
Usage-Based Web Recommendations:
A Reinforcement Learning Approach

Nima Taghipour
Amirkabir University of Technology

Department of Computer Engineering
424, Hafez, Tehran, Iran

0098 (21) 22286275

n-taghipour@aut.ac.ir

Ahmad Kardan
Amirkabir University of Technology

Department of Computer Engineering
424, Hafez, Tehran, Iran

0098 (21) 64542729

aakardan@aut.ac.ir

Saeed Shiry Ghidary
Amirkabir University of Technology

Department of Computer Engineering
424, Hafez, Tehran, Iran

0098 (21) 64542737

shiry@aut.ac.ir

ABSTRACT
Information overload is no longer news; the explosive growth of
the Internet has made this issue increasingly serious for Web
users. Users are very often overwhelmed by the huge amount of
information and are faced with a big challenge to find the most
relevant information in the right time. Recommender systems aim
at pruning this information space and directing users toward the
items that best meet their needs and interests. Web
Recommendation has been an active application area in Web
Mining and Machine Learning research. In this paper we propose
a novel machine learning perspective toward the problem, based
on reinforcement learning. Unlike other recommender systems,
our system does not use the static patterns discovered from web
usage data, instead it learns to make recommendations as the
actions it performs in each situation. We model the problem as Q-
Learning while employing concepts and techniques commonly
applied in the web usage mining domain. We propose that the
reinforcement learning paradigm provides an appropriate model
for the recommendation problem, as well as a framework in
which the system constantly interacts with the user and learns
from her behavior. Our experimental evaluations support our
claims and demonstrate how this approach can improve the
quality of web recommendations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information Filtering.

I.2.6 [Artificial Intelligence]: Learning.

H.2.8 [Database Management]: Applications – Data mining.

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Recommender systems, Personalization, Machine Learning,
Reinforcement Learning, Web Usage Mining

1. INTRODUCTION
The amount of information available on-line is increasing rapidly
with the explosive growth of the World Wide Web and the advent
of e-Commerce. Although this surely provides users with more
options, at the same time makes it more difficult to find the
“right” or “interesting” information from this great pool of
information, the problem commonly known as information
overload. To address these problems, recommender systems have
been introduced [14]. They can be defined as the personalized
information technology used to predict a user evaluation of a
particular item [3] or more generally as any system that guides
users toward interesting or useful objects in a large space of
possible options [1].
Recommender systems have been used in various applications
ranging from predicting the products a customer is likely to buy
[16], movies, music or news that might interest the user [8,22] and
web pages that the user is likely to seek[2,4,7,11], which is also
the focus of this paper. Web page recommendation is considered a
user modeling or web personalization task. One research area that
has recently contributed greatly to this problem is web mining.
Most of the systems developed in this field are based on web
usage mining [17] which is the process of applying data mining
techniques to the discovery of usage patterns form web data.
These systems are mainly concerned with analyzing web usage
logs, discovering patterns from this data and making
recommendations based on the extracted knowledge [4,11,15,21].
One important characteristic of these systems is that unlike
traditional recommender systems, which mainly base their
decisions on user ratings on different items or other explicit
feedbacks provided by the user [3,6] these techniques discover
user preferences from their implicit feedbacks, namely the web
pages they have visited. More recently, systems that take
advantage of a combination of content, usage and even structure
information of the web have been introduced [9,12,13] and shown
superior results in the web page recommendation problem.
We propose a different machine learning perspective toward the
problem, which we believe is suitable to the nature of web page
recommendation problem and has some intrinsic advantages over
previous methods. Our system makes recommendations primarily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
RecSys'07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010...$5.00.

105113

based on web usage logs. We model the recommendation process
as a Reinforcement Learning problem (RL) [20] or more
specifically a Q-Learning problem. For this purpose we devise
state and action definitions and rewarding policies, considering
common concepts and techniques used in the web usage mining
domain. Then we train the system using web usage logs available
as the training set. During the training, the system learns to make
recommendations; this is somehow different from the previous
methods in which the purpose was to find explicit and static
patterns or rules from the data. We’ll explain this matter further in
the coming sections. The choice of reinforcement learning was
due to several reasons: It seems appropriate for the nature of web
page recommendation problem as is discussed in section 3 and as
evaluation results show; Due to the characteristics of this type of
learning and the fact that we are not making decisions explicitly
from the patterns discovered from the data, it provides us with a
system which is constantly in the learning process; Does not need
periodic updates; can easily adapt itself to changes in website
structure and content and new trends in user behavior.
The organization of the paper is as follows: in section 2 we
overview the related work done in recommender systems,
focusing more on recent systems and on the application of
reinforcement learning in these systems. We introduce our
solution including modeling the problem as a Q-Learning one and
the training procedure in section 3. We evaluate the proposed
system in section 4. The conclusion of the paper comes in section
5 along with some recommendations for future work.

2. RELATED WORK
Recommender systems have been developed using various
approaches and can be categorized in various ways [1].
Collaborative techniques [6] are the most successful and the most
widely used techniques employed in these systems [3,8,21].
Recently, Web mining and especially web usage mining
techniques have been used widely in web recommender systems
[2,4,11,21,12]. Common approach in these systems is to extract
navigational patterns from usage data by data mining techniques
such as association rules and clustering, and making
recommendations based on them. These approaches differ
fundamentally from our method in which no static pattern is
extracted from data.
RL has been previously used for recommendations in several
applications. WebWatcher [7], exploits Q-Learning to guide users
to their desired pages. Pages correspond to states and hyperlinks
to actions, rewards are computed based on the similarity of the
page content and user profile keywords. In most other systems
reinforcement learning is used to reflect user feedback and update
current state of recommendations. A general framework is
presented in [5], which consists of a database of recommendations
generated by various models and a learning module that updates
the weight of each recommendation by user feedback. In [18] a
travel recommendation agent is introduced which considers
various attributes for trips and customers, computes each trip’s
value with a linear function and updates function coefficients after
receiving each user feedback. RL is used for information filtering
in [22] which maintains a profile for each user containing
keywords of interests and updates each word’s weight according
to the implicit and explicit feedbacks received from the user. In
[16] the recommendation problem is modeled as an MDP. The
system’s states correspond to user’s previous purchases, rewards

are based on the profit achieved by selling the items and the
recommendations are made using the theory of MDP and their
novel state-transition function. To the best of our knowledge our
method differs from previous work, as none of them used
reinforcement learning to train a system in making web site
recommendations merely from web usage data.

3. WEB PAGE RECOMMENDATIONS
WITH REINFORCEMENT LEARNING
3.1 Problem Definition
The specific problem which our system is supposed to solve, can
be summarized as follows: the system has, as input data, the log
file of users’ past visits to the website, these log files are assumed
to be in any standard log format, containing records each with a
user ID, the sequence of pages the user visited during a session
and typically the time of each page request. A user enters our
website and begins requesting web pages. Considering the pages
this user has requested so far the system has to predict in what
other pages the user is probably interested and recommend them
to her. Table 1 illustrates a sample scenario. Predictions are
considered successful if the user chooses to visit those pages in
the remaining of that session, e.g. page c recommended in the first
step in table 1. Obviously the goal of the system would be to
make the most successful recommendations.

Table 1: A sample user session and system recommendations

Visited
Page a b c d e f

Navigation
Trail a ab abc abcd abcde abcdef

System
Prediction {c,g} {d,m} {e,d} {s,r} {f,b} {h}

3.2 Recommendations as a Q-Learning
Problem
Reinforcement learning [20] is primarily known in machine
learning research as a framework in which agents learn to choose
the optimal action in each situation or state they are in. The agent
is supposed to be in a specific state s, in each step it performs
some action and transits to another state. After each transition the
agent receives a reward R(s). The goal of the agent is to learn
which actions to perform in each state to receive the greatest
accumulative reward, in its path to the goal state. The set of
actions chosen in each state is called the agent’s policy. One
variation of this method is Q-Learning in which the agent does
not compute explicit values for each state and instead computes a
value function Q(s,a) which indicates value of performing action
a in state s. Formally the value of Q(s,a) is the discounted sum of
future rewards that will be obtained by doing action a in s and
subsequently choosing optimal actions. In order to solve the
problem with Q-Learning we need to make appropriate definitions
for our states and actions, consider a reward function suiting the
problem and devise a procedure to train the system using web
logs available to us.

3.2.1 Using the Analogy of a Game
In order to better represent our approach toward the problem we
try to use the notion of a game. In a typical scenario a web user

106114

visits pages sequentially from a web site, let’s say the sequence a
user u requested is composed of pages a, b, c and d. Each page the
user requests can be considered a step or move in our game.
After each step the user takes, it will be the system’s turn to
make a move. The system’s purpose is to predict user’s next
move(s) with the knowledge of his previous moves. Whenever the
user makes a move (requests a page), if the system has previously
predicted the move, it will receive positive points and otherwise it
will receive none or negative points. For example predicting a
visit of page d after viewing pages a and b by the user in the
above example yields in positive points for the system. The
ultimate goal of the system would be to gather as much points as
possible during a game or actually during a user visit from the
web site.
Some important issues can be inferred from this simple analogy:
first of all, we can see the problem certainly has a stochastic
nature and like most games, the next state cannot be computed
deterministically from our current state and the action the system
performs due to the fact that the user can choose from a great
number of moves. This must be considered in our learning
algorithm and our update rules for Q values; the second issue is
what the system actions should be, as they are what we ultimately
expect the system to perform. Actions will be prediction or
recommendation of web pages by the system in each state.
Regarding the information each state must contain, by considering
our definition of actions, we can deduct that each state should at
least show the history of pages visited by the user so far. This way
we’ll have the least information needed to make the
recommendations. This analogy also determines the basics of
rewarding policy. In its simplest form it shall consider that an
action should be rewarded positively if it recommends a page that
will be visited in one of the consequent states, of course not
necessarily the immediate next state. One last issue which is
worth noting about the analogy is that it cannot be categorized as
a typical 2-player game in which opponents try to defeat each
other, as in this game clearly the user has no intention to mislead
the system and prevent the system from gathering points. It might
be more suitable to consider the problem as a competition for
different recommender systems to gather more points, than a 2-
player game. Because of this intrinsic difference, we cannot use
self-play, a typical technique used in training RL systems [20], to
train our system and we need the actual web usage data for
training.

3.2.2 Modeling States and Actions
Considering the above observations we begin the definitions. We
tend to keep our states as simple as possible, at least in order to
keep their number manageable. Regarding the states, we can see
keeping only the user trail can be insufficient. With that definition
it won’t be possible to reflect the effect of an action a performed
in state Si, in any consequent state Si+n where n>1. This means the
system would only learn actions that predict the immediate next
page which is not the purpose of our system. Another issue we

should take into account is the number of possible states: if we
allow the states to contain any given sequence of page visits
clearly we’ll be potentially faced by an infinite number of states.
What we chose to do was to limit the page visit sequences to a
constant number. For this purpose we adopted the notion of N-
Grams which is commonly applied in similar personalization
systems based on web usage mining [11,12,19]. In this model we
put a sliding window of size w on user’s page visits, resulting in
states containing only the last w pages requested by the user. The
assumption behind this model is that knowing only the last w
page visits of the user, gives us enough information to predict his
future page requests. The same problem rises when considering
the recommended pages’ sequence in the states, for which we take
the same approach of considering w' last recommendations.
Regarding the actions, we chose simplicity. Our action consists of
a single page recommendation in each state. Considering multiple
page recommendations might have shown us the effect of the
combination of recommended pages on the user, in the expense of
making our state space and rewarding policy much more
complicated. The corresponding states and actions of the user
session of Table 1 are presented in Figure 1 (straight arrows
represent the actions performed in each state).

3.2.3 Choosing a Reward Function
The basis of reinforcement learning lies in the rewards the agent
receives, and how it updates state and action values. As with most
stochastic environments, we should reward the actions performed
in each state with respect to the consequent state resulted both
from the agent’s action and other factor’s in the environment on
which we might not have control. These consequent states are
sometimes called the after-states [20]. Here this factor is the page
the user actually chooses to visit. We certainly do not have a
predetermined function R(s,a) or even a state transition

function),(asδ which gives us the next state according to
current state s and performed action a.

It can be inferred that the rewards are dependent on the after
state and more specifically on the intersection of previously
recommended pages in each state and current page sequence of
the state. If we consider each state s consists of two sequences V,
R indicating the sequence of visited and previously recommended
pages respectively:

>=<

>=<
R

ns
R
s

R
ss

v
ws

v
s

v
ss

pppR

pppV

,2,1,

,2,1,

,...,,

,...,,
 (1)

Where v
isp , indicates the ith visited page in the state and R

isp ,

indicates the ith recommended page in the state s. Reward for

each action would be a function of sV ′ and sR ′ where S ′ is our
next state. One tricky issue worth considering is that though

tempting, we should not base on rewards on || ss RV ′′ ∩ since it
will cause extra credit for a single correct move. Considering the

S1

<-,-,a>

<-,-,->

V

R

c

rc

S1

<-,-,a>

<-,-,->

V

R

cc

rc

S2

<-,a,b>

<-,-,c>

V

R

d

rd

S2

<-,a,b>

<-,-,c>

V

R

dd

rd

S3

<a,b,c>

<-,c,d>

V

R

e

re

S3

<a,b,c>

<-,c,d>

V

R

ee

re

S4

<b,c,d>

<c,d,e>

V

R

s

rs

S4

<b,c,d>

<c,d,e>

V

R

ss

rs

….
S5

<c,d,e>

<d,e,s>

V

R

f

rf

S5

<c,d,e>

<d,e,s>

V

R

ff

rf

Figure 1. States and actions in the recommendation problem

107115

above example a recommendation of page b in the first state shall
be rewarded only in the transition to the second state where user
goes to page b, while it will also be present in our
recommendation list in the third state. To avoid this, we simply
consider only the occurrence of the last page visited in the
recommended pages list in state s′ to reward the action
performed in the previous sate s. To complete our rewarding
procedure we take into account common metrics used in web page
recommender systems. One issue is considering when the page
was predicted by the system and when the user actually visited
the page. According to the goal of the system this might influence
our rewarding. If we consider shortening user navigation as a sign
of successful guidance of user to his required information, as is
the most common case in recommender systems [11,9] we should
consider a greater reward for pages predicted sooner in the user’s
navigation path and vice versa. Another factor commonly
considered in theses systems [22,11,17] is the time the user
spends on a page, assuming the more time the user spends on a
page the more interested he probably has been in that page.
Taking this into account we should reward a successful page
recommendation in accordance with the time the user spends on
the page. The rewarding can be summarized as follows:

• Assume sas ′=),(δ
• swsR RVP ′′ ∩= ,

• If p≠Ø
 For the page p in PR

 r(s,a) += reward(Dist(Rs′ ,p),Time(pw
v))

Where r(s,a) is the reward of performing action a in state s.

Dist(Ri,p) is the distance of page p from the end of the
recommended pages list and Time(pw

v) indicates the time user has
spent on the last page of the state. Here Reward is the function
combining these values to calculate r(s,a). We chose a simple
linear combination of these values as follows:

(1) TimedistTimedistreward ×+×= βα),(

Where 1=+ βα and both α and β include a normalizing
factor according to the maximum values dist and time can take.

Having put all the pieces of the model together, we can see
why reinforcement learning might be a good candidate for the
recommendation problem: it does not rely on any previous
assumptions regarding the probability distribution of visiting a
page after having visited a sequence of pages, which makes it
general enough for diverse usage patterns as this distribution can
take different shapes for different sequences. the nature of the
problem matches perfectly with the notion of delayed reward or
what is commonly known as temporal difference. The value of
performing an action/recommendation might not be revealed to us
in the immediate next state and sequence of actions might have
led to a successful recommendation for which we must credit
rewards. What the system learns is directly what it should
perform, though it is possible to extract rules from the learned
policy model, its decisions are not based on explicitly extracted
rules or patterns from the data. One issue commonly faced in
systems based on patterns extracted from training data is the need
to periodically update these patterns in order to make sure they
still reflect the trends residing in user behavior or the changes of
the site structure or content. With reinforcement learning the

system is intrinsically learning even when performing in real
world, as the recommendations are the actions the system
performs, and it is commonplace for the learning procedure to
take place during the interaction of system with its environment.

3.3 Training the System
We chose Q-Learning as our learning algorithm. This method is
primarily concerned with estimating an evaluation of performing
specific actions in each state, known as Q-values. In this setting
we are not concerned with evaluating each state in the sense of
the accumulative rewards reachable from this state, which with
respect to our system’s goal can be useful only if we can estimate
the probability of visiting the following states by performing each
action. On the other hand Q-Learning provides us with a structure
that can be used directly in the recommendation problem, as
recommendations in fact are the actions and the value of each
recommendation/action shows an estimation of how successful
that prediction can be. Another decision is the update rule for Q
values. Because of the non-deterministic nature of this problem
we use the following update rule [20]:

(3)
)]),,((max),([

),()1(),(

1

1

aasQasr

asQasQ

nan

nnn

′+

+−=

−′

−

δγα

α

With

(4)),(1
1

asvisits n
n +
=α

This rule takes into account the fact that doing the same action
can yield different rewards each time it is performed in the same

state. The decreasing value of nα causes these values to gradually
converge and decreases the impact of changing reward values as
the training continues.
What remains about the training phase is how we actually train
the system using web usage logs available. As mentioned before
these logs consist of previous user sessions in the web site.
Comparing to the analogy of the game they can be considered as a
set of opponent’s previous games and the moves he tends to
make. We are actually provided with a set of actual episodes
occurred in the environment, of course with the difference that no
recommendations were actually made during these episodes. The
training process can be summarized as the following:

• initial values of Q(s,a) for each pair s,a are set to zero
• Repeat until convergence

o A random episode is chosen from the set of training
episodes.

o s is set to the first step/state of the episode.
o For each step of the episode do

 Chose an action a of this state using the ε-
greedy policy.

 Perform action a observe the next state and
compute r(s,a) as described before.

 Update value of Q(s,a) with the above
equation.

 ss ′← .

108116

The Choice of ε-greedy action selection is quite important for this
specific problem as the exploration especially in the beginning
phases of training, is vital. The Q values will converge if each
episode, or more precisely each state-action pair is visited
infinitely. In our implementation of the problem convergence was
reached after a few thousand (between 3000 and 5000) visits of
each episode. This definition of the learning algorithm completely
follows a TD(0) off-policy learning procedure, as we take an
estimation of future reward accessible from each state after
performing each action by considering the maximum Q value in
the next state.
The last modification we experimented was changing our reward
function. We noticed as we put a sliding window on our sequence
of previously recommended pages, practically we had limited the
effect of each action to w' next states as can be seen in Figure 2.
After training the system using this definition, the system was
mostly successful in recommending pages visited around w' steps
ahead. Although this might be quite acceptable while choosing
an appropriate value for w', it tends to limit system’s prediction
ability as large numbers of w' make our state space enormous. To
overcome this problem we devised a rather simple modification in
our reward function: what we needed was to reward
recommendation of a page if it is likely to be visited an unknown
number of states ahead. Fortunately our definition of states and
actions gives us just the information we need and ironically this
information is stored in Q values of each state. The basic idea is
that when an action/recommendation is appropriate in state Si,
indicating the recommended page is likely to occur in the
following states, it should also be considered appropriate in state
Si-1 and the actions in that state that frequently lead to Si.
Following this recursive procedure we can propagate the value of
performing a specific action beyond the limits imposed by w'.
This change is easily reflected in our learning system by
considering value of Q(s',a) in computation of r(s,a) with a
coefficient like γ. It should be taken into account that the effect of
this modification in our reward function must certainly be limited
as in its most extreme case where we only take this next Q value
into account we’re practically encouraging recommendation of
pages that tend to occur mostly in the end of user sessions.

4. EXPERIMENTAL EVALUATION
We evaluated system performance in the different settings
described above. We used simulated log files generated by a web
traffic simulator [10] to tune our rewarding functions. The log
files were simulated for a website containing 700 web pages. We
pruned user sessions with a length smaller than 5 and were
provided with 16000 user sessions with average length of eight.
As our evaluation data set we used the web logs of the Depaul
University website, made available by the author of [12]. This
dataset contains 13745 sessions and 687 pages. 70% of the data
set was used as the training set and the remaining was used to test
the system. For our evaluation we presented each user session to

the system, and recorded the recommendations it made after
seeing each page the user had visited. The system was allowed to
make r recommendations in each step with r<10 and

lr < where l is the number of outgoing links of the last page
visited by the user. This limitation on number of
recommendations is adopted from [9].

4.1 Evaluation Metrics
To evaluate the recommendations we use the metrics presented in
[9] because of the similarity of the settings in both systems and
the fact that we believe these metrics can reveal the true
performance of the system more clearly than simpler metrics.
Recommendation Accuracy and Coverage are two metrics quite
similar to the precision and recall metrics commonly used in
information retrieval literature.
Recommendation accuracy measures the ratio of correct
recommendations among all recommendations, where correct
recommendations are the ones that appear in the remaining of the
user session. If we have S sessions in our test log, for each visit
session s after considering each page p the system generates a set
of recommendations R(p). To compute the accuracy, R(p) is
compared with the rest of the session T(p) as follows:

(5)
S

pR

pRpT

Accuracy
s p

p∑
=

)(

))()((

U

IU

Recommendation coverage on the other hand shows the ratio of
the pages in the user session that the system is able to predict
before the user visits them:

(6)

S

pT

pRpT

Coverage
s p

p∑
=

)(

))()((

U

IU

As is the case with precision and recall, these metrics can be
useful indicators of the system performance only when used in
accordance to each other and lose their credibility when used
individually. As an example, consider a system that recommends
all the pages in each step, this system will gain 100% coverage, of
course in the price of very low accuracy.
Another metric used for evaluation is called the shortcut gain
which measures how many page-visits users can save if they
follow the recommendations. If we call the shortened session S',
the shortcut gain for each session is measured as follows:

(7)

S
s

ss

inShortcutGa ||
|||| ′−

=

4.2 Experimental Results

S i

<a ,b,c>

<? ,? >

V

R

f

r f

S i

<a ,b,c>

<? ,? >

V

R

ff

r f

S i+ 1

<b ,c,d >

<? ,f>

V

R

??

r

S i+ 2

<c ,d,e>

<f,? >

V

R

??

r

S i+ 3

<d ,e,f>

<?,?>

V

R

??

r

… .

A ction In it ia t ion E ffec tive A ction R ange T arge t S ta te

Figure 2. An example of limited action effectiveness due to the size of the recommendation window

109117

In the first set of experiments we tested the effect of different
decisions regarding state definition, rewarding function, and the
learning algorithm on the system behavior. Afterwards we
compared the system performance to the other common
techniques used in recommendation systems.

4.2.1 Sensitivity to Active Window Size on User
Navigation Trail
In our state definition, we used the notion of N-Grams by putting
a sliding window on user navigation paths. The implication of
using a sliding window of size w is that we base the prediction of
user future visits on his w past visits. The choice of this sliding
window size can affect the system in several ways. A large sliding
window seems to provide the system a longer memory while on
the other hand causing a larger state space with sequences that
occur less frequently in the usage logs. We trained our system
with different window sizes on user trail and evaluated its
performance as seen in Figure 3. In these experiments we used a
fixed window size of 3 on recommendation history.
As our experiments show the best results are achieved when using
a window of size 3. It can be inferred form this diagram that a
window of size 1 which considers only the user’s last page visit
does not hold enough information in memory to make the
recommendation, the accuracy of recommendations improve with
increasing the window size and the best results are achieved with
a window size of 3. Using a window size larger than 3 results in
weaker performance, it seems to be due to the fact that, as
mentioned above, in these models, states contain sequences of
page visits that occur less frequently in web usage logs, causing
the system to make decisions based on weaker evidence. In our
evaluation of the short cut gain there was a slight difference when
using different window sizes.

Evaluating accuracy with different active window size
on user navigation trail

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6
Coverage

Ac
cu

ra
cy

Window =1 Window =2 Window=3 Window=4

Figure 3: System performance with various user active

windows size

4.2.2 Sensitivity to Active Window Size on
Recommendations
In the next step we performed similar experiments, this time using
a constant sliding window of size 3 on user trail and changing size
of active window on recommendations history. As this window
size was increased, rather interesting results was achieved as
shown in Figure 4.
In evaluating system accuracy, we observed improvement up to a
window of size 3, after that increasing the window size caused no
improvement while resulting in larger number of states. This

increase in the number of states is more intense than when the
window size on user trail was increased. This is manly due to the
fact that the system is exploring and makes any combination of
recommendations to learn the good ones. The model consisting of
this great number of states is in no way efficient, as in our
experiments on the test data only 25% of these states were
actually visited. In the sense of shortcut gain the system achieved,
it was observed that shortcut gain increased almost constantly
with increase in window size, which seems a natural consequence
as described in section 3.

Evaluating accuracy with different active window size
on user recommendations

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6
Coverage

A
cc

ur
ac

y

Window =1 Window=2 Window=3

Evaluating shortcut gain with different active window

size on user recommendations

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6
Coverage

Sh
or

tc
ut

 G
ai

n

Window =1 Window=2 Window=3

Figure 4: System performance with different active

recommendation windows

4.2.3 Evaluating Different Reward Functions
Next we changed the effect of parameters constituting our reward
function. First we began by not considering the Dist parameter,
described in section 3, in our rewards. We gradually increased it’s
coefficient in steps of 5% and recorded the results as shown in
Table 2. These results show that increasing the impact of this
parameter in our rewards up to 15% of total reward can result
both in higher accuracy and higher shortcut gain. Using values
greater than 15% has a slight negative effect on accuracy with a
slight positive effect on shortcut gain and keeping it almost
constant. This seems a natural consequence since although we’re
paying more attention to pages that tend to appear later in the user
sessions, the system’s vision into the future is bounded by the size
of window on recommendations. This limited vision also explains
why our accuracy is not decreasing as expected.
The next set of experiments tested system performance with the
reward function that considers next state Q-value of each action in
rewarding the action performed in the previous state, as described
in section 3. We began by increasing the coefficient of this factor

110118

(γ) in the reward function the same way we did for the Dist
parameter as shown in Table 1. In the beginning increasing this
value, lead to higher accuracy and shortcut gains.
After reaching an upper bound, the accuracy began to drop. In
these settings, recommendations with higher values were those
targeted toward the pages that occurred more frequently in the
end of user sessions. These recommended pages, if recommended
correctly, were only successful in predicting the last few pages in
the user sessions. As expected, shortcut gain increased steadily
with increase in this value up to a point where the
recommendations became so inaccurate that rarely happened
anywhere in the user sessions.

Table 2: System performance with varying α in the reward
function (AC=Accuracy, SG=Shortcut Gain)

Performance

α = 0.1 α = 0.15 α = 0.20 α = 0.25 α = 0.30 Coverage

AC SG AC SG AC SG AC SG AC SG

10 .75 .15 .78 .17 .76 .17 .73 .18 .69 .18

15 .71 .28 .73 .33 .72 .35 .69 .34 .65 .35

20 .69 .37 .68 .40 .67 .41 .67 .41 .61 .41

25 .65 .40 .66 .44 .65 .44 .61 .46 .58 .46

30 .55 .43 .57 .50 .54 .53 .52 .54 .49 .57

40 .48 .48 .50 .54 .45 .57 .40 .58 .36 .57

50 .36 .51 .39 .57 .33 .58 .29 .58 .27 .59

Table 3: System performance with next state Q-Values in the
reward function (AC=Accuracy, SG=Shortcut Gain)

Performance

γ = 0.1 γ = 0.15 γ = 0.20 γ = 0.25 γ = 0.30 Coverage

AC SG AC SG AC SG AC SG AC SG

10 .73 .10 .77 .12 .80 .16 .74 .17 .60 .20

15 .69 .19 .71 .23 .73 .35 .65 .33 .54 .24

20 .63 .26 .66 .36 .67 .40 .60 .43 .49 .30

25 .60 .34 .63 .43 .62 .45 .53 .49 .40 .33

30 .52 .40 .57 .50 .58 .54 .40 .62 .32 .37

40 .45 .45 .51 .56 .50 .59 .33 .64 .20 .42

50 .36 .52 .41 .59 .42 .59 .26 .64 .19 .42

4.2.4 A Comparison with other Methods
Finally we observed our system performance in comparison with
two other methods: association rules, one of the most common
approaches in web mining based recommender systems
[2,11,17,15], and collaborative filtering which is commonly
known as one of the most successful approaches for
recommendations. We chose item-based collaborative filtering
with probabilistic similarity measure [3], as a baseline for
comparison because of the promising results it had shown. In
Figure 5 you can see the performance of these systems in the
sense of their accuracy and shortcut gain in different coverage
values.
At lower coverage values we can see although our system still has
superior results especially over association rules, accuracy and
shortcut gain values are rather close. As the coverage increases,
naturally accuracy decreases in all systems, but our system gains
much better results than the other two systems. It can be seen the
rate in which accuracy decreases in our system is lower than other

two systems; at lower coverage values where the systems made
their most promising recommendations (those with higher values),
pages recommended were mostly the next immediate page and as
can be seen had an acceptable accuracy. At lower coverage rates,
where recommendations with lower values had to be made our
system began recommending pages occurring in the session some
steps ahead, while the other approaches also achieved greater
shortcut gains, as the results show their lower valued
recommendations were not as accurate and their performance
declined more intensely.

Comparison of the proposed system's accuracy

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0 0.1 0.2 0.3 0.4 0.5
Coverage

A
cc

ur
ac

y

Association rule Collaborative Filtering Our system

Comparison of the proposed system shotcut gain

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0 0.1 0.2 0.3 0.4 0.5
Coverage

S
ho

rt
cu

t G
ai

n

Association Rules Collaborative Filtering Our System

Figure 5: Comparing our system’s performance with two

other common methods

5. CONCLUSION
We presented a new web page recommendation system based on
reinforcement learning in this paper. This system learns to make
recommendations from web usage data as the actions it performs
rather than discovering explicit patterns from the data and inherits
the intrinsic characteristic of reinforcement learning which is
being in a constant learning process. We modeled web page
recommendation as a Q-Learning problem and trained the system
with common web usage logs. System performance was evaluated
under different settings and in comparison with other methods.
Our experiments showed promising results achieved by exploiting
reinforcement learning in web recommendation based on web
usage logs. However, there are other alternatives that can
potentially improve the system and constitute our future work.
Regarding our evaluation, we tend to use an on-line evaluation of
users instead of the off-line method based on web usage logs. In
the case of the reward function used, various implicit feedbacks
from the user rather than just the fact that the user had visited the
page can be used, such as those proposed in [22]. Another option

111119

is using a more complicated reward function rather than the linear
combination of factors; a learning structure such as neural
networks is an alternative. Finally, in a broader sense, instead of
making recommendations merely on web usage, it can be
beneficial to take into account evidence from other sources of
information, such as web content and structure, as has been the
trend in recent web recommendation systems.

6. REFERENCES
[1] Burke, R. Hybrid recommender systems: Survey and

experiments. User Modeling and User-Adapted Interaction,
2002.

[2] Cooley, R., Tan, P. N., Srivastava, J. WebSIFT: The Web
Site Information Filter System. In Proceedings of the Web
Usage Analysis and User Profiling Workshop
(WEBKDD'99), 1999.

[3] Deshpande, M., Karypis, G. Item-based top-N
recommendation algorithms. ACM Transactions on
Information Systems (TOIS), 2004.

[4] Fu, X., Budzik, J., Hammond, K. J. Mining navigation
history for recommendation. Intelligent User Interfaces,
2000.

[5] Golovin, N., Rahm, E. Reinforcement Learning Architecture
for Web Recommendations. Proceedings of the ITCC2004.
IEEE, 2004.

[6] Herlocker, J., Konstan, J., Brochers, A., Riedel, J. An
Algorithmic Framework for Performing Collaborative
Filtering. Proceedings of 200 Conference on Research and
development in Information Retrieval, 2000.

[7] Joachims, T., Freitag, D., Mitchell, T. M. WebWatcher: A
tour guide for the world wide web. Proceedings of
International Joint Conference on Artificial Intelligence,
1997.

[8] Konstan, J., Riedl, J., Borchers, A., Herlocker, J.
Recommender Systems: A GroupLens Perspective. In:
Recommender Systems: Papers from the 1998 Workshop
(AAAI Technical Report WS-98-08), 1998.

[9] Li, J., Zaiane, O. R. Combining Usage, Content and
Structure Data to Improve Web Site Recommendation, 5th
International Conference on Electronic Commerce and Web,
2004

[10] Liu, J., Zhang, S., Yang, J. Characterizing Web usage
regularities with information foraging agents. IEEE
Transactions on Knowledge and Data Engineering, 16(5),
566-584. 2004.

[11] Mobasher, B., Cooley, R., Srivastava, J. Automatic
Personalization based on Web Usage Mining.
Communications of the ACM. 43 (8), pp. 142-151, 2000.

[12] Mobasher, B., Dai, H., Luo, T., Sun, Y., Zhu, J. Integrating
web usage and content mining for more effective
personalization. In EC-Web, pages 165–176, 2000.

[13] Nakagawa M., Mobasher, B. A Hybrid Web Personalization
Model Based on Site Connectivity. Proc. 5th WEBKDD
workshop, 2003.

[14] Resnick, P., Varian, H.R. Recommender Systems.
Communications of the ACM, 40 (3), 56-58, 1997.

[15] Shahabi, C., M. Zarkesh, A., Abidi, J., Shah, V. Knowledge
discovery from user's Web-page navigation. In Proceedings
of the 7th IEEE Intl. Workshop on Research Issues in Data
Engineering, 1997.

[16] Shany, G., Heckerman, D., Barfman, R. An MDP-Based
Recommender System. Journal of Machine Learning
Research, 2005.

[17] Srivastava, J., Cooley, R., Deshpande, M., Tan, P.N. Web
Usage Mining: Discovery and Applications of Usage
Patterns from Web Data. SIGKDD Explorations, 1(2):12–23,
2000.

[18] Srivihok, A., Sukonmanee, V. E-commerce intelligent agent:
personalization travel support agent using Q Learning. ACM
International Conference Proceeding Series; Proceedings of
the 7th international conference on Electronic commerce,
2005

[19] Su, Z., Yang, Q., Lu, Y., Zhang, H. What next: A prediction
System for Web Requests Using N-gram Sequence Models.
In Proceedings of the First International Conference on Web
Information Systems and Engineering Conference.2000.

[20] Sutton, R.S., Barto, A.G. Reinforcement Learning: An
Introduction, MIT Press, Cambridge, 1998

[21] Wasfi, A. M. Collecting User Access Patterns for Building
User Profiles and Collaborative Filtering. In: IUI ’99:
Proceedings of the 1999 International Conference on
Intelligent User Interfaces. 1999.

[22] Zhang, B., Seo, Y. Personalized web-document filtering
using reinforcement learning. Applied Artificial Intelligence,
15(7):665-685, 2001.

112120

