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ABSTRACT 
Information overload is no longer news; the explosive growth of 
the Internet has made this issue increasingly serious for Web 
users. Users are very often overwhelmed by the huge amount of 
information and are faced with a big challenge to find the most 
relevant information in the right time. Recommender systems aim 
at pruning this information space and directing users toward the 
items that best meet their needs and interests.  Web 
Recommendation has been an active application area in Web 
Mining and Machine Learning research. In this paper we propose 
a novel machine learning perspective toward the problem, based 
on reinforcement learning. Unlike other recommender systems, 
our system does not use the static patterns discovered from web 
usage data, instead it learns to make recommendations as the 
actions it performs in each situation. We model the problem as Q-
Learning while employing concepts and techniques commonly 
applied in the web usage mining domain. We propose that the 
reinforcement learning paradigm provides an appropriate model 
for the recommendation problem, as well as a framework in 
which the system constantly interacts with the user and learns 
from her behavior. Our experimental evaluations support our 
claims and demonstrate how this approach can improve the 
quality of web recommendations.    

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information Filtering.  

I.2.6 [Artificial Intelligence]: Learning. 

H.2.8 [Database Management]: Applications – Data mining. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Recommender systems, Personalization, Machine Learning, 
Reinforcement Learning, Web Usage Mining 

1. INTRODUCTION 
The amount of information available on-line is increasing rapidly 
with the explosive growth of the World Wide Web and the advent 
of e-Commerce. Although this surely provides users with more 
options, at the same time makes it more difficult to find the 
“right” or “interesting” information from this great pool of 
information, the problem commonly known as information 
overload. To address these problems, recommender systems have 
been introduced [14]. They can be defined as the personalized 
information technology used to predict a user evaluation of a 
particular item [3] or more generally as any system that guides 
users toward interesting or useful objects in a large space of 
possible options [1].  
Recommender systems have been used in various applications 
ranging from predicting the products a customer is likely to buy 
[16], movies, music or news that might interest the user [8,22] and 
web pages that the user is likely to seek[2,4,7,11], which is also 
the focus of this paper. Web page recommendation is considered a 
user modeling or web personalization task. One research area that 
has recently contributed greatly to this problem is web mining. 
Most of the systems developed in this field are based on web 
usage mining [17] which is the process of applying data mining 
techniques to the discovery of usage patterns form web data. 
These systems are mainly concerned with analyzing web usage 
logs, discovering patterns from this data and making 
recommendations based on the extracted knowledge [4,11,15,21]. 
One important characteristic of these systems is that unlike 
traditional recommender systems, which mainly base their 
decisions on user ratings on different items or other explicit 
feedbacks provided by the user [3,6] these techniques discover 
user preferences from their implicit feedbacks, namely the web 
pages they have visited. More recently, systems that take 
advantage of a combination of content, usage and even structure 
information of the web have been introduced [9,12,13] and shown 
superior results in the web page recommendation problem. 
We propose a different machine learning perspective toward the 
problem, which we believe is suitable to the nature of web page 
recommendation problem and has some intrinsic advantages over 
previous methods. Our system makes recommendations primarily 
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based on web usage logs. We model the recommendation process 
as a Reinforcement Learning problem (RL) [20] or more 
specifically a Q-Learning problem. For this purpose we devise 
state and action definitions and rewarding policies, considering 
common concepts and techniques used in the web usage mining 
domain. Then we train the system using web usage logs available 
as the training set. During the training, the system learns to make 
recommendations; this is somehow different from the previous 
methods in which the purpose was to find explicit and static 
patterns or rules from the data. We’ll explain this matter further in 
the coming sections. The choice of reinforcement learning was 
due to several reasons: It seems appropriate for the nature of web 
page recommendation problem as is discussed in section 3 and as 
evaluation results show; Due to the characteristics of this type of 
learning and the fact that we are not making decisions explicitly 
from the patterns discovered from the data, it provides us with a 
system which is constantly in the learning process; Does not need 
periodic updates; can easily adapt itself to changes in website 
structure and content and new trends in user behavior.       
The organization of the paper is as follows: in section 2 we 
overview the related work done in recommender systems, 
focusing more on recent systems and on the application of 
reinforcement learning in these systems. We introduce our 
solution including modeling the problem as a Q-Learning one and 
the training procedure in section 3. We evaluate the proposed 
system in section 4. The conclusion of the paper comes in section 
5 along with some recommendations for future work. 

2. RELATED WORK 
Recommender systems have been developed using various 
approaches and can be categorized in various ways [1]. 
Collaborative techniques [6] are the most successful and the most 
widely used techniques employed in these systems [3,8,21]. 
Recently, Web mining and especially web usage mining 
techniques have been used widely in web recommender systems 
[2,4,11,21,12]. Common approach in these systems is to extract 
navigational patterns from usage data by data mining techniques 
such as association rules and clustering, and making 
recommendations based on them. These approaches differ 
fundamentally from our method in which no static pattern is 
extracted from data. 
RL has been previously used for recommendations in several 
applications. WebWatcher [7], exploits Q-Learning to guide users 
to their desired pages. Pages correspond to states and hyperlinks 
to actions, rewards are computed based on the similarity of the 
page content and user profile keywords. In most other systems 
reinforcement learning is used to reflect user feedback and update 
current state of recommendations. A general framework is 
presented in [5], which consists of a database of recommendations 
generated by various models and a learning module that updates 
the weight of each recommendation by user feedback. In [18] a 
travel recommendation agent is introduced which considers 
various attributes for trips and customers, computes each trip’s 
value with a linear function and updates function coefficients after 
receiving each user feedback. RL is used for information filtering 
in [22] which maintains a profile for each user containing 
keywords of interests and updates each word’s weight according 
to the implicit and explicit feedbacks received from the user. In 
[16] the recommendation problem is modeled as an MDP. The 
system’s states correspond to user’s previous purchases, rewards 

are based on the profit achieved by selling the items and the 
recommendations are made using the theory of MDP and their 
novel state-transition function. To the best of our knowledge our 
method differs from previous work, as none of them used 
reinforcement learning to train a system in making web site 
recommendations merely from web usage data.       

3. WEB PAGE RECOMMENDATIONS 
WITH REINFORCEMENT LEARNING 
3.1 Problem Definition    
The specific problem which our system is supposed to solve, can 
be summarized as follows: the system has, as input data, the log 
file of users’ past visits to the website, these log files are assumed 
to be in any standard log format, containing records each with a 
user ID, the sequence of pages the user visited during a session 
and typically the time of each page request. A user enters our 
website and begins requesting web pages. Considering the pages 
this user has requested so far the system has to predict in what 
other pages the user is probably interested and recommend them 
to her. Table 1 illustrates a sample scenario. Predictions are 
considered successful if the user chooses to visit those pages in 
the remaining of that session, e.g. page c recommended in the first 
step in table 1. Obviously the goal of the system would be to 
make the most successful recommendations. 

Table 1: A sample user session and system recommendations 

Visited 
Page a b c d e f 

Navigation 
Trail a ab abc abcd abcde abcdef 

System 
Prediction {c,g} {d,m} {e,d} {s,r} {f,b} {h} 

3.2 Recommendations as a Q-Learning 
Problem 
Reinforcement learning [20] is primarily known in machine 
learning research as a framework in which agents learn to choose 
the optimal action in each situation or state they are in. The agent 
is supposed to be in a specific state s, in each step it performs 
some action and transits to another state. After each transition the 
agent receives a reward R(s). The goal of the agent is to learn 
which actions to perform in each state to receive the greatest 
accumulative reward, in its path to the goal state. The set of 
actions chosen in each state is called the agent’s policy. One 
variation of this method is Q-Learning in which the agent does 
not compute explicit values for each state and instead computes a 
value function Q(s,a) which indicates value of performing action 
a in state s. Formally the value of Q(s,a) is the discounted sum of 
future rewards that will be obtained by doing action a in s and 
subsequently choosing optimal actions. In order to solve the 
problem with Q-Learning we need to make appropriate definitions 
for our states and actions, consider a reward function suiting the 
problem and devise a procedure to train the system using web 
logs available to us. 

3.2.1 Using the Analogy of a Game  
In order to better represent our approach toward the problem we 
try to use the notion of a game. In a typical scenario a web user 
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visits pages sequentially from a web site, let’s say the sequence a 
user u requested is composed of pages a, b, c and d. Each page the 
user requests can be considered a step or move in our game. 
After each step the user takes, it will be the system’s turn to 
make a move. The system’s purpose is to predict user’s next 
move(s) with the knowledge of his previous moves. Whenever the 
user makes a move (requests a page), if the system has previously 
predicted the move, it will receive positive points and otherwise it 
will receive none or negative points. For example predicting a 
visit of page d after viewing pages a and b by the user in the 
above example yields in positive points for the system. The 
ultimate goal of the system would be to gather as much points as 
possible during a game or actually during a user visit from the 
web site.  
Some important issues can be inferred from this simple analogy: 
first of all, we can see the problem certainly has a stochastic 
nature and like most games, the next state cannot be computed 
deterministically from our current state and the action the system 
performs due to the fact that the user can choose from a great 
number of moves. This must be considered in our learning 
algorithm and our update rules for Q values; the second issue is 
what the system actions should be, as they are what we ultimately 
expect the system to perform. Actions will be prediction or 
recommendation of web pages by the system in each state. 
Regarding the information each state must contain, by considering 
our definition of actions, we can deduct that each state should at 
least show the history of pages visited by the user so far. This way 
we’ll have the least information needed to make the 
recommendations. This analogy also determines the basics of 
rewarding policy. In its simplest form it shall consider that an 
action should be rewarded positively if it recommends a page that 
will be visited in one of the consequent states, of course not 
necessarily the immediate next state. One last issue which is 
worth noting about the analogy is that it cannot be categorized as 
a typical 2-player game in which opponents try to defeat each 
other, as in this game clearly the user has no intention to mislead 
the system and prevent the system from gathering points. It might 
be more suitable to consider the problem as a competition for 
different recommender systems to gather more points, than a 2-
player game. Because of this intrinsic difference, we cannot use 
self-play, a typical technique used in training RL systems [20], to 
train our system and we need the actual web usage data for 
training. 

3.2.2 Modeling States and Actions 
Considering the above observations we begin the definitions. We 
tend to keep our states as simple as possible, at least in order to 
keep their number manageable. Regarding the states, we can see 
keeping only the user trail can be insufficient. With that definition 
it won’t be possible to reflect the effect of an action a performed 
in state Si, in any consequent state Si+n where n>1. This means the 
system would only learn actions that predict the immediate next 
page which is not the purpose of our system. Another issue we 

should take into account is the number of possible states: if we 
allow the states to contain any given sequence of page visits 
clearly we’ll be potentially faced by an infinite number of states. 
What we chose to do was to limit the page visit sequences to a 
constant number. For this purpose we adopted the notion of N-
Grams which is commonly applied in similar personalization 
systems based on web usage mining [11,12,19]. In this model we 
put a sliding window of size w on user’s page visits, resulting in 
states containing only the last w pages requested by the user. The 
assumption behind this model is that knowing only the last w 
page visits of the user, gives us enough information to predict his 
future page requests. The same problem rises when considering 
the recommended pages’ sequence in the states, for which we take 
the same approach of considering w' last recommendations. 
Regarding the actions, we chose simplicity. Our action consists of 
a single page recommendation in each state. Considering multiple 
page recommendations might have shown us the effect of the 
combination of recommended pages on the user, in the expense of 
making our state space and rewarding policy much more 
complicated. The corresponding states and actions of the user 
session of Table 1 are presented in Figure 1 (straight arrows 
represent the actions performed in each state). 

3.2.3 Choosing a Reward Function 
The basis of reinforcement learning lies in the rewards the agent 
receives, and how it updates state and action values. As with most 
stochastic environments, we should reward the actions performed 
in each state with respect to the consequent state resulted both 
from the agent’s action and other factor’s in the environment on 
which we might not have control. These consequent states are 
sometimes called the after-states [20]. Here this factor is the page 
the user actually chooses to visit. We certainly do not have a 
predetermined function R(s,a) or even a state transition 

function ),( asδ which gives us the next state according to 
current state s and performed action a. 

It can be inferred that the rewards are dependent on the after 
state and more specifically on the intersection of previously 
recommended pages in each state and current page sequence of 
the state. If we consider each state s consists of two sequences V, 
R indicating the sequence of visited and previously recommended 
pages respectively:   

>=<

>=<
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Where v
isp ,  indicates the ith visited page in the state and R

isp ,  

indicates the ith recommended page in the state s. Reward for 

each action would be a function of sV ′ and sR ′  where S ′  is our 
next state. One tricky issue worth considering is that though 

tempting, we should not base on rewards on || ss RV ′′ ∩  since it 
will cause extra credit for a single correct move. Considering the 
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Figure 1. States and actions in the recommendation problem 
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above example a recommendation of page b in the first state shall 
be rewarded only in the transition to the second state where user 
goes to page b, while it will also be present in our 
recommendation list in the third state. To avoid this, we simply 
consider only the occurrence of the last page visited in the 
recommended pages list in state s′  to reward the action 
performed in the previous sate s. To complete our rewarding 
procedure we take into account common metrics used in web page 
recommender systems. One issue is considering when the page 
was predicted by the system and when the user actually visited 
the page. According to the goal of the system this might influence 
our rewarding. If we consider shortening user navigation as a sign 
of successful guidance of user to his required information, as is 
the most common case in recommender systems [11,9] we should 
consider a greater reward for pages predicted sooner in the user’s 
navigation path and vice versa. Another factor commonly 
considered in theses systems [22,11,17] is the time the user 
spends on a page, assuming the more time the user spends on a 
page the more interested he probably has been in that page. 
Taking this into account we should reward a successful page 
recommendation in accordance with the time the user spends on 
the page. The rewarding can be summarized as follows:  

 
• Assume sas ′=),(δ  
• swsR RVP ′′ ∩= ,  

• If p≠Ø 
 For the page p in  PR 

 r(s,a) += reward(Dist(Rs′ ,p),Time(pw
v)) 

  
Where r(s,a) is the reward of performing action a in state s. 

Dist(Ri,p) is the distance of page p from the end of the 
recommended pages list and Time(pw

v) indicates the time user has 
spent on the last page of the state. Here Reward is the function 
combining these values to calculate r(s,a). We chose a simple 
linear combination of these values as follows: 

(1) TimedistTimedistreward ×+×= βα),(  

Where 1=+ βα  and both α and β include a normalizing 
factor according to the maximum values dist and time can take. 

Having put all the pieces of the model together, we can see 
why reinforcement learning might be a good candidate for the 
recommendation problem: it does not rely on any previous 
assumptions regarding the probability distribution of visiting a 
page after having visited a sequence of pages, which makes it 
general enough for diverse usage patterns as this distribution can 
take different shapes for different sequences. the nature of the 
problem matches perfectly with the notion of delayed reward or 
what is commonly known as temporal difference. The value of 
performing an action/recommendation might not be revealed to us 
in the immediate next state and sequence of actions might have 
led to a successful recommendation for which we must credit 
rewards. What the system learns is directly what it should 
perform, though it is possible to extract rules from the learned 
policy model, its decisions are not based on explicitly extracted 
rules or patterns from the data. One issue commonly faced in 
systems based on patterns extracted from training data is the need 
to periodically update these patterns in order to make sure they 
still reflect the trends residing in user behavior or the changes of 
the site structure or content. With reinforcement learning the 

system is intrinsically learning even when performing in real 
world, as the recommendations are the actions the system 
performs, and it is commonplace for the learning procedure to 
take place during the interaction of system with its environment.   

3.3 Training the System 
We chose Q-Learning as our learning algorithm. This method is 
primarily concerned with estimating an evaluation of performing 
specific actions in each state, known as Q-values. In this setting 
we are not concerned with evaluating each state in the sense of 
the accumulative rewards reachable from this state, which with 
respect to our system’s goal can be useful only if we can estimate 
the probability of visiting the following states by performing each 
action. On the other hand Q-Learning provides us with a structure 
that can be used directly in the recommendation problem, as 
recommendations in fact are the actions and the value of each 
recommendation/action shows an estimation of how successful 
that prediction can be. Another decision is the update rule for Q 
values. Because of the non-deterministic nature of this problem 
we use the following update rule [20]: 

(3) 
)]),,((max),([

),()1(),(

1

1

aasQasr

asQasQ

nan

nnn

′+

+−=

−′

−

δγα
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With  

(4) ),(1
1

asvisits n
n +
=α

 
This rule takes into account the fact that doing the same action 
can yield different rewards each time it is performed in the same 

state. The decreasing value of nα causes these values to gradually 
converge and decreases the impact of changing reward values as 
the training continues. 
What remains about the training phase is how we actually train 
the system using web usage logs available. As mentioned before 
these logs consist of previous user sessions in the web site. 
Comparing to the analogy of the game they can be considered as a 
set of opponent’s previous games and the moves he tends to 
make. We are actually provided with a set of actual episodes 
occurred in the environment, of course with the difference that no 
recommendations were actually made during these episodes. The 
training process can be summarized as the following: 

• initial values of Q(s,a) for each pair s,a are set to zero 
• Repeat until convergence 

o A random episode is chosen from the set of training 
episodes. 

o s is set to the first step/state of the episode. 
o For each step of the episode do  

 Chose an action a of this state using the ε-
greedy  policy.  

 Perform action a observe the next state  and 
compute r(s,a) as described before. 

 Update value of Q(s,a) with the above 
equation. 

 ss ′← . 
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The Choice of ε-greedy action selection is quite important for this 
specific problem as the exploration especially in the beginning 
phases of training, is vital. The Q values will converge if each 
episode, or more precisely each state-action pair is visited 
infinitely. In our implementation of the problem convergence was 
reached after a few thousand (between 3000 and 5000) visits of 
each episode. This definition of the learning algorithm completely 
follows a TD(0) off-policy learning procedure, as we take an 
estimation of future reward accessible from each state after 
performing each action by considering the maximum Q value in 
the next state. 
The last modification we experimented was changing our reward 
function. We noticed as we put a sliding window on our sequence 
of previously recommended pages, practically we had limited the 
effect of each action to w' next states as can be seen in Figure 2. 
After training the system using this definition, the system was 
mostly successful in recommending pages visited around w' steps 
ahead. Although this might be quite acceptable while choosing 
an appropriate value for w', it tends to limit system’s prediction 
ability as large numbers of w' make our state space enormous. To 
overcome this problem we devised a rather simple modification in 
our reward function: what we needed was to reward 
recommendation of a page if it is likely to be visited an unknown 
number of states ahead. Fortunately our definition of states and 
actions gives us just the information we need and ironically this 
information is stored in Q values of each state. The basic idea is 
that when an action/recommendation is appropriate in state Si, 
indicating the recommended page is likely to occur in the 
following states, it should also be considered appropriate in state 
Si-1 and the actions in that state that frequently lead to Si. 
Following this recursive procedure we can propagate the value of 
performing a specific action beyond the limits imposed by w'. 
This change is easily reflected in our learning system by 
considering value of Q(s',a) in computation of r(s,a) with a 
coefficient like γ. It should be taken into account that the effect of 
this modification in our reward function must certainly be limited 
as in its most extreme case where we only take this next Q value 
into account we’re practically encouraging recommendation of 
pages that tend to occur mostly in the end of  user sessions. 

4. EXPERIMENTAL EVALUATION 
We evaluated system performance in the different settings 
described above. We used simulated log files generated by a web 
traffic simulator [10] to tune our rewarding functions. The log 
files were simulated for a website containing 700 web pages. We 
pruned user sessions with a length smaller than 5 and were 
provided with 16000 user sessions with average length of eight. 
As our evaluation data set we used the web logs of the Depaul 
University website, made available by the author of [12].  This 
dataset contains 13745 sessions and 687 pages. 70% of the data 
set was used as the training set and the remaining was used to test 
the system. For our evaluation we presented each user session to 

the system, and recorded the recommendations it made after 
seeing each page the user had visited. The system was allowed to 
make r recommendations in each step with r<10  and 

lr < where l is the number of outgoing links of the last page 
visited by the user. This limitation on number of 
recommendations is adopted from [9]. 

4.1 Evaluation Metrics 
To evaluate the recommendations we use the metrics presented in 
[9] because of the similarity of the settings in both systems and 
the fact that we believe these metrics can reveal the true 
performance of the system more clearly than simpler metrics. 
Recommendation Accuracy and Coverage are two metrics quite 
similar to the precision and recall metrics commonly used in 
information retrieval literature.  
Recommendation accuracy measures the ratio of correct 
recommendations among all recommendations, where correct 
recommendations are the ones that appear in the remaining of the 
user session. If we have S sessions in our test log, for each visit 
session s after considering each page p the system generates a set 
of recommendations R(p). To compute the accuracy, R(p) is 
compared with the rest of the session T(p) as follows: 

(5) 
S

pR

pRpT
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s p
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Recommendation coverage on the other hand shows the ratio of 
the pages in the user session that the system is able to predict 
before the user visits them:  

(6) 
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As is the case with precision and recall, these metrics can be 
useful indicators of the system performance only when used in 
accordance to each other and lose their credibility when used 
individually. As an example, consider a system that recommends 
all the pages in each step, this system will gain 100% coverage, of 
course in the price of very low accuracy.  
Another metric used for evaluation is called the shortcut gain 
which measures how many page-visits users can save if they 
follow the recommendations. If we call the shortened session S', 
the shortcut gain for each session is measured as follows: 

(7) 

S
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4.2 Experimental Results 
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Figure 2. An example of limited action effectiveness due to the size of the recommendation window 
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In the first set of experiments we tested the effect of different 
decisions regarding state definition, rewarding function, and the 
learning algorithm on the system behavior. Afterwards we 
compared the system performance to the other common 
techniques used in recommendation systems. 

4.2.1 Sensitivity to Active Window Size on User 
Navigation Trail 
In our state definition, we used the notion of N-Grams by putting 
a sliding window on user navigation paths. The implication of 
using a sliding window of size w is that we base the prediction of 
user future visits on his w past visits. The choice of this sliding 
window size can affect the system in several ways. A large sliding 
window seems to provide the system a longer memory while on 
the other hand causing a larger state space with sequences that 
occur less frequently in the usage logs. We trained our system 
with different window sizes on user trail and evaluated its 
performance as seen in Figure 3. In these experiments we used a 
fixed window size of 3 on recommendation history. 
As our experiments show the best results are achieved when using 
a window of size 3. It can be inferred form this diagram that a 
window of size 1 which considers only the user’s last page visit 
does not hold enough information in memory to make the 
recommendation, the accuracy of recommendations improve with 
increasing the window size and the best results are achieved with 
a window size of 3. Using a window size larger than 3 results in 
weaker performance, it seems to be due to the fact that, as 
mentioned above, in these models, states contain sequences of 
page visits that occur less frequently in web usage logs, causing 
the system to make decisions based on weaker evidence. In our 
evaluation of the short cut gain there was a slight difference when 
using different window sizes. 
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Figure 3: System performance with various user active 

windows size 

4.2.2 Sensitivity to Active Window Size on 
Recommendations 
In the next step we performed similar experiments, this time using 
a constant sliding window of size 3 on user trail and changing size 
of active window on recommendations history. As this window 
size was increased, rather interesting results was achieved as 
shown in Figure 4. 
In evaluating system accuracy, we observed improvement up to a 
window of size 3, after that increasing the window size caused no 
improvement while resulting in larger number of states. This 

increase in the number of states is more intense than when the 
window size on user trail was increased. This is manly due to the 
fact that the system is exploring and makes any combination of 
recommendations to learn the good ones. The model consisting of 
this great number of states is in no way efficient, as in our 
experiments on the test data only 25% of these states were 
actually visited. In the sense of shortcut gain the system achieved, 
it was observed that shortcut gain increased almost constantly 
with increase in window size, which seems a natural consequence 
as described in section 3. 
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Evaluating shortcut gain with different active window 

size on user recommendations
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Figure 4: System performance with different active 

recommendation windows 

4.2.3 Evaluating Different Reward Functions 
Next we changed the effect of parameters constituting our reward 
function. First we began by not considering the Dist parameter, 
described in section 3, in our rewards. We gradually increased it’s 
coefficient in steps of 5% and recorded the results as shown in 
Table 2. These results show that increasing the impact of this 
parameter in our rewards up to 15% of total reward can result 
both in higher accuracy and higher shortcut gain. Using values 
greater than 15% has a slight negative effect on accuracy with a 
slight positive effect on shortcut gain and keeping it almost 
constant. This seems a natural consequence since although we’re 
paying more attention to pages that tend to appear later in the user 
sessions, the system’s vision into the future is bounded by the size 
of window on recommendations. This limited vision also explains 
why our accuracy is not decreasing as expected. 
The next set of experiments tested system performance with the 
reward function that considers next state Q-value of each action in 
rewarding the action performed in the previous state, as described 
in section 3. We began by increasing the coefficient of this factor 
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(γ) in the reward function the same way we did for the Dist 
parameter as shown in Table 1. In the beginning increasing this 
value, lead to higher accuracy and shortcut gains. 
After reaching an upper bound, the accuracy began to drop. In 
these settings, recommendations with higher values were those 
targeted toward the pages that occurred more frequently in the 
end of user sessions. These recommended pages, if recommended 
correctly, were only successful in predicting the last few pages in 
the user sessions. As expected, shortcut gain increased steadily 
with increase in this value up to a point where the 
recommendations became so inaccurate that rarely happened 
anywhere in the user sessions. 

Table 2: System performance with varying α in the reward 
function (AC=Accuracy, SG=Shortcut Gain)  

Performance 

α = 0.1 α = 0.15 α = 0.20 α = 0.25 α = 0.30 Coverage 

AC SG AC SG AC SG AC SG AC SG 

10 .75 .15 .78 .17 .76 .17 .73 .18 .69 .18 

15 .71 .28 .73 .33 .72 .35 .69 .34 .65 .35 

20 .69 .37 .68 .40 .67 .41 .67 .41 .61 .41 

25 .65 .40 .66 .44 .65 .44 .61 .46 .58 .46 

30 .55 .43 .57 .50 .54 .53 .52 .54 .49 .57 

40 .48 .48 .50 .54 .45 .57 .40 .58 .36 .57 

50 .36 .51 .39 .57 .33 .58 .29 .58 .27 .59 

Table 3: System performance with next state Q-Values in the 
reward function (AC=Accuracy, SG=Shortcut Gain) 

Performance 

γ = 0.1 γ = 0.15 γ = 0.20 γ = 0.25 γ = 0.30 Coverage 

AC SG AC SG AC SG AC SG AC SG 

10 .73 .10 .77 .12 .80 .16 .74 .17 .60 .20 

15 .69 .19 .71 .23 .73 .35 .65 .33 .54 .24 

20 .63 .26 .66 .36 .67 .40 .60 .43 .49 .30 

25 .60 .34 .63 .43 .62 .45 .53 .49 .40 .33 

30 .52 .40 .57 .50 .58 .54 .40 .62 .32 .37 

40 .45 .45 .51 .56 .50 .59 .33 .64 .20 .42 

50 .36 .52 .41 .59 .42 .59 .26 .64 .19 .42 

4.2.4 A Comparison with other Methods 
Finally we observed our system performance in comparison with 
two other methods: association rules, one of the most common 
approaches in web mining based recommender systems 
[2,11,17,15], and collaborative filtering which is commonly 
known as one of the most successful approaches for 
recommendations. We chose item-based collaborative filtering 
with probabilistic similarity measure [3], as a baseline for 
comparison because of the promising results it had shown. In 
Figure 5 you can see the performance of these systems in the 
sense of their accuracy and shortcut gain in different coverage 
values. 
At lower coverage values we can see although our system still has 
superior results especially over association rules, accuracy and 
shortcut gain values are rather close. As the coverage increases, 
naturally accuracy decreases in all systems, but our system gains 
much better results than the other two systems. It can be seen the 
rate in which accuracy decreases in our system is lower than other 

two systems; at lower coverage values where the systems made 
their most promising recommendations (those with higher values), 
pages recommended were mostly the next immediate page and as 
can be seen had an acceptable accuracy. At lower coverage rates, 
where recommendations with lower values had to be made our 
system began recommending pages occurring in the session some 
steps ahead, while the other approaches also achieved greater 
shortcut gains, as the results show their lower valued 
recommendations were not as accurate and their performance 
declined more intensely. 
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Comparison of the proposed system shotcut gain
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Figure 5: Comparing our system’s performance with two 

other common methods 

5. CONCLUSION 
We presented a new web page recommendation system based on 
reinforcement learning in this paper. This system learns to make 
recommendations from web usage data as the actions it performs 
rather than discovering explicit patterns from the data and inherits 
the intrinsic characteristic of reinforcement learning which is 
being in a constant learning process. We modeled web page 
recommendation as a Q-Learning problem and trained the system 
with common web usage logs. System performance was evaluated 
under different settings and in comparison with other methods. 
Our experiments showed promising results achieved by exploiting 
reinforcement learning in web recommendation based on web 
usage logs. However, there are other alternatives that can 
potentially improve the system and constitute our future work. 
Regarding our evaluation, we tend to use an on-line evaluation of 
users instead of the off-line method based on web usage logs. In 
the case of the reward function used, various implicit feedbacks 
from the user rather than just the fact that the user had visited the 
page can be used, such as those proposed in [22]. Another option 
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is using a more complicated reward function rather than the linear 
combination of factors; a learning structure such as neural 
networks is an alternative. Finally, in a broader sense, instead of 
making recommendations merely on web usage, it can be 
beneficial to take into account evidence from other sources of 
information, such as web content and structure, as has been the 
trend in recent web recommendation systems. 
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