7 (adapted from27 were used. Predicted binding sites were analyzed by extracting the corre-
sponding ATAC-seq coverage with deepTools28. To distinguish between open and closed chromatin from these 
regions including a TF binding pattern, kmeans clustering on the ATAC-seq coverage values was applied. Open 
and closed sites were extracted and annotated with promotors utilizing UROPA. �e analysis was performed for 
all TFs in parallel. �e con�guration for the annotation with UROPA was de�ned as followed:

. .

. .

queries feature gene distance 1000 500

feature anchor start filter attribute gene biotype

attribute value protein coding show attributes

gene name gene id

“ ”: [{“ ”: “ ”, “ ”: [ , ],

“ ”: “ ”, ”: “ _ ”,

“ ”: “ _ ”, “ ”

:[“ _ ”, “ _ ”]},

.

. .

feature gene distance 2000 500 feature anchor start

filter attribute gene biotype attribute value protein coding

{“ ”: “ ”, “ ”: [ , ], “ ”: “ ”,

“ ”: “ _ ”, “ ”: “ _ ”},

.

. .

feature gene distance 3000 500 feature anchor start

filter attribute gene biotype attribute value protein coding

{“ ”: “ ”, “ ”: [ , ], “ ”: “ ”,

“ ”: “ _ ”, “ ”: “ _ ”},

.

. .

feature gene distance 5000 500 feature anchor start

filter attribute gene biotype attribute value protein coding

{“ ”: “ ”, “ ”: [ , ], “ ”: “ ”,

“ ”: “ _ ”, “ ”: “ _ ”},

http://bejerano.stanford.edu/great/public/html/
http://3
http://www.encodeproject.org/
http://www.encodeproject.org/
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.

. .

feature gene distance 5000 500 feature anchor start

filter attribute gene biotype attribute value pseudogene

{“ ”: “ ”, “ ”: [ , ], “ ”: “ ”,

“ ”: “ _ ”, “ ”: “ ”},

.

.

feature gene filter attribute gene biotype

attribute value protein coding

{“ ”: “ ”, “ ”: “ _ ”,

“ ”: “ _ ”}]

Evaluation of binding site localization was based on the best per query result �le.

Availability of data and material. All data used for testing and comparison as well as example data for 
the UROPA algorithm and UROPA itself can be downloaded from the public github repository: https://github.
molgen.mpg.de/loosolab/UROPA.
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