
Usability Guided Key-Target Resizing for Soft Keyboards

Asela Gunawardana
Microsoft Research

Redmond, WA 98052
aselag@microsoft.com

Tim Paek
Microsoft Research

Redmond, WA 98052
timpaek@microsoft.com

Christopher Meek
Microsoft Research

Redmond, WA 98052
meek@microsoft.com

ABSTRACT

Soft keyboards offer touch-capable mobile and tabletop de-
vices many advantages such as multiple language support
and space for larger graphical displays. On the other hand,
because soft keyboards lack haptic feedback, users often pro-
duce more typing errors. In order to make soft keyboards
more robust to noisy input, researchers have developed key-
target resizing algorithms, where underlying target areas for
keys are dynamically resized based on their probabilities. In
this paper, we describe how overly aggressive key-target re-
sizing can sometimes prevent users from typing their desired
text, violating basic user expectations about keyboard func-
tionality. We propose an anchored key-target method which
aims to provide an input method that is robust to errors while
respecting usability principles. In an empirical evaluation,
we found that using anchored dynamic key-targets signifi-
cantly reduce keystroke errors as compared to the state-of-
the-art.

Author Keywords

source-channel key-target resizing, language model, touch
model

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies

General Terms

Experimentation, Human Factors, Performance

INTRODUCTION

Mobile and tabletop devices with touchscreens have become
increasingly widespread in the commercial market, such as
the Apple iPhone [1] and the Microsoft Surface [2]. These
devices often utilize a graphically rendered image of a key-
board, or a soft keyboard (see [10] for a survey), for text in-
put. Because soft keyboards have no physical manifestation,
more space can be devoted to larger displays, and because
they are driven by software, soft keyboards can easily sup-
port multiple languages, key layouts, and screen orientations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’10, February 7–10, 2010, Hong Kong, China.

Copyright 2010 ACM 978-1-60558-515-4/10/02...$10.00.

[8]. On the other hand, soft keyboards lack tactile feedback,
which enable users to know when they have touched, clicked
and slipped away from a key. These physical affordances
have been shown to be critical for touch-typing [17]. For
mobile devices, smaller key sizes exacerbate the situation.
Mobile users not only type slower on a soft keyboard than
on a miniature physical keyboard [8], but they also generate
more errors and fail to notice them [4].

A number of interesting approaches to mitigating errors on
soft keyboards involve making the rendered keys larger or
smaller depending on their likelihood [3]. Some approaches
even visually highlight keys [3, 15, 14], though some stud-
ies [7] report that users could find this distracting. A dif-
ferent kind of approach, which we focus on here, is key-
target resizing, where underlying target areas for keys, rather
than the keys themselves, are dynamically resized based on
their probabilities. Notably, the soft keyboard of the popular
iPhone, which actually markets key-target resizing as one of
its key features [16], uses this approach. For example, in
the case of a standard QWERTY layout, touches on parts
of the rendered “y” key may return “t” if the previous input
was “habi” because “habit” is more probable than “habiy.”
This makes it seem as if the target area for the “t” key has
grown while the hit target for the “y” key has shrunk. In or-
der to estimate the probability of keys for key-target resizing,
Goodman et al. [6] introduced a source-channel approach
which combines a language model for predicting the likeli-
hood of different intended key sequences with a touch model
for predicting the likelihood of different finger touch or pen
locations on the screen given the user’s intended key. When
a touch event occurs, the source-channel approach uses both
the touch location and the likelihood of various continua-
tions of the key stream in order to determine the most likely
key the user intended to type.

While this approach has been shown to improve typing ac-
curacy [6], we argue that it also makes the behavior of the
keyboard less predictable to users. Since the key-targets are
dynamic and do not correspond to the rendered keys, it is
unclear to users where they should touch the keyboard in or-
der to register their desired keys. In extreme cases, overly
aggressive key-target resizing may even cause certain key
sequences to be impossible to type. For example, it may be
impossible to type the “y” key after “habi,” even if the user
actually intends to type “habiy” (e.g., as a proper name).
This violates basic user expectations about keyboard func-
tionality. It is therefore desirable that key-target resizing be
guided by the usability principle that every key can reliably

111

be typed in every context, and that the location that returns
each key is intuitive. In this paper, we propose an anchored
key-target resizing method that accomplishes this within the
source-channel approach, so that soft keyboards can remain
robust to errors while respecting usability principles.

This paper consists of three sections. In the first section, we
provide a summary of the source-channel approach [6] to
key-target resizing. In the second, we detail how we mod-
ified this approach to yield anchored dynamic key-targets.
In the third section, we empirically evaluate our anchored
dynamic key-targets in simulation experiments on mobile
soft keyboard data, showing improvements in keystroke er-
ror rate over the state-of-the-art. After discussing our results,
we conclude with opportunities for future research.

BACKGROUND

Related Research

As mentioned in the introduction, a number of researchers
have explored making the language model component of key
prediction explicit in the interface by visually highlighting
the next likely keys. Al Faraj et al. [3] increased the visual
size of the keys of a QWERTY soft keyboard on a ultra-
mobile PC and found that users were faster and more accu-
rate. Similarly, Magnien et al. [15] found that by bolding
the next likely keys for keyboard layouts unfamiliar to users,
showing correctly predicted keys increased speed. However,
they did not examine performance on a QWERTY layout.
MacKenzie and Zhang [14] also highlighted the next likely
keys on a QWERTY soft keyboard with different colors for
an eye-typing interface. They found that coloring combined
with their gaze fixation algorithm significantly reduced er-
ror rates. One nice side effect of visually highlighting the
next likely keys is that it can sometimes assist users who are
unsure of how to spell a word to type correctly.

Unfortunately, in the above studies, none of the researchers
investigated the effect of using the key predictions as just a
language model weight for noisy input without visual high-
lighting. As such, it is difficult to tease apart how much the
visual aspect contributed to performance above and beyond
what would have been gained by leveraging the language
model. For key prediction, the above studies employed ei-
ther character-level bigrams [3] or prefix-based word com-
pletions [15][14]. They did not consider ways of incorpo-
rating models of touch or eye-gaze input into estimating the
overall likelihood of different keys, as is possible with the
source-channel approach.

Because different users can and do generate different touch
observations for intended keys, Himberg et al. [7] explored
personalizing soft keyboards based on individual touch pat-
terns. For a nine-key numeric layout, they visually adjusted
the centroids and borders of each key according to differ-
ent adaptation schedules. Although they did not measure
performance, they assessed qualitative feedback from users
and concluded that any adaptation of soft keyboard layouts
should be sensitive to user expectations so that it is not dis-
tracting. We concur with this sentiment and consider per-
sonalization an important future direction.

Finally, various researchers have sought to overcome noisy
input on soft keyboards by augmenting them with hardware
for vibro-tactile feedback [8][4]. Others have developed al-
ternative keyboard layouts based on Fitt’s law and character-
level bigrams such as the Metropolis [19] and OPTI [13]
layouts.

Source-Channel Key-Target Resizing

We now review the source-channel approach to key-target
resizing described in [6]. This approach utilizes a language
model that predicts the likelihood of intended key sequences,
and a touch model that predicts the likelihood of different
touch locations for each intended key. The model is fairly
general, and subsumes some other probabilistic models such
as that of [7].

Suppose that l1, · · · , ln is a sequence of n touch locations,
where each l ∈ R

2 is an x and y coordinate pair. The task is
to output a good estimate k∗1 , · · · , k

∗
n of the user’s intended

sequence of keys, from a key alphabet K. In this paper, we
address the case where there are no insertion or deletion er-
rors, where an unintended touch is spuriously registered or
an intended touch is not registered. The most likely intended
key sequence given the sequence of touch locations is given
by

k∗1 , · · · , k
∗
n = argmax

k1,··· ,kn

p(k1, · · · , kn|l1, · · · , ln) (1)

Using Bayes’ rule,

p(k1, · · · , kn|l1, · · · , ln) =

p(k1, · · · , kn)p(l1, · · · , ln|k1, · · · , kn)

p(l1, · · · , ln)
(2)

Since the denominator is a positive constant with respect to
k1, · · · , kn, it can be ignored in the maximization of equa-
tion (1) to yield

k∗1 , · · · , k
∗
n =

argmax
k1,··· ,kn

p(k1, · · · , kn)p(l1, · · · , ln|k1, · · · , kn) (3)

The first term is referred to as the language probability while
the second term is the touch probability.

Using the chain rule we can decompose the language proba-
bility as

p(k1, · · · , kn) =

p(k1)p(k2|k1) · · · p(kn|k1, · · · , kn−1) (4)

Following [6], the language probability is modeled using an
N -gram language model which makes the approximation

p(ki|k1, · · · , ki−1) ≈ pL(ki|ki−N+1, · · · , ki−1) (5)

That is, we assume that the probability of a key given all the
keys so far is approximated by the probability of that key
given only the last N − 1 keys. Since we do not wish key-
target resizing to rule out any key at any time, it is important
that the language model be “smooth.” That is, it is important

112

Figure 1. A schematic example where key-target resizing has made it

difficult for the user to type the key ‘e’ because the language model

predicts that it is very unlikely compared to the key ‘s’. The key-target

outlines are shown in heavy lines.

that pL(ki = k|ki−N+1, · · · , ki−1) > 0 for all k and all his-
tories. As described in [5], we estimate pL(ki|ki−N+1, · · · ,
ki−1) using the interpolated Knesser-Ney technique.

With respect to the touch probability, we again follow [6]
and assume that

p(l1, · · · , ln|k1, · · · , kn) = pT (l1|k1) · · · pT (ln|kn) (6)

That is, we assume that given the intended key, the touch
location for a key press is independent of the intended keys
and touch locations for other key presses. The touch prob-
ability pT (l|k) for a single key press will be modeled as a
bivariate normal distribution.

For key-target resizing, the keyboard needs to return a key
for every keystroke it receives in an online manner, instead
of returning a key sequence after receiving an entire sequence
of keystrokes, as implied by equation (3). In this case, the
most likely intended key is given by

k∗i = argmax
ki

pL(ki|h)pT (li|ki) (7)

where we have denoted the language model history by h.

For each key k, the key-target Tk(h) is the region of the key-
board that returns k, and is given by

Tk(h) =
{

l|pL(k|h)pT (l|k) >

pL(k
′|h)pT (l|k

′), ∀k′ 6= k
}

(8)

Notice that the key-targets Tk(h) change with the key history
h = ki−N+1, · · · , ki−1.

ANCHORED DYNAMIC KEY-TARGETS

A standard soft keyboard has a predictable user interface–the
keys are rendered on the interface and correspond closely to
their visual target areas. This guarantees to users that a touch
within the rendered boundaries of a key will return that key.
Since the target areas on a soft keyboard utilizing key-target
resizing change with the key history, the rendered keyboard

Figure 2. An schematic example where target areas respect each key’s

anchor. The target area outlines are shown in heavy sold lines, while

the anchor outline are shown in broken lines.

must either change with the target areas as discussed above,
or no longer match the target areas. As was found in [7],
users can find dynamic rendering of the keyboard distract-
ing. If the target areas no longer match the rendered keys,
users may not always be able to unambiguously predict the
response of the interface to different touch locations. In ex-
treme cases, keys which the language model predicts will
be very improbable may have target areas that become very
small, or even vanish altogether, so that it becomes difficult
or impossible for the user to type these keys. For example,
Figure 1 shows an instance where the target area of the ‘s’
key has grown at the expense of the ‘e’ key, leaving the ‘e’
key’s target area small and in an unexpected position.

Such problems will be rare if the language model only made
such predictions when the user is truly unlikely to attempt
to type these keys. However, even rare occurrences can be
quite frustrating to a user. Furthermore, making accurate
predictions of the continuations of text is a difficult prob-
lem; one that has been the subject of active research for over
half a century [18][5]. We therefore present an approach for
ensuring that each key has a central anchor that is always
included in its target area irrespective of the language model
history. This provides at least some level of predictability
for the user, since touch locations within each key’s anchor
(typically at the center of the rendered key) are guaranteed
to return that key. Figure 2 shows an instance where each
key has a central anchor that is always included in its target.

More formally, we wish to associate an anchor Ak ⊂ R
2

with each key k ∈ K such that Ak ⊂ Tk(h) for all h for any
choice of smooth language model or history.

PROPOSITION 1. Ak ⊆ Tk(h) for any choice of smooth
language model and history if and only if pT (l|k) > 0 for
all l ∈ Ak and pT (Ak|k

′) = 0 for all k′ 6= k.

PROOF. To prove the “if” portion of the result, recall that
smoothness means pL(k|h) > 0 for all k and h. Therefore,
all l ∈ Ak have

pT (l|k)pL(k|h) > 0

113

and

pT (l|k
′)pL(k

′|h) = 0

for any k′ 6= k, so that l ∈ Tk(h) by the definition of equa-
tion (8).

To prove the “only if” portion of the result by contradiction,
we consider two cases. In the first case, we suppose there
exists an l ∈ Ak such that pT (l|k) = 0. In this case, If the
user touches location l it cannot be the case that Ak ⊆ Tk(h)
and we have a contradiction. In the second case, we suppose
there exists k′ ∈ K such that pT (Ak|k

′) = A > 0. If
Ak ⊆ Tk(h) for all histories and smooth language models,
we have that

pT (l|k)pL(k|h) > pT (l|k
′)pL(k

′|h)

for all k ∈ Ak and all choices of language model and history.
Integrating both sides over Ak we get

pT (Ak|k)pL(k|h) > pT (Ak|k
′)pL(k

′|h)

pT (Ak|k) > A
pL(k

′|h)

pL(k|h)

Since this holds for any choice of language model and his-

tory, it must hold when
pL(k′|h)
pL(k|h) > 1

A
. This implies pT (Ak|k)

> 1, which is the contradiction.

This completes the proof.

Proposition 1 is an important result because it maintains that
the only way to guarantee that an anchor returns its corre-
sponding key irrespective of the language model is to restrict
the support of the touch model to disallow the anchor for
all other keys. In particular, this means that Gaussian touch
models, as described in [6], would need to be restricted in
order to guarantee some degree of predictability.

DATA COLLECTION AND EVALUATION

In this section, we describe how we collected mobile soft
keyboard data for training and testing our language and touch
models. We also discuss the results of simulation experi-
ments we conducted comparing our anchored key-target re-
sizing method against the state-of-the-art approach and a
baseline of having no key-target resizing at all.

Data Collection

For both data collection and evaluation, we sought to create
a soft keyboard prototype which would allow participants to
enter text in a “natural” fashion. If the prototype had no key-
target resizing, it might generate too many errors, causing
users to change their typing behavior so as to be more de-
liberate for each keystroke. This would not only upset the
naturalness of the data, but we might not generate enough
noisy touch input to train a touch model. Therefore, we cre-
ated a prototype with simulated “ideal” key-target resizing:
as long as participants touched keys that were adjacent to
their intended key on the QWERTY layout, we registered
the correct key. This enabled us to collect data for building
a key-target resizing system without having such a system
to collect data from. Following traditional text entry tasks

[12], we gave users text to copy so that we always knews
what keys they were intending to hit.

Procedure

On a touchscreen mobile device, participants were instructed
to type in a short phrase that appeared above the soft key-
board as “quickly and as accurately as possible”. As par-
ticipants typed each letter of the phrase, the phrase would
subtract that letter. For example, when the user typed “p”
for “prevailing winds from the east”, the screen would then
show “revailing winds from the east”. As long as the user
touched a key that was adjacent to the one they were sup-
posed to touch, the letter would be subtracted. For example,
instead of “p”, the user might accidentally hit “o” or “l”,
both of which constitute adjacent keys on a QWERTY lay-
out. This procedure gave participants a sense that they could
type on the soft keyboard in a “natural” fashion, despite its
lack of tactile feedback. From follow-up discussions, we
found that most participants did not even notice that this oc-
curred and among those who did, they just assumed that the
soft keyboard had “awesome intelligence”, which is indeed
what we were striving to create from their data. Participants
finished with the phrase when there were no letters left to
subtract.

Note that this procedure allows us to obtain useful distri-
bution data for training touch models because we are effec-
tively learning that when users try to type “p”, they some-
times hit “o” with some frequency and “l” with some fre-
quency. Given that we subtract letters only when users touch
that letter or an adjacent key, one problem that might occur
is that users might type in long sequences of keystrokes that
are off by one letter. For example, if the user types “irevail-
ing” instead of “prevailing”, we might falsely assume that in
addition to hitting “i” for “p”, which is not an adjacent key,
the user also intended to hit “r” for “p”, “e” for “p”, and so
forth. In order to circumvent this problem, we played a beep
sound every time the user touched a key that was neither the
expected key nor its adjacent keys.

The touchscreen mobile device we used was a prototype pre-
market phone with a 4.2 inch resistive screen with 800 x 480
pixels. For comparison, we note that the iPhone sports a 3.5
inch capacitive screen with 480 x 320 pixels.

Stimuli

We presented four types of stimuli phrases. We obtained
standard phrases from MacKenzie and Soukoreff’s phrase
set [11], which contains short phrases of English text from
16 to 43 characters whose unigram and bigram frequency
correlation with an English corpus is high at r = 0.954. Addi-
tionally, in order to make sure that participants had a chance
to hit every letter on the keyboard, we wrote a script to se-
lect the shortest sequences of phrases that covered the en-
tire alphabet from “a” through “z”. We used these standard-
training phrases as training data for our touch models. We
treated the rest of the standard phrases as standard-testing
data for evaluation. Furthermore, we sought to obtain phrases
for common mobile tasks. As such, we obtained frequent
urls sampled from a corpus of web browser logs and search

114

queries sampled from a corpus of Bing search query logs.
We also obtained snippets of emails culled from an email
corpus, which contained at least one word which was either
a proper noun or technical jargon (e.g., “anoo regarding dev
budget”).

Note that none of the stimuli phrases contained any capital-
ization, punctuation or other symbols. We did this to avoid
having to require users to switch to an alternative keyboard
layout (e.g., for selecting symbols), which would also com-
plicate our touch modeling.

Participants received three sets of stimuli with relaxation
breaks in between. We used three sets in order to capture
three common ways in which users held mobile devices. For
each set, participants were asked to type using either two
thumbs, one thumb on one hand, or one hand holding the de-
vice and another hand for typing. We counter-balanced the
order of these three conditions. Each set of stimuli contained
50 phrases consisting of 15 standard-training phrases, 10
standard-testing phrases, 11 email phrases, 7 query phrases,
and 7 url phrases. The order of the phrases was randomized.

Participants

We recruited 9 participants (5 males and 4 females) between
the ages of 21 and 40 using a professional contracting ser-
vice. Participants hailed from a wide variety of occupa-
tional backgrounds. All participants were compensated for
their time. 3 owned touchscreen phones sometime in their
life, 3 owned QWERTY phones sometime in their life, and
3 owned 12-key numeric phones only. During recruiting,
all participants answered that they were familiar with the
QWERTY layout and could type on a normal-size keyboard
without frequently looking at the keys.

Training Data and Model Building

We use the standard-training phrases, which were specifi-
cally chosen to cover all the letter keys of a QWERTY key-
board, to train our touch models. The touch models were
full-covariance bivariate Gaussians as described in [6]. They
were trained using maximum a posteriori estimation with
conjugate priors. The priors for the means were centered at
the center of each key. A single shared diagonal covariance
matrix was computed for all keys and used to center the prior
for the covariance matrix. Models with different equivalent
sample sizes were evaluated on the standard-testing data and
the best model chosen.

The language models used were Kneser-Ney smoothed in-
terpolated key 8-grams (see [6] and [5]). This model was
trained using 8.5 million characters of text culled from the
USENET. There was no overlap between this text and any
of the test phrases. The language model probabilities were
exponentially weighted, to balance the dynamic range of
the language model and touch model probabilities. In other
words, we used pwL(k|h) instead of the language model pL(k|h),
as is commonly done in areas such as speech recognition [9].
The weighted language models can be renormalized, but this
will have no effect on the maximization of equation (7). The
weight w was optimized on the standard-testing data.

Key-Target Resizing Evaluation

From our data collection, we obtained logs containing the
key participants were supposed to hit as well as their actual
touch inputs for that key. Touch inputs were averaged (x, y)
pixel coordinates from the touch drivers. With these logs, we
are able to conduct simulation experiments examining how
we would have performed using different key-target resizing
approaches.

Simulation Procedure

The logs contain three types of key outcomes. Using a stan-
dard layout in which key boundaries lie halfway between the
visible boundaries of each key, the participant could have ei-
ther 1) typed the expected key, which we denote as a match,
2) typed an adjacent key, which we denote as a fuzzy-match,
or 3) typed a non-adjacent key that was not the expected key,
which we denote as a no-match. For these outcomes, we
used the following procedure for simulating how we would
have performed using different key-target resizing approach-
es.

As we process each keystroke from the first expected key
to the last, if the user typed a match, we get one chance
to also correctly predict the expected key given the (x, y)
touch input. This is because the match typed in by the user
gets accepted and the letter is subtracted from the phrase,
as described in the data collection procedure. Similarly, for
fuzzy-matches, we get only one chance to predict the correct
key because adjacent keys get accepted.

On the other hand, if the user has typed a no-match, then
the next keystroke will have the same expected key as be-
fore since the key would not have been accepted and a beep
would have been played. Consecutive sequences of no-
matches end only when the user types either a match or a
fuzzy-match. For each no-match, we attempt to predict the
expected key until we either guess correctly using a key-
target resizing approach or we run into a match or fuzzy-
match.

For example, suppose the user has typed “iiiprevailing”,
which includes three nomatches in the beginning. Using the
(x, y) coordinates of the first “i”, our key-target resizing ap-
proach might also incorrectly predict an “i”. For the second
(x, y) coordinates, however, we might correctly predict a “p”,
in which case, we do not need to guess on the third character
“i” nor the fourth character “p” since we already correctly
predicted the expected key.

Evaluation Metrics

At the end of our simulation procedure, we obtain a final in-
put stream, which we can then compare against the expected
phrase. For accuracy, we evaluated two metrics. First, we
assessed KeystrokeErrorRate which measures the degree to
which we incorrectly predicted the expected key:

KeystrokeErrorRate = 1−
|match|

|IS|
(9)

where |match| denotes the number of correctly predicted
keys, and |IS| denotes the length of the final input stream.

115

We also assessed MSDErrorRate, which measures error rate
as a function of the minimum string distance (MSD) be-
tween two strings. MSD computes the distance between two
strings in terms of the lowest number of edit operations re-
quired to convert one string into the other (see [12] for more
details). Turned into an error rate measure, MSDErrorRate
is calculated as:

MSDErrorRate =
MSD(T, IS)

max(|T |, |IS|)
(10)

where T denotes the target expected phrase, and MSD is the
minimal edit distance between T and IS.

RESULTS

We first performed a series of experiments to determine the
effect of anchor size on KeystrokeErrorRate on the standard-
testing data set. We then evaluated the best anchor size cho-
sen on the standard-testing data set on the emails, queries,
and urls data sets to ensure that the improvements we ob-
served generalized to other data sets.

Varying Anchor Size

We experimented with restricting the support of the Gaus-
sian touch models to bigger and bigger rectangles centered
at the center of each key. The smallest such rectangles cor-
responded to the static key-targets, and the rectangles grew
in height and width by 2 pixel increments until they reached
the center of a neighboring key. Because most keys were 46
pixels wide and 100 pixels high, this occurred when the rect-
angles were 46 pixels wider than the static targets. Each of
these increments corresponded to key targets having anchors
that began at 46 pixels by 100 pixels (i.e. that enveloped the
entire static target of each key), and then shrank in height and
width at 2 pixels per step. Thus, the anchor sizes examined
ranged from 0 pixels to 4600 pixels (46× 100).

Figure 3 shows the average key error rate on the standard-
testing data set as a function of anchor size. The best anchor
size was 6 pixels by 60 pixels, which corresponded to re-
stricting touch models to rectangles 40 pixels wider and 40
pixels higher than the static key targets.

An error analysis of the static, dynamic, and anchored dy-
namic systems revealed that anchored key-target resizing
corrected 22% of the cases where the static system was
correct but the state-of-the-art unanchored dynamic system
was incorrect, while maintaining 96% of the corrections the
unanchored dynamic system made and making no new er-
rors.

Generalization

Finally, we compared the performance of static key-targets,
the state-of-the-art unanchored dynamic key-targets, and the
anchored dynamic key-targets on the standard-testing set,
where we optimized the anchored system as well as the in-
dependent emails, queries, and urls sets to ensure that the
choices made on the standard-testing data set gave good re-
sults on these other data sets.

As shown in Figure 4, using the anchored dynamic key-

Figure 3. The average key error rate of anchored dynamic key-targets

on the standard-testing data set as a function of the area of the key an-

chors (solid line). The performance of the state-of-the-art dynamic key-

targets is shown in the dotted line, while the performance of static key-

targets is shown in the broken line. At an area of 0, the key-targets are

constrained to not extend beyond the center of the neighboring keys.

At an anchor area of 4700, the anchors coincide with the static key tar-

gets, so that no resizing takes place. The optimal anchor area was 360

pixels.

targets obtains relative improvements of 17%, 6%, 8%, and
13% respectively over the static system on the standard-
testing, emails, queries, and urls sets with respect to aver-
age keystroke error. In contrast, the state-of-the-art unan-
chored key-target resizing method had an average keystroke
error which was 10% worse than the static system on the
standard-testing and emails tasks. Note that these difference
are all statistically significant at the p < .01 level according
to McNemar’s test.

DISCUSSION

Although the anchored key-target resizing method signifi-
cantly reduced keystroke errors compared to the static sys-
tem across the different test sets, the state-of-the-art unan-
chored system performed worse than the baseline with re-
spect to the standard-testing and emails tasks. This may be
due to a mismatch between the text from these two tasks and
the USENET training corpus. Interestingly, the anchored
system outperformed the state-of-the-art in al ofl the data
sets, but the advantage was not so great with urls. Again,
this may be explained by the fact that the USENET corpus
already contains a fair number of urls. Note that both the
anchored and unanchored dynamic systems, which leverage
the source-channel approach to key-target resizing, had gen-
erally low average keystroke errors.

The anchored and unanchored dynamic systems did not dif-
fer much in terms of average MSD error rate. Note that
keystroke error rate measures how frequently the keystrokes
typed by users do not match what they are intending to type,
whereas MSD error rate measures how distant their typed
output is from their desired text in terms of required edit
operations. Although one could argue that MSD error rate
matters most because it represents the amount of work users
have to do in order to convert their typed output into the de-

116

(a) Average Keystroke Error (b) Average MSD Error

Figure 4. The performance of static key-targets, state-of-the-art dynamic key-targets, and anchored dynamic key-targets on the standard-testing set

as well as the independent emails, queries, and urls sets.

sired text, this assumes that users type without monitoring
their output and only later go back to edit their text. How-
ever, previous research [8] suggests that because touchscreen
keyboards lack haptic feedback, users are likely to spend
more time monitoring their text. Nevertheless, this certainly
should be validated in a user study. In fact, we acknowl-
edge that while we have laid the theoretical and empirical
grounds for a usability guided key-target resizing method,
we still need to verify that real users indeed find the anchors
more “usable” in practice. Indeed, we plan to conduct such
user studies in the future.

With respect to the data collection we used for our simula-
tion experiments, one problem we encountered was that we
obtained far fewer noisy input than we expected. This was
due to the fact that we used a mobile device with a large
screen and high resolution. We plan to collect more data on
a mobile device with a smaller, lower resolution screen (sim-
ilar to the iPhone) where the need for key-target resizing may
be even greater.

CONCLUSION AND FUTURE DIRECTIONS

We have described how state-of-the-art key-target resizing
can cause soft keyboards to violate user expectations about
keyboard functionality, and how restricting the touch model
to yield anchored dynamic key-targets can alleviate this
problem. In fact, our theoretical results showed that any
source-channel approach that is guaranteed to alleviate this
problem must restrict the touch model. We then gave empir-
ical results that showed that anchored dynamic key-targets
achieve significant keystroke error reductions as compared
to the state-of-the-art.

Our paper described one class of restricted touch model;
namely, Gaussians with support restricted to a rectangle
around each key. One direction for future research is to
explore other restricted touch models, such as models with
non-rectangular anchors or non-Gaussian distributions. Dis-
tributions could also depend on additional information such
as previous keystrokes.

Another area for future work is the adaptation of the touch
model, including the anchor sizes, as well as the language
model to the user. Furthermore, because users vary in terms
of their hand size and consequently their finger touch points,
it will be interesting to see if adaptation can improve key-
target resizing. In any case, whatever adaptation we pursue
will certainly be guided by usability principles, as is the case
with our current approach.

REFERENCES

1. Apple iPhone, 2009. http://www.apple.com/iphone/.

2. Microsoft Surface, 2009.
http://www.microsoft.com/surface/.

3. K. Al Faraj, M. Mojahid, and N. Vigouroux. Bigkey: A
virtual keyboard for mobile devices. In Proceedings of
the 13th International Conference on
Human-Computer Interaction. Part III, pages 3–10,
Berlin, Heidelberg, 2009. Springer-Verlag.

4. S. Brewster, F. Chohan, and L. Brown. Tactile feedback
for mobile interactions. In CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 159–162, New York, NY, USA, 2007.
ACM.

5. J. Goodman. A bit of progress in language modeling.
Computer Speech & Language, 15(4):403–434, 2001.

6. J. Goodman, G. Venolia, J. Steury, and C. Parker.
Language modeling for soft keyboards. In AAAI, 2002.

7. J. Himberg, J. Häkkilä, P. Kangas, and J. Mäntyjärvi.
On-line personalization of a touch screen based
keyboard. In IUI, 2003.

8. E. Hoggan, S. A. Brewster, and J. Johnston.
Investigating the effectiveness of tactile feedback for
mobile touchscreens. In CHI ’08: Proceeding of the
twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 1573–1582, New
York, NY, USA, 2008. ACM.

117

9. F. Jelinek. Statistical Methods for Speech Recognition.
MIT Press, 1998.

10. M. Klsch and M. Turk. Keyboards without keyboards:
A survey of virtual keyboards. Technical report, In:
Proceedings of Sensing and Input for Media-centric
Systems, 2002.

11. I. S. MacKenzie and R. W. Soukoreff. Phrase sets for
evaluating text entry techniques. In CHI ’03: CHI ’03
extended abstracts on Human factors in computing
systems, pages 754–755, New York, NY, USA, 2003.
ACM.

12. I. S. MacKenzie and K. Tanaka-Ishii. Text entry
systems: Mobility, accessibility, universality. Morgan
Kaufmann, San Francisco, 2007.

13. I. S. MacKenzie and S. X. Zhang. The design and
evaluation of a high-performance soft keyboard. In CHI
’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 25–31. ACM,
1999.

14. I. S. MacKenzie and X. Zhang. Eye typing using word
and letter prediction and a fixation algorithm. In ETRA
’08: Proceedings of the 2008 symposium on Eye
tracking research and applications, pages 55–58, New
York, NY, USA, 2008. ACM.

15. L. Magnien, J. Bouraoui, and N. Vigouroux. Mobile
text input with soft keyboards: optimization by means
of visual clues. In Proceedings of Mobile HCI, pages
337–341, Berlin, Heidelberg, 2004. Springer-Verlag.

16. D. Pogue. iPhone keyboard secrets. The New York
Times, June 2007.

17. E. Rabin and A. M. Gordon. Tactile feedback
contributes to consistency of finger movements during
typing. Experimental Brain Research, 155:362–369,
2004.

18. C. E. Shannon. Prediction and entropy of printed
English. Bell Sys. Tech. J., 30, 1951.

19. S. Zhai, M. Hunter, and B. A. Smith. The metropolis
keyboard - an exploration of quantitative techniques for
virtual keyboard design. In UIST ’00: Proceedings of
the 13th annual ACM symposium on User interface
software and technology, pages 119–128, New York,
NY, USA, 2000. ACM.

118

	Introduction
	Background
	Related Research
	Source-Channel Key-Target Resizing

	Anchored Dynamic Key-Targets
	Data Collection and Evaluation
	Data Collection
	Procedure
	Stimuli
	Participants
	Training Data and Model Building

	Key-Target Resizing Evaluation
	Simulation Procedure
	Evaluation Metrics

	Results
	Varying Anchor Size
	Generalization

	Discussion
	Conclusion and Future Directions
	REFERENCES

