
Usable Access Control for the World Wide Web

Dirk Balfanz
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304
balfanz@parc.com

Abstract

While publishing content on the World Wide Web has
moved within reach of the non-technical mainstream,con-
trolling accessto published content still requires expertise
in Web server configuration, public-key certification, and a
variety of access control mechanisms. Lack of such exper-
tise can result in unnecessary exposure of content published
by non-experts, or can force cautious non-experts to leave
their content off-line. Recent research has focused on mak-
ing access control systems more flexible and powerful, but
not on making them easier to use. In this paper, we propose
ausableaccess control systems for the World Wide Web,i.e.,
a system that is easy to use both for content providers (who
want to protect their content from unauthorized access) and
(authorized) content consumers (who want hassle-free ac-
cess to such protected content). Our system can be con-
structed with judicious use of conventional building blocks,
such as access control lists and public-key certificates. We
point out peculiarities in existing software that make it un-
necessarily hard to achieve our goal of usable access con-
trol, and assess the security provided by our usable system.

1. Introduction

On the World Wide Web, there arecontent providers
andcontent consumers. Content providerspublishcontent
by making it available through Web servers. Content con-
sumers view or otherwise consume content by pointing their
Web browsers to the Web servers of the content providers.
In the early days of the World Wide Web, almost everybody
was, in addition to being a content consumer, also a con-
tent provider – if you were technical enough to connect to
the Web, you were probably technical enough to know how
to put up a home page. Then came a time when the bal-
ance shifted dramatically: On one side, there were a few
portals such as Yahoo! springing up, which delivered vast
amounts of content. On the other side, the proliferation of
Web client software and online services such as AOL or

MSN made millions of people content consumers. The re-
sult was a landscape in which we had relatively few signif-
icant content providers, and a large number of content con-
sumers.

This picture is starting to change again. More and more
users are becoming (small) content providers. Today, when
you sign up with an ISP for Internet service, you usually
get a few megabytes of “web space”, which you can use to
put up a web site. Content publishing software and services
make it easier to publish content: Teenagers broadcast mu-
sic they mix through Shoutcast channels. Users share songs
or other files through peer-to-peer networks. Photo hobby-
ists put their photo collections online. In fact, some applica-
tions make it as easy as pushing a button to export nicely-
formatted photo collections to a web-hosting service.

While it is getting easier and easier for small-time con-
tent providers to publish their content, it is not particularly
easy to do sosecurely, i.e.,to allow content providers to eas-
ily specify who should have access to their content.

Large content providers can afford to manage databases
of subscribed customers, request certificates from well-
known certification authorities, and hire developers to
put access control mechanisms in place. Small con-
tent providers (i.e., individual users), however, often lack
such resources and technical sophistication. They are left
with three choices:

1. They do not put any access control on their content. If
the content provider doesn’t care who sees their con-
tent, this is clearly the correct and easy solution. Of-
ten, however, content providers wish to restrict access
to their content, for example to protect their privacy.
Another reason is that opening up copyrighted or oth-
erwise protected material to unrestricted access makes
those content providers liable under copyright or other
laws.

2. Therefore, if content providers wish to restrict access
to their content, they have to fight with whatever mech-
anism their content publishing software provides for
access control. As we will see in Section 3, this may



present an unacceptable overhead both to the content
publisher and content consumers.

3. Finally, content providers may therefore be forced not
to publish their content at all, being dissatisfied with
the choice between unrestricted access and having to
master archaic access control mechanisms.

In this paper, we will investigate why controlling access
to published content is not an easy thing to do – and point
out some ways to rectify the situation. In Section 2, we will
re-iterate the issue ofusable security, and comment on re-
lated work. In Section 3 we will specifically look at some
currently existing systems, and how they handle access con-
trol.

In Section 4 we will outline a content publishing sys-
tem that is user-friendly, easy to use, and reasonably se-
cure. Our system uses a custom-built Web server on the con-
tent provider’s side, and off-the-shelf email and Web clients
on the content consumer’s side. Our Web server has a self-
signed root certificate and issues client certificates to users.
We construct simple access control lists based on known
public keys of users. We take some care to minimize the
overhead imposed to the user (i.e.,number of links to click
on, number and nature of dialog boxes to deal with,etc.).

In Section 5 we will explain why it is difficult to imple-
ment such a system with the building blocks available today
(such as commonly used Web browsers, commonly used au-
thentication protocols,etc.). Finally, we draw some conclu-
sions in Section 6.

2. Background

2.1. Usable Security

One of the reasons that security exploits happen is be-
cause users do not configure the security of their systems
correctly. Security patches are being ignored, access con-
trols lifted, security warnings about executable content such
as macros dismissed, and protections turned off.

There are two main reasons for this behavior: One, the
user doesn’t understand what’s going on. This is hardly the
user’s fault. For example, in its default setting, Internet Ex-
plorer will ask the user for a decision when a Web page tries
to launch a “file or program in an IFRAME”. We cannot ex-
pect the average user to understand the security implications
of that decision (see [14] for more examples). The second
reason is that even if the user understands what’s going on,
she may realize that the security mechanisms are in the way
of whatever she wants to do. For example, security mecha-
nisms often prevent the viewing of executable content deliv-
ered through email. If a user is curious what macro-enabled
birthday card she received from her best friend, she will
switch off the security mechanism in order to see the card.
More examples can be found in [2].

The goal ofusable securityis to relieve the users from
decisions they don’t understand or that they don’t want to
make (most of them boil down to “you will either be in-
secure or you will be inconvenienced”). Security should be
implicit and shouldfollow what the user wants to do. In [13]
Smetters and Grinter point out that SSH is a good exam-
ple of usable security: it works just likerlogin , except
it’s more secure. The user specifies what she wants to do
(log into another machine), and the security mechanismfol-
lows. In [8] Edwardset al.show how a collaborative group-
ware application can be outfitted with implicit security. In
their application, users simply specify who should belong to
their work group (which is something they need to do any-
way), and this information is used by the system to enforce
access control on system resources (access is restricted to
members of that work group). Groove1 is a commercial ap-
plication that is similar in that respect – access to shared
spaces is actually secured by SSL without the users nec-
essarily being aware of the fact that access control mecha-
nisms are in place.

Note that one usually pays a price for such convenience.
In SSH, if users are not careful, the first connection to a
new host is subject to a man-in-the-middle attack. Edwards
et al.’s Casca application requires users to physically meet
at some point, and Groove sends root certificates around by
unsecured email. We believe, however, that the overall secu-
rity provided by these applications is better than in conven-
tional, “bullet-proof” approaches, since users are less likely
to turn off security or mismanage their security settings.

For content publishing, implicit security means that we
need to look for actions users have to perform anyway, and
associate reasonable security mechanisms with them. For
example, content providers are likely to announce the ex-
istence of their content to a circle of family and friends,
for example by sending them an email. We can use this ac-
tion to find outwho should have access to the published
content. Content providers never should have to decidehow
access control is enforced. On the other side, content con-
sumers will probably click on a URL to visit the content
provider’s site. This should automatically cause the content
consumer’s Web client to use the necessary credentials to
authenticate itself to the content provider’s Web site, with-
out any further user interaction. In Section 4.1 we will elab-
orate on the usability goals for secure content publishing.

2.2. Trust Management Systems

Trust Management Systems are a great way to express
access control policies, and to enforce access control ac-
cording to those policies. In Keynote [4] one can express
arbitrary conditions for access. For example, one could say

1 http://www.groove.net/



that access to a certain resource is only allowed if the moon
is full and the accessor is orange. It would be up to some
other part of the system to determine the phase of the moon
and the color of the accessor, but once those are fed to
Keynote, it can decide whether to grant access. Keynote has
some built-in capabilities to handle cryptographic keys, but
it is not very comprehensive when it comes to delegation
certificates or role-based access control. Binder [6] is a lan-
guage that allows such statements to be made. In [3], Bauer
et al. introduce an even more general access control lan-
guage – they simply use high-order logic to express access
control policies2. The idea to use logic-based languages to
express policies was originally introduced in [1].

As much power as these trust management systems give
the content provider to specify who is allowed to access
what under which conditions, they all suffer from being too
technical for the non-expert content provider. They may be
justified as the enforcement mechanisms that runs “under
the hood”, but if users can’t be bothered to remember a pass-
word [2], then we can hardly expect them to write down a
Binder program to specify their access control policy.

Even the old-style, inflexible but supposedly easy-to-use,
identity certificates provided by X.509 [11] prove to be too
much of a hassle. To install a new certificate, for example,
users may have to go through a number of dialog boxes,
making decisions about certificate stores and key finger-
prints (see Figure 3 later in the paper).

We see that in the past, a lot of effort in the area of trust
management systems has gone into making them more flex-
ible. Little concern has been given to the fact thatnon-expert
users might want to control access to their content.

3. Controlling Access to Content – The State
of the Art

In this section, we will give anecdotal evidence as to the
state of the art of access control in publishing systems for
the World Wide Web.

.MAC Apple’s .MAC Web hosting service is tightly inte-
grated with some applications available for the Macintosh.
For example, in Apple’s “iPhoto” digital photo management
application, it requires just little more than pressing of a but-
ton to export a photo collection to the .MAC hosting service.
There, the photos can be accessed from any Web client. If
a user wants to protect access to some of her online photo
collections, she can “password-protect” them. This involves
picking a password, telling the .MAC service that password,
and somehow distributing it to a set of authorized clients.
This is both insecure and not very user-friendly. First, the

2 This has the drawback that the content provider can no longer decide
whether or not to grant access. Clients have to provide proofs, which
the server then checks.

password is likely to be weak.3 Second, it is probably com-
municated insecurely. Third, it is trivial for such a password
to be passed on to people the original content publisher did
not want to grant access to.

Web ServersWeb servers such as Apache, Tomcat, or IIS
offer sophisticated access control mechanisms. Apache and
Tomcat give examples of a clean separation betweenau-
thenticationandauthorization. On one hand, site adminis-
trators can specify how users are authenticated,e.g.,through
passwords or through client authentication using X.509 cer-
tificates. On the other hand, they can specify which of those
users are authorized to access which resource on the system.
While this separation makes a lot of sense, it does add com-
plication to the setup process. None of these servers have
tools to provide users with the necessary credentials (e.g.,
passwords or certificates) to authenticate to the server.

IIS is somewhat of an exception, since it provides a mode
in which authentication is “integrated” with a Windows Do-
main. All the site administrator needs to do is check the cor-
responding box to specify integrated Windows authentica-
tion. Then, authorization is delegated to the access control
lists protecting resources on the file system (i.e.,a user can
access a resource served out by a Web server if and only
if she can also access that resource directly through the file
system). Now, specifying authorization for Web access is as
easy as right-clicking on a folder, selecting the “security”
tab, and adding users to the access control list. The disad-
vantage of this system is that it only works within a Win-
dows Domain (because the users in file access control lists
have to be known to the system). Furthermore, it relies on
passwords, which can be notoriously weak. If an IIS site ad-
ministrator wants to switch to certificate-based authentica-
tion, she is back in the same boat as the Apache adminis-
trators – first, she needs to map certificates to known sys-
tem users. Then, she needs to specify which users can ac-
cess which resources. Again, this doesn’t even address the
problem of generating and distributing certificates to users.

FrontPage Tools such as FrontPage make it easy to cre-
ate Web-servable content, and to export that content to Web
servers. They provide easy-to-use shortcuts to create site di-
rectories, change the layout of all pages on a site, and more.
As far as FrontPage is concerned, there is only one way
to secure access to published content. The authentication
method are passwords, and the authorization is provided by
an access control list the content provider has to assemble.
The good news here is that the content provider doesn’t have
to specify the passwords of the users – the server will use
their Windows login passwords. The bad news is that only
users already known to the local Windows Domain can be
specified in the access control list.

3 The target audience for iPhoto are hobby photographers, not IT pro-
fessionals with security training.



To be fair, not all the systems compared in this section
strive to be “user-friendly” content publishers for the small-
time non-expert content provider. But those that do (.MAC
and FrontPage) share with those that don’t the property that
content providers need to think about both authentication
and authorization. Ideally, a content provider would only
specify authorization information, and the system would
take care of the authentication itself. The Windows-based
systems allow this, but at the cost of restricting access to
existing users of a Windows Domain, and also only for
password-based authentication.

4. ESCAPE – Usable Security for Small Con-
tent Providers

In this section, we describe ESCAPE, an (e)asy and
(s)ecure (c)ontent (a)uthorization and (p)ublishing (e)ngine.
ESCAPE can be used by non-expert users to quickly share
content through a Web server, and to specify access con-
trol for that content.

4.1. Goals of Usability and Security

Content providers usually go through a create-publish-
announce cycle with their content: First, the content gets
created (e.g.,a hobby photographer takes pictures). Then,
the content is published somewhere (e.g.,the photographs
are copied to a Web hosting service). Finally, the content
provider will announce that her content is online (e.g.,send
an email with the URL to friends and family). We can as-
sume that the last step also adequately describes the con-
tent provider’s intention in terms of access control for pro-
tected content. For example, if Alice publishes some con-
tent and then sends Bob, and only Bob, an email about this
content, we will assume that no other than Bob is supposed
to have access to that content.4

The goal, in terms of usability, is that for the content
provider the create-publish-announce cycle for publishing
protected content in a secure system should be identical
to publishing unprotected content in an insecure system.
In particular, the content provider should not be concerned
with authenticationmechanisms. Moreover, we believe that
authorizationinformation can be deduced from the content
provider’s actions, for example who gets the announcement
and who doesn’t. This follows the principle ofimplicit se-
curity outlined in Section 2.1.

On the clients’ side, consuming protected content should
also be identical to consuming unprotected content. There
should be no remembering or typing of passwords, or com-
plex management of certificates. While we can reach our

4 In contrast to thisprotectedcontent, there is alsounprotectedcontent
that is accessible by anyone regardless of who got the announcement.

usability goal for content providers, we will see that we are
somewhat short of reaching this goal for content consumers
– in part as a trade-off for better security. See Sections 4.2
and 4.3 for more details.

We know that a secure communication between con-
tent provider and content consumer is not possible without
some a-priori shared trust information (e.g.,a shared secret
or password, or public key). Therefore, our usability goals
necessarily prohibit an unconditionally secure solution. In-
stead, we strive for a level of security similar to that pro-
vided by SSH. With SSH, the first time a client connects
to a server, a man in the middle could hijack the connec-
tion and intercept all traffic from then on5. But given that
the presence of a malicious man-in-the-middle during the
first handshake is unlikely, the usability gained outweighs
the security lost. In ESCAPE, we strive for a similar level
of security – we accept a one-time setup that could poten-
tially be subverted in exchange for a little sacrifice in secu-
rity.

One way to set up such a system would be to usecapabil-
ities. For example, the URLs sent out to content consumers
could include some hard-to-guess string, which would have
to be presented as part of any request to access the con-
tent. This system could be made indistinguishable from one
for unprotected content, but it has serious security issues:
The capabilities can be intercepted as they are sent to the
content consumers, and they can be trivially shared with
other, unauthorized, individuals (e.g., simply by forward-
ing the email announcement). We will present a system in
which users use a private key to authenticate themselves
to the content publishing server. This is a key they are un-
likely to share with others, since it allows complete imper-
sonation, not just access to certain content. Furthermore, in
our system, no sensitive information is ever exchanged in
the clear. We achieve this with off-the-shelf client software
such as email readers and Internet browsers.

4.2. System Design Overview

The core of our system is the ESCAPE server. The ES-
CAPE server is a Web server that serves out content trough
HTTPS. In our preliminary prototype implementation (see
Section 4.3), the ESCAPE server only serves content that
is available locally, and pre-formatted in HTML, but one
could easily imagine a version of the server that accepts
content upload, and auto-formats content that is not already
pre-formatted (much like the .MAC content publishing ser-
vice accepts a list of photos, and presents them through a
polished Web site).

5 That is, unless users actually compare hashes displayed by SSH over
a secondary, secure channel.



The ESCAPE server has a key pair it uses to authenti-
cate itself to clients, and to issue certificates for clients. Its
public key can either be self-certified, or (at great expense)
can be certified by a well-known certification authority. The
ESCAPE server keeps an access control list for each direc-
tory that it serves out. Each access control list comprises
the public keys of those clients allowed to access the direc-
tory in question.

To publish content, all the content provider has to do is
put it on her computer (or, in the case where the ESCAPE
server is running remotely, upload it to the ESCAPE server).
She then uses the ESCAPE server to send out an email an-
nouncement about the newly published content: Using the
GUI provided by ESCAPE, she navigates to the newly cre-
ated content directory, picks a list of names from her ad-
dress book, and presses a “Send Announcements” button.
The ESCAPE server now does two things:

1. It adds pointers to every selected email recipient’s ad-
dress book entry to the access control list for the newly
created content. The address book entry for an email
recipient may or may not already contain his or her
ESCAPE public key.

2. It sends out an email message to every selected email
recipient, informing them about the availability of the
newly created content. The email message will con-
tain a URL that recipients can click on to access the
content. The URL for a recipient whose email ad-
dress isbob@ibm.com may look something like this:
https://alicescomputer.pacbell.com/
holidayphotos?email=bob%40ibm.com . It
might be accompanied by a message inviting Bob to
access Alice’s newly published content.

Upon receipt of such an email, the recipient can click on
the link in the message, and will be taken to the ESCAPE
server of the content provider. If the recipient already has
an ESCAPE certificate, it will be used to authenticate the
client. The public key in the certificate will be used to ver-
ify authorization (by a simple lookup in the access control
list for the URL in question). If the recipient does not have
an ESCAPE certificate, upon visiting the content provider’s
ESCAPE server, he will be taken through a one-time setup
procedure that will install an ESCAPE certificate with the
recipient’s Web browser. This certificate is issued by the
ESCAPE server.6 Note that this certificate doesn’t actually
certify any attributes of the client (such as name or email
address). It is an “empty” certificate, containing only the
signed public key of the client. The association between the

6 The sole purpose of appending the identity of the recipient to the URL
sent to him is to be able to store the recipient’s public key with the cor-
rect address book entry in the content provider’s address book. Instead
of an email address, any other unambiguous moniker for address book
entries can be used.

public key and client identity is not made in the certificate,
but rather inside the address book on the server. (This is be-
cause, as we will see later, any client can ask to get a cer-
tificate for any identity it wishes to assume, and we need to
have a mechanism to quickly revoke wrongly issued certifi-
cates. As we will also see later, the decision to let clients ac-
quire arbitrary certificates was in turn dictated by usability
considerations.) The setup step is not necessary upon sub-
sequent visits to the URL received in the email announce-
ment, or any other URL on the provider’s ESCAPE server.
The client is directly served the requested content (if it’s
listed in the corresponding access control list).

Let us summarize the steps necessary for content
providers and consumers to protect, and to access pro-
tected, content. The content provider needs to pick a list
of users from her address book, which will receive a mes-
sage about newly published content. In all likelihood,
she would have done the same step in an insecure sys-
tem as well. On the consumer’s end, recipients of an
email message can simply click on a single URL pro-
vided, and will have access to the content. If this is the
first time they visit a URL on that particular provider’s ES-
CAPE server, they will be taken through a quick online
setup process, which is similar to what happens when peo-
ple use SSH to log onto a server for the first time. Note that
since we are using client certificates, some Web browsers
may ask users to provide a password to unlock their pri-
vate key whenever they visit an ESCAPE server. This is an
unfortunate situation, which we will discuss in more de-
tail in Section 5.

4.3. Implementation

It is not very hard to implement the system outlined in
the previous section if one were to provide new email and
Web clients, perhaps clients that could parse specially for-
matted email messages and automatically install certificates
embedded in such messages. The trick is to implement it
with existing client software, and in such a way that requires
the least amount of user intervention, dialogs that need at-
tention,etc. We will now present an implementation that
works with the Outlook address book on the server side,
and with Internet Explorer on Microsoft Windows on the
content consumer side. The content consumer can use any
email client she wishes.

The choice for Outlook on the server side was driven by
its wide availability and easy-to-use scripting facilities. It’s
actually not the best choice in terms of usability for the con-
tent provider (see Section 5 for more details). The choice
for IE on Windows was made because this appears to be the
most user-friendly option for the client side (again, see Sec-
tion 5 for more details, and a discussion of alternatives).

We implemented a prototype ESCAPE server in Java.



all contacts in 
Microsoft 
Outlook

all contacts in 
Microsoft 
Outlook

acces
control list

acces
control list

selected
resource

selected
resource

Figure 1. User interface of our prototype ES-
CAPE server

We used bridge2java [12] to access the Microsoft Outlook
COM API from Java. We used the open-source PureTLS
TLS implementation [5].

Figure 1 shows the user interface a content provider
would see. The upper right pane shows the file system ex-
ported by the ESCAPE server. The user can browse to the
directory that contains the new content, and select from the
list of all known contacts (shown in the lower half of the
window) those that should receive an announcement about
the new content. Those chosen are simply dragged into the
ACL (upper left) pane. Figure 1 shows that three contacts
were selected to have access to the “My Pictures” folder.
Pressing the “Send Announcements” button results in an
email sent to those three users, containing an individual-
ized URL that points back to the “My Pictures” folder, as
explained in Section 4.2.

Figure 2 shows what happens when one of those recip-
ients connects back to the ESCAPE servers. Let’s assume
that they have never connected to this ESCAPE server be-
fore, and therefore do not have an ESCAPE certificate for
this server. When the client (remember that we’re using In-
ternet Explorer) connects, the server immediately starts an
SSL handshake (without requiring client authentication). If
the server uses a self-signed certificate, the user will see a
dialog box that informs her that the server’s certificate was
issued by someone the user “has not chosen to trust”. The
user has to press the “continue” button, which will cause
the SSL handshake to be finished, and the client to send its
HTTP GET request. The server parses the GET request, de-
cides that it is a request for an actual resource (as opposed
to the posting of a certificate request), and proceeds with
a renegotiation of the SSL connection, this time requiring
client authentication. Since the client doesn’t have a certifi-
cate issued by the ESCAPE server, it sends an empty cer-

tificate chain back to the server.7 (We changed the PureTLS
implementation to accept an empty certificate chain without
raising an exception.) Since the client has not sent any cer-
tificates, it is not served the page it requested, instead it is
served a page that informs the user that a one-time setup
is needed. Upon pressing a button on that page, Internet
Explorer will generate a keypair, and send a certificate re-
quest to the ESCAPE server. To the server, this looks like
a new client connection. This time, however, the HTTP re-
quest turns out to be the posting of the certificate request.
The server receives the request, and immediately issues a
certificate. The client’s public key is stored in the Outlook
address book entry for the contact who’s email address ap-
peared in the original request URL (which is passed from
page to page as HTML form data). The page served out to
the client includes the client’s certificate chain, and a mes-
sage to the user that the setup is complete. It includes a link
to the original URL the user can click. The certificate chain
is automatically installed into the client’s certificate store.
This, however, results in two more dialog boxes the user has
to deal with: First, IE informs the user that a “web site” is
trying to install a certificate on her machine. After approv-
ing this, she is also informed that a new “trusted root” cer-
tificate is about to be installed. This is the self-signed certifi-
cate that the ESCAPE server sent along with the client cer-
tificate. Approving this install will eliminate warnings in the
future. Note that if the content provider acquires a CA cer-
tificate from a well-known certification authority, this last
dialog box would be eliminated.

Finally, when the user revisits the original URL (by
clicking on the link on the “setup complete” page, or by
clicking on the link she received in the email), the ESCAPE
server will serve the actual content: The HTTP request will
be parsed as a request for content; the SSL renegotiation
will result in the client’s sending of a verifiable certificate
chain; the server will now check if the public key presented
by the client is part of the access control list specified by the
content provider; if so, it will serve the requested page.

Here are some observations about our implementation:

USEROVERHEAD Let us first look at the overhead imposed
on content provider and consumer by this secure publishing
engine. The content provider, in fact, may not even be aware
of the fact that her content is protected by an access con-
trol mechanism. All she needs to do is use our provided tool
to send out the announcement about newly created content.
On the content consumer side, there are four dialog boxes
that need to be dealt with during the first visit to the content
provider’s site. This can be reduced to two if the content
provider chooses to purchase a CA certificate from a certi-
fication authority that’s already known to Internet Explorer.

7 That is, if they are using TLS. See Section 5 for a discussion of the
subtle differences between SSL and TLS.



client connects,
SSL handshake,

receive HTTP
request

receive 
cert request

renegotiate
SSL, require
client auth

serve key
generation

page

does server
already have

cert for client?

does server
already have

cert for client?

generate cert,
save cert 
on server,

deliver cert 
to client retrieve requested

resource, 
check ACL

deliver 
requested page

Error 1

Error 2

is client 
POSTing

cert request?

is client 
POSTing

cert request?
has client

provided cert?
has client

provided cert?

access
allowed?
access

allowed?

Yes

Yes

Yes

Yes

No

No

No

No

Client will return 
to POST cert 

request

Client will return 
to POST cert 

request

Client will return 
to GET original 

document

Client will return 
to GET original 

document

IN

OUT

Figure 2. Diagram of internal workings of ESCAPE server

Subsequent visits do not require any special action on be-
half of the content consumer at all8, even though her pri-
vate key is used to authenticate her to the ESCAPE server.
This is because the keypair generation scripts on the “setup”
page specify that the private key be stored without any ad-
ditional protection. In this case, Windows’ Data Protection
system [10] encrypts the key using the user’s login secret,
and makes it readily available to processes owned by that
user.

We believe that this is the minimum number of user in-
terventions needed for setting up a certificate-based access
control system with Internet Explorer. It would be inter-
esting to see whether other browsers allow for a smaller
number of dialog boxes, and what the security implications
would be.

It turns out that there is one more inconvenience the
content consumer has to endure – upon completion of the
one-time setup, she has received all necessary certificates
and should be able to revisit the original URL. Internet Ex-
plorer, however, caches the information that no certificates
are available for client authentication (even though they
now are), and the connection will fail (it will actually trig-
ger “Error 1” discussed in more detail below). The content
consumer has to restart Internet Explorer for the connec-
tion to start working.

8 This assumes that the “Don’t prompt for client certificate selection
when no certificates or only one certificate exists”-setting in Internet
Explorer is set to “Enable”.

AUTHORIZATION AND REVOCATION Figure 2 singles out
two error conditions, marked as “Error 1” and “Error 2”.
While the system checks for other error conditions, these
are especially interesting. Error 2 is simply the error raised
when a client tries to access a resource it is not authorized to
view (but it has a valid ESCAPE certificate). Error 1 has to
do with revocation. As mentioned before, our system can-
not be completely secure. For example, an announcement
email sent to a recipient that is not set up with our server
could be intercepted by a malicious man-in-the-middle. He
could access the ESCAPE server before the legitimate user
could, thus essentially assuming the legitimate user’s iden-
tity (remember that we issues certificates immediately on-
line to whoever asks for them first). When, however, the le-
gitimate user later tries to access the ESCAPE server, she
will trigger Error 1. The page served out under that con-
dition says that legitimate users should contact the content
provider. If and when the legitimate user does so, the con-
tent provider simply removes the public key for that user
from her Outlook database (it’s a Base64 string stored in
“User Field 4” of the user’s Outlook entry, which can sim-
ply be removed). Now, when the legitimate user visits the
ESCAPE server again,shewill be taken through the setup
process, andherpublic key will be associated with her Out-
look entry. This revokes the man-in-the-middle that illegit-
imately associatedhis public key with the legitimate user’s
Outlook entry.

The same mechanism can be used to revoke users per-
manently, for whatever reason.



4.4. ESCAPE’s Security

We explained above how we carefully designed the sys-
tem to minimize inconveniences for both content providers
and content consumers. Let us now look at the level of se-
curity we get from our system.

LEAKING OF CONTENT Legitimate users could try and for-
ward credentials that allow them to access content to illegit-
imate users. As we mentioned above, this would be trivial
in a purely capability-based system, where URLs include a
hard-to-guess string that would have to be present to access
content. In our system each user has one private key per ES-
CAPE server, which is the credential that enables her to ac-
cessanycontent on that server. Therefore, we feel that there
is some disincentive to share this key with other people.
There is never complete protection from content leakage.
Authorized users can always download content they have
access to, destroy any watermarks embedded in it, and then
forward it to unauthorized users. We feel that the level of
protection given by public key certificates, combined with
the disincentive to share private keys, is adequate for the
kind of content we would like to protect (i.e., that provided
by small-time publishers for a small set of consumers).

PROTECTION OFKEYS As mentioned before, clients’ pri-
vate keys are protected under the Microsoft Data Protection
system [10]. This means that they are encrypted under a key
derived from the user’s login secret, and then stored on the
file system. To use her private key, the user simply has to be
logged on to the system. Other users that are logged on to
the system, or users that gained access to the system without
logging in (e.g.,by compromising a server process) won’t
be able to decrypt the private keys.9 An attacker that can im-
personate a legitimate user to her own computer, however,
can easily decrypt those keys. Again, we feel that this pro-
vides adequate protection for the kind of content we are try-
ing to protect, and offers desirable usability properties (no
need for additional key protection passwords).

CONTENT PROTECTIONThe ESCAPE server only accepts
incoming SSL connections. If the client does not present
a certificate, it is given one, and the client’s public key is
associated, on the server’s side, with an Outlook address
book entry that’s essentially of the client’s choosing. We ex-
plained before how we can detect if a malicious client asso-
ciates its public key with the wrong Outlook contact entry.
If the clientdoeshave a certificate, normal SSL protection
applies. We note again that a malicious user could gain ac-
cess by obtaining a certificate before the legitimate user can,
but that this access can easily be revoked.

9 At least this is true on Windows XP. On Windows 2000, administra-
tors seem to be able to decrypt items encrypted under the Data Protec-
tion API.

5. Hurdles for Deployment

In this section, we will look at some of the remaining us-
ability issues in ESCAPE, as well as shed some light on why
other possible system designs seem less suitable in terms of
usability. This will reveal that designing an easy-to-use se-
cure system with off-the-shelf components is harder than
one would expect.

CERTIFICATE DELIVERY One of the problems, in terms of
security, with the system presented above is the way it de-
livers certificates. A more secure way would be to email cer-
tificates to the email address presented at certificate request
time by the client’s Web browser (as part of the URL). This
would raise the bar significantly for an attacker who wanted
to impersonate other principals to an ESCAPE server. We
believe, however, that this would significantly affect the us-
ability of the system. First of all, there would be no im-
mediate access to the content when a client first receives
the email announcing the content’s existence. Upon con-
necting to the server, the client would have to wait for a
second email delivering the certificate. Furthermore, the in-
stallation of a certificate that’s sent per email is consider-
ably more involved than installation of a certificate from a
Web page. Scripting is switched off by default in most email
clients, so one couldn’t send an HTML page similar to the
one presented to Internet Explorer for certificate pickup. In-
stead, one would have to send the certificate as an attach-
ment in the email. Opening the attachment on the client side
results in the dialog boxes shown in Figure 3. Some of the
choices the user has to make are not obvious, and we be-
lieve that many non-expert users would fail to install the
certificate successfully. Given that the window of opportu-
nity for an attacker in our scheme lasts only until the legiti-
mate user first contacts the ESCAPE server, we feel that the
usability gained by our system offsets the security lost.

OUTLOOK SCRIPTING It turns out that simple things like
accessing the Outlook address book already raise security
issues that the user is asked to deal with. When starting the
ESCAPE server (see Figure 1), Outlook pops up a dialog
warning the user that “some application” is trying to access
the email addresses of contacts in the Outlook database.
The user has the choice of denying this access, or allow-
ing it for up to 10 minutes. This caution is motivated by
email worms, but a legitimately installed application such
as the ESCAPE server should not trigger this warning dia-
log, which is quite confusing (the user is not even told which
application is requesting the access). It would be interesting
to see how other scriptable contact databases (e.g.,the Mac-
intosh address book) handle this kind of situation.

CLIENT AUTHENTICATION We noted above that the ES-
CAPE server relies on the fact that a successful SSL hand-
shake can be completed with a client that doesn’t have a



us
er

 o
pe

ns
 e

m
ai

l a
tta

ch
m

en
t

Figure 3. Installing a certificate delivered as an email attachment

certificate, even though client authentication is requested by
the server. The SSL master secret doesn’t need data from the
client certificate, so theoretically, there is no need to abort a
handshake if the client cannot present a certificate. Here is
what the TLS RFC [7] says about this subject:

7.4.6. Client certificate
When this message will be sent: This is the

first message the client can send after receiving a
server hello done message. This message is only
sent if the server requests a certificate. If no suit-
able certificate is available, the client should send
a certificate message containing no certificates. If
client authentication is required by the server for
the handshake to continue, it may respond with a
fatal handshake failure alert. [...]

(The “it” in the last sentence refers to the server, not
the client.) SSL v3.0, on the other hand, specified that a
client, “if no suitable certificate is available,” “should send
a nocertificate alert instead” (see [9]). It turns out that In-
ternet Explorer by default uses SSL v3.0, and implements
it according to spec. Even though the nocertificate alert
is meant to be only a warning, the PureTLS implemen-
tation we use aborts the handshake on receipt of such an
alert. Once IE is set to set to use TLS, it also implements
it according to spec, and the handshakes succeed in accor-
dance with Figure 2. Mozilla appears to use TLS by default,
and implements it correctly (i.e., our handshakes succeed).
Opera uses TLS by default, but appears to implement it in-
correctly – we never successfully finished a handshake with
Opera.

OTHER PLATFORMS We mentioned a few times above that
the Data Protection System on Microsoft Windows removes

the need for users to type passwords when Internet Ex-
plorer unlocks their private keys. Other browsers do not
use this feature on Windows. This means that users have to
type passwords every time they want to access an ESCAPE
server. Likewise, other operating systems such as Linux do
not provide a data protection service, so browsershaveto
use passwords to store private keys securely.

TRANSFERRING CERTIFICATES In our system, there can
only be one public key per Outlook contact entry. This pre-
vents illegitimate users from acquiring certificates for an
identity once the legitimate user has received her certifi-
cate (see discussion of “Error 1” in Section 4.3). Unfortu-
nately, the same mechanism prevents legitimate users from
receiving a second certificate, say, for a second computer
they own. Instead, they have to copy their keypair (and cer-
tificate) to each machine they want to use. Exporting and
importing keypairs is an involved process. We are currently
still investigating whether there can be a system that has
similar usability and security properties as ESCAPE, yet al-
lows users to easily set up multiple credentials on multiple
machines they own.

MANAGING ACCESSCONTROL L ISTS It is very easy to
remove clients from an access control list. Using the ES-
CAPE graphical user interface, the content provider simply
has to navigate to the published folder in question, and re-
move unwanted clients from the access control list. While
this is certainly an easy task, it doesn’t follow our mantra of
“implicit security”, i.e., the only reason a content provider
would want to do this is for security purposes.

It is unclear whether each and every security mechanism
can be hidden underneath a non-security-related action, nor
is it clear that this is desirable. After all, hiding security is



not our ultimate goal – encouraging people tousesecurity
is, and hiding it in appropriate places is one way to achieve
this goal. Where security cannot be hidden (as seems to be
the case here), exposing it in a user-friendly way is the right
thing to do.

6. Conclusions

In this paper, we set out to design a system that would
allow controlling access to content published on the World
Wide Web. While this is a well-studied problem, our some-
what unusual goal was to achieve a high level of usability
with off-the-shelf client software, while at the same time
providing a reasonably secure system. Ideally, both con-
tent providers and content consumers would not have to do
anything “extra” in a secure system (compared to an inse-
cure one). Assuming a create-publish-announce cycle, we
achieved this goal on the content provider’s side. On the
content consumer’s side, we don’t incur any extra cost ex-
cept for a one-time setup process.

A truly user-friendly system relies on certain features
found in off-the-shelf applications, some less surprising
than others. For example, not only is the Data Protection
system on Microsoft Windows (and the way IE uses it) use-
ful for our goal, it also turns out that the correct implemen-
tation of a seemingly insignificant feature in TLS 1.0 is re-
quired to minimize the overhead imposed on users.

We implemented a content publishing server (ESCAPE)
in Java that enables content consumers to access published
content with common off-the-shelf client applications such
as Internet Explorer. We strove to minimize the overhead to
users (both on the publisher’s and consumer’s sides), bring-
ing it as close as possible to that of a publishing system that
doesn’t have any built-in access control. Interesting future
work would include a survey of client software not consid-
ered in this paper, and perhaps find even more opportunities
to remove overhead imposed by security mechanisms.

ESCAPE is a publishing engine for small-time publish-
ers because it doesn’t scale to large numbers of content con-
sumers. We don’t believe this is a big disadvantage, since
the content publishers that address small audiences will
benefit most likely from usable security (i.e., they are more
likely to be non-expert users who can’t afford to hire secu-
rity IT personnel).

We encourage the community to design secure systems
from ground up for usability, since unusable security mech-
anisms will not, as the adjective suggests, be used at all.

While our system addresses a very specific need (i.e., it
allows small-time publishers to protect access to their pub-
lished online content), we believe that it can serve as a case
study in usable security design. The design of our Easy and
Secure Content Authorization and Publishing Engine also
gives some insight into the caveats encountered when de-

signing secure systems for usability, and into the kinds of
trade-offs between usability and security that are likely to
be encountered when building usable secure systems.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin.
A calculus for access control in distributed systems.ACM
Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

[2] A. Adams and M. A. Sasse. Users are not the enemy: Why
users compromise computer computer security mechanisms
and how to take remedial measures.Communications of the
ACM, 42:40–46, December 1999.

[3] L. Bauer, M. A. Schneider, and E. W. Felten. A general and
flexible access-control system for the web. InProceedings of
the 11th USENIX Security Symposium, San Francisco, CA,
August 2002.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote Trust-Management System Version 2. IETF -
Network Working Group, The Internet Society, September
1999. RFC 2704.

[5] Claymore Systems. PureTLS.
[6] J. DeTreville. Binder, a logic-based security language. In

2002 IEEE Symposium on Security and Privacy, Oakland,
CA, May 2002.

[7] T. Dierks and C. Allen.The TLS Protocol Version 1.0. IETF
- Network Working Group, The Internet Society, January
1999. RFC 2246.

[8] W. K. Edwards, M. W. Newman, J. Z. Sedivy, T. F. Smith,
D. Balfanz, D. K. Smetters, H. C. Wong, and S. Izadi. Us-
ing speakeasy for ad hoc peer-to-peer collaboration. InPro-
ceedings of ACM 2002 Conference on Computer Supported
Cooperative Work (CSCW 2002), New Orleans, LA, Novem-
ber 2002.

[9] A. O. Freier, P. Karlton, and P. C. Kocher.The SSL Proto-
col Version 3.0. IETF - Transport Layer Security Working
Group, The Internet Society, November 1996. Internet Draft
(work in progress).

[10] W. Griffin, M. Heyman, D. Balenson, and D. Carman. Mi-
crosoft data protection. MSDN Online, October 2001.

[11] R. Housley, W. Ford, W. Polk, and D. Solo.Internet X.509
Public Key Infrastructure Certificate and CRL Profile. IETF
- Network Working Group, The Internet Society, January
1999. RFC 2459.

[12] IBM. bridge2java. http://www.alphaworks.ibm.
com/tech/bridge2java/ .

[13] D. K. Smetters and R. E. Grinter. Moving from the design
of usable security technologies to the design of useful se-
cure applications. InNew Security Paradigms Workshop ’02.
ACM, 2002.

[14] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt:
A usability evaluation of PGP 5.0. InProceedings of the
8th USENIX Security Symposium, Washington, DC, August
1999.


