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Abstract 
 
Structure comparison and alignment are of fundamental importance in structural biology 
studies. We developed the first universal platform, US-align, to uniformly align monomer 
and complex structures of different macromolecules (proteins, RNAs, and DNAs). The 
pipeline is built on a uniform TM-score objective function coupled with a heuristic 
alignment searching algorithm. Large-scale benchmarks demonstrated significant 
advantages of US-align over state-of-the-art methods in pairwise and multiple structure 
alignments of different molecules. Detailed analyses showed that the major advantage of 
US-align lies in the extensive optimization of the unified objective function powered by 
efficient heuristic search iterations, which significantly improve the accuracy and speed of 
the structural alignment process. Meanwhile, the universal protocol fusing different 
molecular and structural types helps facilitate the heterogeneous oligomer structure 
comparison and template-based protein-protein and protein-RNA/DNA docking. 
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Introduction 
Structural comparison and alignment of biomacromolecules, including protein, RNA, 

and DNA, are of fundamental importance in structural biology studies. Apart from 
providing intuitive visualizations of the shape comparisons, structure alignment is needed 
for structure-based protein function annotation1-3, modeling mutation effects4, rational 
protein design5, 6, and protein structure classification7. Recent applications have also been 
seen in the use of templates identified by structure alignment for inter-domain structural 
assembly8 and template-based protein-RNA docking9. 

Different methods have been developed for comparing different types of molecules. 
For example, Dali10 and TM-align11 are typical algorithms to align protein monomer 
structures by maximizing both alignment accuracy and coverage (the portion of aligned 
residues divided by the sequence length). Similarly, RNA-align12, RMalign13, STAR3D14, 
and ARTS15 were designed for aligning RNA and DNA molecules, while MM-align16 was 
proposed to compare multi-chain protein complex structures. Recently, algorithms such as 
mTM-align17, Matt18, and MUSTANG19 were proposed for aligning multiple protein 
structures. Despite their usefulness, choosing an algorithm suitable for a specific molecular 
alignment task can be confusing for biological users. Meanwhile, the use of different 
assessment matrices for different methods makes the mutual structural comparisons of 
different molecule types difficult. 

The most widely used structural comparison matrix is the root mean square deviation 
(RMSD)20 of two molecule structures. It is however not suitable for structure alignment 
because minimizing RMSD of structurally aligned regions often results in low alignment 
coverage. GDT21 and MaxSub22 were later proposed to optimize alignment accuracy and 
coverage simultaneously. However, both GDT and MaxSub scores are sequence length 
dependent, as the average score for random structure pairs has a power-law dependence on 
the sequence length23, which renders the absolute magnitude of these scores meaningless. 
To address these issues, TM-score was proposed as the first size-independent metric by the 
introduction of a length-dependent scale 𝑑𝑑0 = 1.24√𝐿𝐿 − 153 − 1.8   to normalize the 
residue distance23, 24, i.e., TM − score = 1/L∑ 1/(1 + 𝑑𝑑𝑖𝑖2/𝑑𝑑02)𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖=1 , where L is the length 
of the target structure; Lali is the number of aligned residue pairs; and di is the distance 
between the Cα atoms of the i-th pair of aligned residues. The TM-score was recently 
extended to TM-scoreRNA for nucleic acid structure comparison12 (see Supplementary 
Text 1 for a complete discussion on TM-score and TM-scoreRNA). The TM-score was 
recently extended to TM-scoreRNA for nucleic acid structure comparison12. The unification 
of scoring function provides the potential to unify the structural comparison of different 
molecules and molecular complexes. 

In this work, we developed a Universal Structure Alignment (US-align) platform, 
which performs 3D structure alignments for monomeric and complex protein and nucleic 
acid structures, built on the well-established TM-score and heuristic structural alignment 
algorithms. The universal strategy to address all macromolecular structure alignments 
makes the alignments of heterogeneous complexes (such as protein-RNA complexes) 
feasible. Meanwhile, the extensive optimization of a uniform scoring metric enables the 
algorithm to generate faster and more accurate alignments compared to the state-of-the-art 
methods developed for specific structural alignment tasks. The source code and the on-line 
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server of US-align are freely available at https://zhanggroup.org/US-align/, which accepts 
both legacy PDB and mmCIF/PDBx formats25 and automatically recognizes and selects 
the optimized algorithms for different input structure types. 

 
Results 

US-align is a versatile structural alignment program that performs four different modes 
of alignments, each of which can handle structures of proteins, RNAs, and DNAs (Fig. 1). 
The first mode is monomeric structure alignment (Fig. 1a) by establishing the residue-level 
correspondences with optimal superimposition between a pair of monomeric chains. The 
second is oligomeric alignment (Fig. 1b), which establishes both chain-level and residue-
level correspondences between a pair of oligomeric structures, each with two or more 
chains. The third is for multiple structure alignment (MSTA, Fig. 1c), where the input 
consists of three or more monomeric structures and the output is a consensus alignment 
among all structures. The last mode of US-align is template-based docking (Fig. 1d), which 
assembles two or more individual chains together by matching them to an oligomer 
template. The core idea of US-align is built on the construction of multiple heuristic 
alignments that cover different initial postures to avoid the trap of a specific local minimum, 
an issue suffered by many structural alignment methods. The follow-up rapid dynamic 
programming iterations help improve both accuracy and speed of the alignment procedures. 
The following sections benchmark the performance of US-align on the four different 
alignment tasks. 

Oligomeric Structure Alignment.  We first benchmarked US-align against two open-
source programs for oligomeric structure alignments, MM-align16 and MICAN26 for 
oligomeric structure alignments. While MM-align generates structure alignments by 
exhaustive combination of TM-align alignments for each individual chain pair, MICAN is 
built on a hierarchical strategy of secondary structure element (SSE) and residue-level 
alignments. The three programs were benchmarked on a set of 1,123 protein complex 
structures collected from the PDB that are non-redundant at a pairwise sequence identity 
cutoff of 30%. The dataset includes 200 dimers, 200 trimers, 200 tetramers, 129 pentamers, 
200 hexamers, 60 heptamers and 134 octamers (described in detail in Supplementary Text 
2). 

Fig. 2 summarizes the performance of the three oligomeric alignment programs in 
terms of TM-score, RMSD, alignment coverage, and execution time for all-against-all 
alignments among the structures with the same number of chains. As TM-score and 
coverage for the alignment of the same pair of structures could differ depending on whether 
the TM-score and coverage were normalized by the longer or the shorter structure, we 
reported the TM-score and coverage normalized by the shorter structure for the remainder 
of this manuscript, unless mentioned otherwise. 

The data show that US-align consistently outperformed both MM-align and MICAN 
on TM-score, coverage, and execution time. However, it does appear that MICAN has a 
lower RMSD compared to US-align and MM-align in Fig. 2b. This is because MICAN 
alignment covers a much smaller portion of the full structure than the other methods (Fig. 
2c), which is also the reason for the low TM-score of MICAN due to the lack of balance 
between alignment accuracy and coverage. The average TM-score of US-align across all 
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types of oligomers (0.243) is 8.6% and 13.1% higher than those of MM-align (0.224) and 
MICAN (0.215), which correspond to p-values<1E-303 by Student’s t-test. 

It is noted that the performance of a structural alignment method usually relies on both 
the alignment search engine and the objective function. The difference shown here is 
apparently not caused by the scoring functions, as US-align, MM-align, and MICAN in 
this benchmark all use TM-score as the objective function. Therefore, these data highlight 
the efficiency of the heuristic searching process in US-align which covers larger and more 
important spaces of chain assignments and structural alignments in a limited amount of 
CPU time. This difference was particularly evident for oligomers with more chains. For 
example, the average TM-score of US-align was only 2.2% higher than MM-align for the 
dimers but 20.6% higher than MM-align for the octamers (Supplementary Table 1). One 
reason for these performance differences for larger oligomers was the better ability of US-
align to identify correct chain correspondences, especially for oligomers with high 
symmetry. If we count all 134 octamers that are the octamers of the highest number of 
chains in our test dataset, for example, US-align generated alignments containing on 
average 6.8 aligned chain pairs, which was 25.9% and 13.3% higher than those from MM-
align (5.4) and MICAN (6.0), respectively. Fig. 2e-g show and example of the octamers 
from the mandelate racemase/muconate lactonizing enzyme (PDB 4JHM) and the SP_1775 
protein (PDB 4IAJ) with D4 symmetry. The optimal alignment, derived by US-align with 
TM-score=0.540, aligned each of the 8 chains in 4JHM to one chain in 4IAJ (Fig. 2e). On 
the other hand, MM-align (Fig. 2f) and MICAN (Fig. 2g) only aligned 5 and 3 out of the 
8 chains, respectively, leading to much lower TM-scores of 0.239 and 0.289, respectively. 
Although US-align generates on average more accurate oligomeric structural alignments, 
it could still generate suboptimal chain assignments for 2% of the cases in our test set, 
where one example is given in Supplementary Fig. 1 for which US-align underperforms 
MM-align. This is mainly because the initial chain assignment by US-align is generated by 
a heuristic search algorithm: the Enhanced Greedy Search (EGS; see Methods section). 
Although EGS significantly improves the speed of chain assignment with little 
compromise in accuracy in general, it may still very occasionally miss the best chain 
assignments that could otherwise be detected by an exhaustive search, as that implemented 
by MM-align. 

As a unique advantage of the universal structure alignment approach, US-align can 
perform oligomeric alignments for nucleic acid-nucleic acid or protein-nucleic acid 
complexes, while both MM-align and MICAN could only deal with protein-protein 
complexes. In Fig. 3, we present a case study of structure alignments between two protein-
RNA complexes from two different bacteria. Since the protein components of both 
complexes (PDB 1Y39 chain A and PDB 2ZJR chain F) are 50S ribosomal proteins L11, 
they share a high structural similarity (TM-score=0.784, Fig. 3a). Similarly, the RNA 
components of the two complexes (PDB 1Y39 chain C and 2ZJR chain X) are fragment 
and full-length 23S rRNAs, respectively, and share a high similarity (TM-score=0.785, Fig. 
3b). When combining them together, US-align creates an alignment with an even higher 
similarity (TM-score=0.861, Fig. 3c) due to the cooperative optimization of the complex 
alignments. In Supplementary Fig. 2, we show another example where the hetero-
oligomeric alignment by US-align between a protein-DNA complex and a protein-RNA 
complex revealed a similar mode of interaction with a significant TM-score of 0.467, which 
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could not otherwise be captured by monomeric alignments (TM-score=0.301 and 0.157, 
respectively, both below the statistical significance threshold). 

Monomeric Structure Alignment. Structural alignments on single-chain monomer 
structures are a fundamental component of US-align. To examine the effectiveness of RNA 
monomer structure comparisons, we first used CD-HIT-EST27 to cluster the sequences of 
all 3,724 unique RNA chains from the PDB, resulting in 637 chains with sequence length
≥30 nucleotides and pairwise sequence identity<80%. We then ran an all-against-all 
pairwise alignment of these 637 chains by US-align, together with four other programs: 
RMalign13, STAR3D14, ARTS15, and Rclick28. The data in Fig. 4a-d and Supplementary 
Table 2 show that US-align outperforms all four control RNA structure alignment 
programs with TM-scoreRNA 5.8% higher than RMalign, 27.5% higher than STAR3D, 34.5% 
higher than ARTS, and 38.6% higher than Rclick, where the difference corresponds to p-
value<1E-303 for all TM-score comparisons. Meanwhile, USalign is 9.6, 31.6, 2.0, and 
45.7 times faster than the four control programs, respectively. 

In Fig. 4e, we ran the RNA structural alignment programs to match a short rRNA-IV 
(PDB ID 4V8M with 135 nucleotides) with a large 28S rRNA (PDB ID 6Y2L chain L5, 
3,613 nucleotides). Only US-align could identify the correct alignment with a TM-
score=0.595, which is 2.3 to 4.6 times higher than that identified by the other four programs. 
This example highlights the ability of US-align to handle RNA structure pairs with 
complex topologies and low sequence identities (20% in this example). 

In Supplementary Fig. 3, we summarized the comparison results of US-align with 4 
state-of-the-art monomeric protein structure alignment methods: SPalign29, Dali10, 
MICAN26, and SSM30. On the 31,951 pairs of protein structures, which were collected from 
the all-to-all pairing of a subset of 1,000 proteins from the SCOPe 2.06, US-align creates 
alignments with a reasonable combination of RMSD (4.546 Å) and coverage (68.9%), 
resulting in the highest TM-score (0.447), which is 2.1%, 8.2%, 13.2%, and 21.5% higher 
than that achieved by SPalign, Dali, MICAN, and SSM, respectively, with a p-value 
≤3.40E-26 in all comparisons (Supplementary Table 3). If we count for the number of 
the alignments with a TM-score≥0.5 24, US-align identified 8119 pairs of similar global 
folds, which is 6.0%, 34.0%, 72.0% and 148.4% higher than that by SPalign (7661), Dali 
(6050), MICAN (4720), and SSM (3268), respectively (Supplementary Table 4). 
Meanwhile, the CPU time of US-align is 2.7, 6.2, 3.0, and 1.6 times lower than the 
benchmark programs (Supplementary Fig. 3d). 

US-align also has good performance when evaluated on the objective functions from 
other programs, such as Q-score and Dali Z-score which are unique to the SSM30 and Dali10 
programs, respectively (see Supplementary Text 3). On the same non-redundant SCOPe 
dataset, US-align achieves the highest average Q-score of 0.105 (Supplementary Fig. 3e), 
which is 38.1%, 118.7%, 22.1% and 98.1% higher than those by SPalign, Dali, MICAN 
and SSM, respectively, with p-values ≤5.93E-242 for all comparisons (Supplementary 
Table 4). Similarly, US-align achieves the second highest Dali Z-score (0.910), which is 
lower than MICAN (1.593) but significantly higher (with p-value ≤7.48E-55, 
Supplementary Table 4) than SPalign (0.375), Dali (-1.894), and SSM (-3.175) 
(Supplementary Fig. 3f). The reason for the higher Dali Z-score by MICAN is that 
MICAN tends to generate alignments with lower coverage than US-align (by 19.2%). Since 
Dali Z-score is more sensitive to local variations than TM-score and Q-score, the sacrifice 
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of alignment coverage for a smaller distance deviation at the aligned region results in a 
more favorable Dali Z-score by MICAN. Overall, the good performance of US-align on a 
broad range of scoring metrics reinforces the above observations that US-align has not been 
over-optimized for its own objective function and that its efficient alignment search engine 
allows it to derive reasonable alignments in a generic sense. 

As an alternative assessment on the alignment performance, we calculated the 
agreements of manually created pairwise protein alignments from the MALIDUP dataset31 
and those from automatic protein structure alignment (Supplementary Fig. 4, and 
Supplementary Table 5). Here, to avoid overfitting, we excluded MICAN, because this 
program was partially trained on the MALIDUP dataset26. The result shows that although 
US-align was not optimized to resemble manual alignments, it achieves a reasonable 
agreement to manual alignments with a F1-score 0.782, which is 3.3%, 10.3%, and 27.2% 
higher than those achieved by SPalign (0.757), Dali (0.709), and SSM (0.615), respectively. 
This probably reflects that the TM-score, which was designed to optimize the alignment 
accuracy and coverage simultaneously, has naturally captured the overall topological 
similarity of structures that is essential for the function and evolution of macromolecules. 

MSTA. MSTA matches multiple (3 or more) monomeric structures with similar 
topology into a single alignment matrix. To examine the ability of US-align for RNA 
MSTA, we collected a benchmark dataset by clustering the 637 structures from the RNA 
monomer alignment dataset used above by our in-house qTMclust algorithm 
(Supplementary Text 4, Supplementary Fig. 5) at a TM-scoreRNA cutoff of 0.45. This 
resulted in 275, 39, and 31 clusters with 1, 2, and ≥3 chains, respectively. The 31 groups 
with ≥3 structures per group were used as the MSTA benchmark dataset in which multiple 
RNA alignments were performed within each cluster.  

Fig. 5 shows the average performance of US-align in comparison with four third-party 
programs18, 19, 32, 33, which were extended from RNA sequence and protein structure 
alignment tools (Supplementary Text 5). The comparison was based on a subset of 29 
groups of RNAs for which all programs could generate results, since MUSTANG was not 
able to complete MSTA for two groups of long RNAs as explained by the Supplementary 
Fig. 6 caption. The performance on the full set of all 31 RNA groups is shown in 
Supplementary Fig. 6 and Supplementary Table 6. We note that it is not completely fair 
to pit US-align against LinearTurboFold and MAFFT-xinsi, as the latter two programs are 
extended from multiple sequence alignment (MSA) of RNA sequences and secondary 
structures rather than bona fide 3D structure alignment tools (Supplementary Text 5). 
Nonetheless, given the rareness of RNA MSTA programs, we include the programs in the 
comparison, which on one hand generates quite reasonable alignment results and one the 
other hand can help highlight the additional values that 3D structure information brings on 
top of MSA. As MSA programs, LinearTurboFold and MAFFT-xinsi tended to maximize 
the overlap among sequences, leading to very high coverages but with more than 4-times 
larger RMSDs and more than 11% lower TM-scoreRNA, compared to 3D structure 
alignments by US-align. US-align also outperformed the two MSTA programs (Matt and 
MUSTANG) by achieving 4.8% and 3.5% higher TM-scoreRNA as well as 15.5% and 63.9% 
lower RMSD, respectively. Here, TM-score, RMSD, and coverage were all calculated from 
the pairwise alignments extracted from the MTSA. The result also shows that US-align 
was much faster than the control programs with the average time 15.0, 1650.3, 12.7 and 
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2.3 folds shorter than Matt, MUSTANG, LinearTurboFold, and MAFFT-xinsi, 
respectively.  

As a case study, Fig. 5e shows the MTSA for a group of three RNAs: a pri-miRNA 
(PDB 6V5B chain D), a pre-mRNA (PDB 2L3J chain B), and a dsRNA being processed 
by RNase III (PDB 2NUE chain C). Although all three structures have a simple topology 
(a single helix), LinearTurboFold, MAFFT-xinsi, and MUSTANG all failed to derive the 
correct correspondence between nucleotides of different structures, resulting in poor 
RMSD >13 Å. Both US-align and Matt created correct alignments with RMSD ~3 Å, but 
US-align aligns more nucleotides and results in a higher coverage and TM-scroreRNA (Fig. 
4e). 

In Supplementary Fig. 7, we further test the ability of US-align on protein MTSA in 
control with four state-of-the-art methods: PROMALS3D34, Matt18, MAMMOTH-mult35, 
and MUSTANG19. The benchmark dataset consists of 803 protein structures from 92 
SCOPe fold families, where each fold family contains 3 to 42 structures which share the 
same fold but from different superfamilies36. Among the methods, US-align achieves the 
lowest pairwise RMSD (3.9 Å) with the second highest alignment coverage (68.7%). The 
average TM-score is 36.9-43.3% higher than other control methods, where the TM-score 
difference is statistically significant with a p-value below 1.3E-12 for all the comparisons 
(Supplementary Table 7). Meanwhile, the speed of US-align is on average 199.6, 24.6, 
1.1, 30.7 times faster than PROMALS3D, Matt, MAMMOTH-mult, and MUSTANG, 
respectively. 

RNA-protein docking. Given the ability of US-align for both protein and nucleic acid 
structure alignments, we constructed a template-based RNA-protein docking pipeline by 
separately matching the query RNA and protein chains to a library of known RNA-protein 
complex structures, with the final models sorted by the root mean square of TM-scores of 
the RNA and protein structural alignments. 

In Fig. 6a-c, we present a summary of performance of US-align on a set of 439 non-
redundant RNA-protein complexes, in control with two state-of-the-art RNA-protein 
docking methods 3dRPC37 and PRIME9 which perform template-free and template-based 
docking, respectively (Supplementary Text 6). It was shown that US-align achieved a 
significantly lower median RNA RMSD than 3dRPC (by 15.5%) and PRIME (by 22.8%). 
If we define a successful case as those with RNA RMSD <10 Å, the success rate of US-
align is 45.6% higher than 3dRPC and 13.8% higher than PRIME. Importantly, the average 
running time of US-align (19.89 min) is 28 times faster than 3dRPC (559.86 min) and 6 
times faster than PRIME (118.49 min). In Fig. 6d, we present an illustrative example from 
the complex between a ribosomal protein and an mRNA (PDB ID 2VPL), where US-align 
created a model with a significantly lower RMSD (1.0 Å) than 3dRPC (29.3 Å) and PRIME 
(8.9 Å). Although PRIME and US-align recognized the same template (PDB ID 1MZP), 
the US-align model is much closer to the native structure due to more precise RNA and 
protein structure alignments. 
 
Conclusion 

We developed US-align, a universal protocol for monomeric and oligomeric structural 
alignment of protein, RNA, and DNA molecules, built on the coupling of a uniform TM-
score objective function and the heuristic iterative searching algorithm. Large-scale 
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benchmarks show that US-align outperforms state-of-the-art programs in terms of both 
alignment accuracy and speed for a wide range of structural comparison tasks, including 
oligomeric structural alignment, RNA and protein MSTA, and template-based protein-
RNA docking. Given the fundamental importance of structure comparisons in molecular 
biology, the high efficiency of a uniform structural alignment tool should significantly 
facilitate the related structural biology and function annotation studies across different 
types of biomolecules. 

Despite the efficiency, US-align is essentially a tool for sequence-order dependent rigid 
structural alignments which may not be sufficient for some specific applications. For 
example, sequence-order independent (SOI) alignment is often preferred for comparing the 
binding pockets of ligand-receptor interactions in virtual screening studies. Meanwhile, 
flexible structure alignment may be needed for aligning multi-domain structures with 
alternative inter-domain orientations or for comparing multi-chain complexes with large 
conformational changes. Future developments will focus on extension of US-align for SOI 
and flexible alignments. 
 
Methods 

Monomeric Structure Alignment. To structurally align a pair of chains in US-align, 
it was necessary to derive the optimal alignment (i.e., the residue-level equivalence) 
between the two chains that maximizes the TM-score of structural superimpositions. For 
this, US-align starts with five sets of initial alignments: 

(1) Alignments from gapless sliding of one chain against another, and the alignment 
with the best TM-score was selected. 

(2) Alignment of the secondary structures of the two chains by Needleman-Wunsch 
(NW) dynamic programming38, using a gap penalty of -1, a match score of 1, and 
a mismatch score of 0. 

(3) Alignment based on NW dynamic programming, but the matching score is a half-
half combination of secondary structure match and the residue-level TM-score 
calculated based on the superposition from Initial Alignment (1): 

TM − score𝑖𝑖𝑖𝑖 =
1

1 + �𝑑𝑑𝑖𝑖𝑖𝑖 𝑑𝑑0⁄ �
2                                            (1) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between i-th on the first structure and j-th residue on the 
second structure. 

(4) Alignments based on the superimposition of fragments with length Lmin/2 and Lmin/3, 
where Lmin is the minimal length between the two query chains. For saving time, a 
fragment is taken only every 𝑛𝑛𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 residues, where 𝑛𝑛𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 = min (45, 𝐿𝐿/3). 

(5) Alignment based on gapless sliding of all continuous fragments. For proteins, a 
fragment is ‘continuous’ if it has at least 4 residues and all C𝛼𝛼 -C𝛼𝛼  distances 
between adjacent residues are <4.25Å. For nucleic acids, any 4 nucleotides adjacent 
in the sequence are considers a piece of continuous fragments. 

Each of the initial alignments is followed by a heuristic iteration alignment process, in 
which we first rotate the structures by TM-score rotation matrix based on the aligned 
residues in the initial alignment. Next, a new alignment is derived using NW dynamic 
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programming, based on the residue-level matching score (Equation 1, calculated from the 
new superposition) with a gap penalty -0.6. The new alignment will result in a newer 
superposition which will be used to create a newer alignment. The process is repeated until 
convergence, where the structural alignment with the highest TM-score is returned. The 
overall procedure of monomeric structure alignment is illustrated by Supplementary Fig. 
8. 

Oligomeric Structure Alignment. One challenge to oligomer complex alignment is 
chain equivalence assignment, i.e., finding the correct chain-level correspondence. In the 
simplest scenario of aligning two dimers, US-align needs two separate structural 
alignments: one for aligning chains A and B from dimer 1 to chains A and B in dimer 2, 
respectively; and another for aligning chains A and B from dimer 1 to chains B and A in 
dimer 2, respectively. More generally, when aligning an oligomer with 𝐶𝐶1 chains to another 
oligomer with 𝐶𝐶2  chains where 𝐶𝐶1 ≥ 𝐶𝐶2 , US-align needs to determine the best chain 
assignment with the highest TM-score out of all 𝐶𝐶1! (𝐶𝐶1 − 𝐶𝐶2)⁄ ! possible chain assignment 
combinations. For example, alignment of a pair of octamers requires consideration of 
8! (8 − 8)⁄ ! = 40,320  possible chain assignments. This makes the exhaustive search 
approach, such as that used by MM-align16, extremely time consuming. 

Therefore, when aligning oligomers with three or more chains, US-align employs a 
light-weighted chain assignment method. First, all-against-all chain-to-chain alignments 
are performed between all chains in oligomer 1 and all chains in oligomer 2 using fTM-
align39, a fast version of TM-align. Compared to the standard TM-align, fTM-align 
decreases the number of iterations, thereby significantly reducing the required computing 
time while maintaining TM-scores highly correlated with those from standard TM-align39, 
especially for very large structures (Supplementary Fig. 9). The TM-scores from fTM-
align are then used for initial chain assignment using the Enhanced Greedy Search (EGS)40 
algorithm, by maximizing the sum of the TM-scores for all assigned chain pairs 
(Supplementary Fig. 10). 

Once an initial chain assignment is decided, US-align will perform a TM-score 
superimposition of the two oligomers according to the inter-oligomer residue-level 
alignments generated in the previous step (Supplementary Fig. 11). Next, based on the 
TM-score superimposition matrix (Equation 1), a new optimal structure alignment will be 
obtained by a modified NW dynamics program which ignores the regions of unassigned 
chains (Supplementary Fig. 12). Given the new structural alignment, the chain-to-chain 
TM-scores will be computed for all inter-chain pairs and used by EGS to determine a new 
set of chain assignments (Supplementary Fig. 10), which will be returned to the last step 
for oligomer alignment iterations. This iteration will be repeated until convergence, where 
the structural alignment with the highest TM-score encountered during the iteration will be 
returned as the final structural alignment of the input oligomers (Supplementary Fig. 11). 

MSTA. To create a uniform alignment for multiple structures, US-align first performs 
all-against-all alignments among all input structures to obtain the pairwise TM-scores. 
Next, a structure-based guide tree is constructed based on the TM-scores using the 
extended unweighted pair group method with arithmetic mean (UPGMA) algorithm41 
(Supplementary Fig. 13). Finally, the pairwise alignments from the first step are 
progressively merged into a single MSTA according to the branching order of the UPGMA 
tree. To merge an alignment with M structures to another alignment with N structures, NW 
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dynamic programming is performed using a generalized version of the residue-level TM-
score from Equation (1): 

TM−score(M, N)𝑖𝑖𝑖𝑖 = � �
1

1 + �
𝑑𝑑𝑖𝑖𝑖𝑖(𝑚𝑚,𝑛𝑛)

𝑑𝑑0
�
2

𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑗𝑗=1
                                      (2) 

where 𝑑𝑑𝑖𝑖𝑖𝑖(𝑚𝑚,𝑛𝑛) is the distance of i-th residue position of the m-th structure in the first 
alignment and j-th residue position of the n-th structure from the second alignment after 
the superposition. The overall workflow of MSTA is illustrated by Supplementary Fig. 
14. 

Template-based docking. To perform template-based docking, US-align implements 
a subroutine to align multiple query chains to one complex template. In this subroutine, 
each query chain is aligned to every chain of the complex template to calculate the TM-
score. Based on the TM-scores, each query chain is then superimposed to one of the 
template chains so that no more than one query chain is assigned to the same template chain 
and the overall docking TM-score is maximized: 

TM − score𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
1

2𝐾𝐾
� �𝑇𝑇𝑇𝑇𝑑𝑑,𝑞𝑞𝑗𝑗𝑞𝑞𝑞𝑞𝑞𝑞

2 + 𝑇𝑇𝑇𝑇𝑑𝑑,𝑡𝑡𝑞𝑞𝑗𝑗𝑗𝑗𝑡𝑡𝑎𝑎𝑡𝑡𝑞𝑞
2�

𝐾𝐾

𝑑𝑑=1
             (3) 

where 𝐾𝐾  is the total number of query chains; 𝑇𝑇𝑇𝑇𝑑𝑑,𝑞𝑞𝑗𝑗𝑞𝑞𝑞𝑞𝑞𝑞  and 𝑇𝑇𝑇𝑇𝑑𝑑,𝑡𝑡𝑞𝑞𝑗𝑗𝑗𝑗𝑡𝑡𝑎𝑎𝑡𝑡𝑞𝑞  are the TM-
score (or TM-scoreRNA) for aligning the k-th query chain, as normalized by the chain length 
of query and template, respectively. 

When multiple templates were available, we ran US-align template-based docking on 
each complex template, and the template with the highest TM − score𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was used to 
generate the final docking result. 

 
Data availability 

All structure files and source code needed to reproduce this work are available at 
https://doi.org/10.6084/m9.figshare.16725745. 
 
Code availability 

An online webserver and the standalone program of US-align are available at 
https://zhanggroup.org/US-align. The source code of US-align is also available at 
https://github.com/pylelab/USalign. The code was tested on Linux, Windows, and Mac OS, 
where no major difference in speed across different operating systems were found 
(Supplementary Fig. 15). 
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Figures 
 

 
Fig. 1. Different structure alignment modes of US-align, which can perform a, pairwise 
monomeric structure alignment; b, pairwise oligomeric structure alignment; c, MSTA; and 
d, template-based docking of monomeric chains into an oligomeric structure. Different 
chains are distinguished by different colors and marker styles in this schematic. 
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Fig. 2. Performance of oligomeric protein structure alignment by US-align, MM-align, and 
MICAN in terms of average a, TM-score, b, RMSD, c, alignment coverage, and d, running 
time for complex structures in different oligomeric states (x-axis). The standard error of 
mean (SEM) values for all metrics are comparable across different methods and very small 
(Supplementary Table 1). Therefore, the error bars for SEM are invisible. e-g, Octamer 
alignment between PDB 4JHM (semi-transparent cartoon) and PDB 4IAJ (ribbon). Each 
chain of the oligomer is shown in a different color. 
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Fig. 3. US-align alignment between PDB 1Y39 (chain A in blue; chain C in red) and PDB 
2ZJR (chain F in cyan; chain X in yellow). a, Alignment of the protein components. b, 
Alignment of the RNAs. c, Alignment of the full protein-RNA complexes. Since the full 
2ZJR chain X has 2,686 residues and is too large to show in the figure, panels b and c only 
show residues 1,063 to 1,119, which correspond to the region aligned to 1Y39 chain C. 
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Fig. 4. a-d, Overall performance of pairwise structure alignment of monomeric RNA 
chains by US-align and third-party programs, including RMalign, STAR3D, ARTS, and 
Rclick. Since STAR3D, ARTS, and Rclick only generated results for 86.8%, 84.0%, and 
99.8% of all pairs, respectively, this figure is for the subset of 168,917 chain pairs for which 
all programs have alignment results. The performance was measured by a, TM-scoreRNA, 
b, RMSD, c, coverage, and d, running time. Error bars on top of most bars were not visible 
because the standard error of mean (SEM) values for all metrics were close to zero 
(Supplementary Table 2). e, Monomeric RNA structure alignments generated by different 
methods between a pair of eukaryotic rRNAs from the large ribosomal subunit: short 
rRNA-IV (PDB ID 4V8M chain BH, 135 nucleotides; colored based on alignment 
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programs) and 28S rRNA (PDB ID 6Y2L chain L5, 3,613 nucleotides; white), with a low 
pairwise sequence identity of 20%. 
 
 

 
Fig. 5. Multiple RNA alignment by US-align, Matt, MUSTANG, LinearTurboFold, and 
MAFFT-xinsi. a-d, Average performance measured by a, TM-scoreRNA, b, RMSD, c, 
alignment coverage, and d, running time. The length of an error bar represents the standard 
error of mean (SEM). Detailed per-target TM-scoreRNA, RMSD, and coverage information 
is shown in Supplementary Fig. 6. e, Superimposed structures derived from multiple 
alignment among three RNAs: PDB 6V5B chain D (78 nucleotides, magenta), PDB 2L3J 
chain B (71 nucleotides, blue), and PDB 2NUE chain C (46 nucleotides, green).  
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Fig. 6. Overall performance of RNA-protein docking by US-align (black), 3dRPC (blue), 
and PRIME (red) in terms of a, median RMSD of docked RNA ligand, b, average running 
time, and c, success rate measured by the percentage of targets with a ligand RMSD<10 Å. 
The length of an error bar represents the standard error of mean (SEM). P-values are shown 
in Supplementary Table 8. d, Example of RNA-protein docking between ribosomal 
protein and mRNA (chain A and B, respectively, of PDB ID 2VPL, whose native structure 
is shown in grey).  
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