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Abstract: In this paper, the collocation method is performed with quintic B-spline functions on a uniform
mesh to obtain the numerical solutions of Fisher’s equation. Crank-Nicolson method is used for time dis-
cretization. Von Neumann stability analysis shows that the given method is conditionally stable. In order to
observe the effects of reaction and diffusion, four test problems related to pulse disturbance, step disturbance,
super-speed wave and strong reaction are studied. A comparison between the obtained results and some
earlier studies is presented.
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1 Introduction
Fisher’s equation which was first appeared in Fisher’s study [1] is one of the most famous nonlinear reaction-diffusion
equation in the literature. The equation is given by

∂u

∂t
= µ

∂2u

∂x2
+ ρu(1− u), x ∈ (−∞,∞) , t > 0 (1)

where u = u (x, t) is a real-valued function, µ is a non-negative constant and ρ is a real parameter. µ∂2u/∂x2 is called
diffusivity term where ρu(1− u) describes the reaction of the system.

Fisher[1] used Eq.(1) to describe the propagation of gene in a habitat. The growth of the mutant gene population
originates from the diffusion and nonlinear local multiplication. Because of the similar behavior, Eq.(1) is also used as a
model for the evolution of the neutron population in a nuclear reactor where the domain is obviously finite [5].

The initial and boundary conditions for Fisher’s equation are given as

u (x, 0) = u0 (x) ∈ [0, 1] , x ∈ (−∞,∞) (2)

lim
x→−∞

u(x, t) = 1 , lim
x→∞

u(x, t) = 0, t ≥ 0 (3)

lim
x→±∞

u(x, t) = 0 , t ≥ 0 (4)

where the x derivative tending to zero while x → ±∞. In the literature, conditions (2) and (3) together are commonly
known as nonlocal conditions, while conditions (2) and (4) together are usually known as local conditions [23]. One
of the known numerical difficulty of Fisher’s equation is the sensitivity of a correct solution especially at the right-hand
boundary. Numerical methods may lead to erroneous results if they don’t consider the sensitive solution that depends on
the initial distribution at infinity [6, 12, 15, 19].

There are many theoretical and numerical studies on Fisher’s equation in the literature. Kolmogorov et al.[2] showed
that for every c ≥ 2 there exists a travelling wave solution to (1)−(3) of wave speed c. Each of these solutions is bounded
as u0 (x) in Eq.(2) and there is no such solutions for c ∈ [0, 2) . An important property in numerical solution of Fisher’s
equation is shown by Canosa[5] that stability of the solution to perturbations of compact support, whereas instability
occurred when the perturbation vanished at infinity. Gazdag and Canosa[6] produced a numerical solution of Fisher’s
equation and demonstrated the mechanism of transition from a super-speed wave to a minimum speed wave. Another
interesting phenomenon about the relation between the steady state wave speed and the behavior of the solution at infinity
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was discovered by Larson[9] and Hagan[11]. They showed that for any initial condition of Fisher’s equation such that
u0(x) ∼ e−βx as x → ∞, u(x, t) evolves to a wave front as t → ∞ with speed c (β) given by

c (β) =

 β +
1

β
, β ≤ 1,

2, β ≥ 1.

Since the accurate representation of the travelling wave solution to Fisher’s equation is a challenging numerical prob-
lem, many researchers paid attention to solve it numerically. Numerous computational methods including finite differences
[12, 14, 16], finite elements [10, 13, 15], as well as the others [18, 19, 21, 23–25, 29] have been performed for the solution
of Fisher’s equation in the past. More recently, several B-spline finite element methods have also been presented for the
numerical solution of Fisher’s equation [26–28, 30].

The objective of the present study is to explore the viability of quintic B-spline collocation method for the numerical
solution of the Fisher’s equation. Our second objective is to make a comparison between the present method and some
earlier studies.

This paper is organized as follows. Section 2 is devoted to description of both B-splines and collocation method. Von
Neumann stability analysis is also given in this section. In section 3, numerical experiments are carried out to compare the
accuracy, stability, flexibility, and efficiency of the scheme. Both the analytical solution and the steady state wave speed
are used for a validation of the present approach. Conclusions are presented in section 4.

2 Numerical Method

We investigate the solution of Fisher’s equation via the quintic B-spline collocation method. To construct the numerical
method, we first need to generate a mesh. For this purpose, we consider the uniform mesh

a = x0 < x1 < · · · < xN−1 < xN = b

where h = xm+1 − xm, xm = a+mh, m = 0, 1, ..., N.

2.1 B-spline bases

One of the most known function class in mathematics is spline functions that have extensive application area in numerical
analysis. The first mathematical reference to splines is the early work of Schoenberg[3] who revealed that splines have
powerful approximation properties. Subsequently, many approximation methods have been employed [4].

A spline function is a sufficiently smooth piecewise polynomial of order k. It possesses a high degree of smoothness
at the knots. A spline S (x) of order k can be described in its B-representation

S (x) =

{∑
m=1

ξmBk
m (x) : ξm real, all m

}

where Bk
m (x) is a special spline function of order k called a B-spline which consists of polynomial pieces of degree<k.

B-spline functions play an important role in approximation and geometric modeling. They are used in data fitting,
computer-aided design, automated manufacturing and computer graphics. In particular, after de Boor’s [8] results about
B-splines, spline techniques became popular for a broad range of applications [22]. Most properties and an efficient
construction of B-splines can be found in [8]. Due to their some attractive properties such as having compact support and
yielding numerical schemes with a high resolving power, B-splines are also widely used in differential problems. Because
of having compact support, using B-splines in numerical solution of differential equations leads to sparse matrix systems.

The approximation of differential problems with B-splines is obtained by the method of weighted residual, of which
the Galerkin and collocation methods are particular cases. The Galerkin method is the most widely used method for
B-spline approximations on the other hand, the collocation method represents an economical alternative since it only
requires the evaluation at grid points [20].
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Figure 1: Quintic B-spline functions on a uniform mesh

Quintic B-splines are piecewise polynomials of degree five. Their mathematical expression can be given by

Bm (x) =
1

h5



(x− xm−3)
5, [xm−3, xm−2]

(x− xm−3)
5 − 6(x− xm−2)

5, [xm−2, xm−1]
(x− xm−3)

5 − 6(x− xm−2)
5 + 15(x− xm−1)

5, [xm−1, xm]
(x− xm−3)

5 − 6(x− xm−2)
5 + 15(x− xm−1)

5 − 20(x− xm)5, [xm, xm+1]
(x− xm−3)

5 − 6(x− xm−2)
5 + 15(x− xm−1)

5 − 20(x− xm)5

+ 15(x− xm+1)
5, [xm+1, xm+2]

(x− xm−3)
5 − 6(x− xm−2)

5 + 15(x− xm−1)
5 − 20(x− xm)5

+ 15(x− xm+1)
5 − 6(x− xm+2)

5, [xm+2, xm+3]
0, otherwise

Illustration of six successive quintic B-spline is presented in Fig.1. As shown in this figure, each quintic B-spline is
non-zero over six adjacent elements so that six quintic B-splines cover each finite element.

2.2 Collocation method
The set of quintic B-splines {B−2, B−1, B−0, ..., BN+2} forms a basis [7] for the functions defined over the solution
domain. Hence the global approximation U(x, t) to the function u(x, t) can be formulated as

U(x, t) =
N+2∑
m=−2

δm (t)Bm (x)

where δm are time dependent parameters which must be determined from the boundary and weighted residual conditions.
Over a standard element [xm, xm+1], the trial function for U is written by

U(x, t) =

m+3∑
i=m−2

δi (t)Bi (x)

where the quintic B-splines Be =
{
B5

m−2, B
5
m−1, B

5
m, B5

m+1, B
5
m+2, B

5
m+3

}
are only the B-splines non-zero over this

finite element. Hence the nodal values and their derivatives are obtained in terms of δm by

U(xm) = Um = δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2,

U ′(xm) = U ′
m =

5

h
(δm+2 + 10δm+1 − 10δm−1 − δm−2),

U ′′(xm) = U ′′
m =

20

h2
(δm+2 + 2δm+1 − 6δm + 2δm−1 + δm−2),

U ′′′(xm) = U ′′′
m =

60

h3
(δm+2 − 2δm+1 + 2δm−1 − δm−2),

U ′′′′(xm) = U ′′′′
m =

120

h4
(δm+2 − 4δm+1 + 6δm − 4δm−1 + δm−2).


(5)
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The collocation method where the weighting function is chosen as the dirac delta function in the finite element for-
mulation of the problem consists in simply satisfying the equations at a discrete set of points {xj , j = 0, 1, ..., N} , the
collocation points. With this choice, application of the numerical method turns into a substitution of nodal values Um and
their related derivatives into the Fisher’s equation. In this point of view, Eq.(1) can be rewritten as follows:

•
δm−2 + 26

•
δm−1 + 66

•
δm + 26

•
δm+1 +

•
δm+2 =

20µ

h2
(δm+2 + 2δm+1 − 6δm + 2δm−1 + δm−2) (6)

+ρzm (δm−2 + 26δm−1 + 66δm + 26δm+1 + δm+2) ,

where m = 0, 1, ..., N , zm = 1− um and the notation • shows the derivative with respect to time.
Time discretization of Eq.(6) can be made with Crank-Nicolson formulas:

•
δm =

δn+1
m − δnm

∆t
, δm =

δn+1
m + δnm

2
.

Using of above discretization formulas with some simple calculations the space discretized system (6) is rearranged
as

γm1δ
n+1
m−2+γm2δ

n+1
m−1+γm3δ

n+1
m +γm2δ

n+1
m+1+γm1δ

n+1
m+2 = γm4δ

n
m−2+γm5δ

n
m−1+γm6δ

n
m+γm5δ

n
m+1+γm4δ

n
m+2 (7)

where

γm1 =
1

∆t
− 10µ

h2
− ρzm

2
,γm2 =

26

∆t
− 20µ

h2
− 13ρzm,γm3 =

66

∆t
+

60µ

h2
− 33ρzm,

γm4 =
1

∆t
+

10µ

h2
+

ρzm
2

, γm5 =
26

∆t
+

20µ

h2
+ 13ρzm,γm6 =

66

∆t
− 60µ

h2
+ 33ρzm.

and the factor (1− u) in nonlinear term of Eq.(1) is considered as locally constant, i.e. zm = 1− Un
m.

There are N+1 equations but N+5 unknown parameters in system (7). To solve this system the number of equations
and the number of unknown parameters must be equalized. Using the boundary conditions enables us to eliminate the
boundary parameters δn+1

−2 , δn+1
−1 and δn+1

N+1, δ
n+1
N+2 from the system (7) so that we obtain a solvable penta-diagonal band

matrix system that can be solved by the Thomas algorithm. In order to start the iteration, computation of the initial
parameters δ0m is needed. Once the initial parameters are determined, time evolutions of δnm are found from the recurrence
relationship (7). The initial condition of the problem and the Eqs.(5) are used for this purpose.

In computation of the nonlinear term, an inner iteration

(δ∗)
n+1
m = δnm +

1

2

(
δn+1
m − δnm

)
, m = 0, 1, ..., N

may be used two or three times in each time step to make the solution parameters better.

2.2.1 Stability

Von Neumann stability analysis is an extremely useful method for understanding the propagation of errors in linear differ-
ence equations. By considering a general term in the closed form Fourier series solution of the discrete system, one can
examine the potential for amplification of any of the possible Fourier modes which are sustainable on a discrete mesh.

In this analysis, the solution at point (xm+1, tn+1) can be related to that at point (xm, tn) through the relationship

un+1
m+1 = qeikhun

m

where i in the exponential is
√
−1 and kh is the dimensionless wave numbers. Stability analysis in this context then

amounts to ensuring |q| ≤ 1 over all possible values of kh ranging between 0 (infinite wavelength) and π (shortest
wavelength on a discrete mesh) [17].

After the substitution of the Fourier mode
δnm = qneimkh

in difference equation (7) we obtain the growth factor q as

q =
2γm4 cos (2kh) + 2γm5 cos (kh) + γm6

2γm1 cos (2kh) + 2γm2 cos (kh) + γm3
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The stability condition |q| ≤ 1 leads to the following results:

|q| ≤ 1 ⇒ |q|2 ≤ 1

⇒ (2γm4 cos (2kh) + 2γm5 cos (kh) + γm6)
2 − (2γm1 cos (2kh) + 2γm2 cos (kh) + γm3)

2 ≤ 0

⇒ 32AB

∆th2
≤ 0

where

A = cos2 (kh) + 13 cos (kh) + 16

B = 20µ cos2 (kh) + ρzmh2 cos2 (kh) + 20µ cos (kh) + 13ρzmh2 cos (kh)− 40µ+ 16ρzmh2

Since the all other terms are strictly positive, the only condition for the stability comes from the term B which must
be less than or equal to zero. After some operations the mentioned necessity gives the condition

µ

ρzmh2
≤ 16 + 13 cos (kh) + cos2 (kh)

20 (2− cos (kh)− cos2 (kh))
(8)

Hence the numerical method is conditionally stable with condition (8).
Since cos (kh) varies in [−1, 1] and both left and right hand side terms tend to infinity when h → 0, it is not seem

easy to make this condition simpler for h value. However, it can be said from the condition that stability of the method
does not depend on time stepping, i.e. the numerical method is unconditionally stable in terms of time step ∆t. So, in
numerical computations, we will choose h value empirically after fixing the time step ∆t.

3 Numerical Experiments
In this section, we examine the performance of the proposed numerical method. First, we consider an initial pulse dis-
turbance to demonstrate the reaction and the diffusion processes in the solution domain. Similar observation with an
initial step disturbance is presented as a second test problem. A second-order perturbation solution is also studied in the
next subsection. Finally, to make a detailed comparison between the present method and some other methods from the
literature, we validate our method on the weak reaction and the strong reaction problem.

To analyze the numerical performance of the given method, we use two error measurements, that is, the maximum
absolute error L∞ and L2 error norm which are defined by

L∞ =
∥∥uexact − unumeric

∥∥
∞ = max

j

∣∣uexact
j − unumeric

j

∣∣ ,
L2 =

∥∥uexact − unumeric
∥∥
2
=

√√√√h
N∑
j=0

(
uexact
j − unumeric

j

)2
.

The difference of the theoretical and the numerical wave speeds |c− ĉ| can also be used as an approximation for the
error when the solution reaches the steady state motion. In order to calculate the speed of the simulated traveling wave
solution, we use the formula appeared in [15]

cn =

(
xn
wf − xn−1

wf

)
∆t

(9)

where

xn
wf =

L∫
0

u (x, tn) dx� max
0≤x≤L

{u (x, tn)}

is a reference position for the propagating wave-front. Then the transformed wave speed cs is computed by cs = c�√
µρ.

The above integral is approximated by using the trapezoid rule.
To compute the pointwise rate of convergence, the algorithm has been run for various space steps. The order of the

convergence for the method is calculated by the formula

order =
log(∥u− uhi∥2 /

∥∥u− uhi+1

∥∥
2
)

log(hi/hi+1)

where u is the exact solution and uhi is the numerical solution with step size hi.
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3.1 Initial pulse profile

To see the effects of reaction and diffusion, we consider the pulse disturbance

u(x, 0) = sech2(10x), x ∈ (−∞,∞) (10)

as the initial condition of Eq.(1) with the boundary conditions (4).

Since initial disturbance (10) and the results obtained from that are almost zero after some x points, we can choose
the interval [−50, 50] as a solution domain for the programming purpose. So, the local boundary conditions (4) turn into
the following artificial form for this restricted domain:

u (−50, t) = u (50, t) = 0, t > 0.

In computation, the coefficients in Eq.(1) are taken as µ = 0.1 and ρ = 1 with the discretization parameters h = 0.025
and ∆t = 0.05.

Figure 2: Initial solution Figure 3: Solutions at early times

As seen clearly from Figs.2 and 3, initially, the diffusion term uxx is negative and it has a large absolute value however
the reaction term u(1 − u) is very small. So the effect of diffusion dominates over the effect of reaction and the peak
initially goes down rapidly and then becomes flatter. When the peak takes its minimum value, the reaction term starts to
dominate the diffusion term slowly so that the peak increases and the amplitude grows as indicated in Fig.4. After the
peak reached the maximum value u = 1, the top of the graph becomes flatter and flatter. This behavior is illustrated in
Fig.5.

Population density profile with respect to time is an another useful tool for understanding the reaction and diffusion
process at some specified positions. Fig.6 shows how the population density changes at distinct points x = 0, 1, 10,
20. As expected from the above discussion, there is no decay in population without the origin between these points. The
decrement in population density at the origin continues until the time t = 0.65 with the maximum decay almost 67%,
then it starts to increase and arrives the highest level.

The difference of the theoretical and the numerical wave speeds can be used to measure the accuracy of the method
in this problem. Depending on the selection of µ = 0.1 and ρ = 1 the steady-state value for the theoretical speed
is 2

√
µρ = 0.63246. Similar to the results of [13, 15] the wave speed c approaches the steady-state value while the

transformed wave speed ĉs approaches the minimum speed csmin = 2. In order to observe the mentioned approach,
numerical wave speeds are depicted in Fig.7. Additionally, to give a comparison, the wave speeds and the related errors
are tabulated in Table 1 for t = 40. The calculated numerical wave speeds are in good agreement with the theoretical
results and some earlier studies from the literature.
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Figure 4: Short time behavior Figure 5: Long time behavior

Figure 6: Changes at population Figure 7: Changes at wave speed

Table 1: Comparison of the wave speeds and errors at t = 40
Speeds Errors

ĉ ĉs |c− ĉ| |cs − ĉs|
Present 0.6214 1.9650 0.0111 0.0350
[27] 0.6214 1.9651 0.0111 0.0349
[15] 0.6210 1.9638 0.0115 0.0362
[13] 0.6205 0.0120
Exact 0.6325 2.0000

3.2 Initial step profile
By considering the step disturbance

u(x, 0) =

 e10(x+1), x < −1
1, −1 ≤ x ≤ 1
e−10(x−1), x > 1

(11)

as an initial condition for Eq. (1), similar with previous problem, we observe reaction and diffusion process in this
experiment where the boundary conditions and the solution parameters are chosen as same with in the first test problem.

The initial profile of the solution is given in Fig.8. Different from previous one, effects of diffusion and reaction are
very small in this case. As seen in Fig.9, diffusion is more effective than reaction near the corners so that the effects of
diffusion at the edges change the graph from having sharp points to being smooth and cause a going down a little bit (see
Fig.10), then the top of the wave comes up and becomes flatter and flatter in long time period which is illustrated in Fig.11.

Population density-time graphs at distinct points x = 0, 1, 10, 20 are given in Fig.12. Although there is a decay in
population at the origin (the decay is only 2%), the only remarkable decrement between these positions is at x = 1 where
the maximum decay is about 32% at time t = 0.45. Since diffusion is more effective at x = 1, this result is due.
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Since we use the parameters same with the first problem, the steady-state value of the speed and the minimum value
for the transformed wave speed are 0.63246 and 2 respectively. Fig.13 shows that numerical wave speeds approach these
values.

Wave speed comparison is presented in Table 2 for this problem. According to Table 2 obtained results are acceptable
and in unison with the other given results.

Figure 8: Initial solution Figure 9: Solutions at early times

Figure 10: Short time behavior Figure 11: Long time behavior

Figure 12: Changes at population Figure 13: Changes at wave speeds

Table 2: Comparison of the wave speeds and errors at t = 40
Speeds Errors

ĉ ĉs |c− ĉ| |cs − ĉs|
Present 0.6213 1.9648 0.0112 0.0352
[27] 0.6214 1.9649 0.0111 0.0351
[15] 0.6520 2.0620 0.0195 0.0620
Exact 0.6325 2.0000
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3.3 Super-speed wave front
Thirdly, a second-order perturbation solution given by Gazdag and Canosa[6] is studied. Here we consider the unscaled
form of the problem for which the initial condition is given by

u(x, 0) =
1

1 + e
ρz
c

− µρe
ρz
c

c2(1 + e
ρz
c )2

[
1− ln

4e
ρz
c

(1 + e
ρz
c )2

]
where c denotes the actual wave speed, d is the original unscaled frame and z = x − ct − d. In this test problem, the
initial profile is chosen symmetric about the origin and local boundary conditions (4) are used. More discussion about this
problem can be found in [6], [15].

In computation, numerical parameters are taken as

µ = ρ = 1, h = 0.5, ∆t = 0.05, d = 40

and the solutions are obtained over the interval [−500, 500] .
The initial distribution is shown in Fig.14 for c = 2. This initial profile sometimes becomes negative. Although it is

not seen in this figure, it causes unstable solutions in time period. To overcome this difficulty, similar to the approach of
Carey and Shen[15], we force u = 0 where the initial profile is negative then solutions remain stable.

The wave profiles are depicted in Figs.15, 16 and 17 for the speed values 2, 4 and 6 respectively. As shown in Fig.15,
when the speed value is 2, there is no change in the wave propagates. On the other hand, when the speed c takes the values
4 and 6, corresponding to super-speed waves, the wave propagations steepen and evolve gradually to a minimum speed
wave.

Figure 14: Initial solution for c = 2 Figure 15: Solutions for c = 2

The obtained results are almost the same as the results obtained by Carey and Shen[15]. Although there are some
small differences between the obtained results and those described by Gazdag and Canosa[6], our results are in a good
agreement with their results. In comparison, the transition time in the present method and in the study of [15] from super
speed wave to minimum speed wave is longer than in the work[6]. Besides, the mentioned transition in our study is
smoother than the study of Gazdag and Canosa[6].

Figure 16: Solutions for c = 4 Figure 17: Solutions for c = 6
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3.4 Strong reaction
Finally, we consider a modified form of Fisher Equation in which the diffusion term is much smaller than the reaction
term

∂u

∂t
=

∂2u

∂x2
+ ρu(1− u), −∞ < x < ∞, t > 0 (12)

where ρ is a positive constant so that ρ ≫ 1. A particular solution of this modified equation has a travelling wave solution
of the form

u(x, t) =

[
1 + exp

(√
ρ

6
x− 5ρ

6
t

)]−2

(13)

which travels with constant speed c = 5
√

ρ/6 and satisfies the nonlocal conditions (2) and (3).
To make a comparison with the results of [23] and to see the rate of convergence, we first solved the problem with

ρ = 1 that leads to wave speed c = 5
√
1/6 ≈ 2.04124145 > 2 before the strong reaction case. Table 3 shows the errors

in detail with three different error norms. In comparison, the present method is more accurate than CN and ASD, on the
other hand the results of FPS and DSC are better than the present. The orders for rate of convergence are tabulated in
Table 4 which shows that the present method has second order temporal accuracy whereas its spatial order is different.
Although the method gives high spatial orders for h = 2 and h = 1, it yields almost same errors for h = 0.5 and h = 0.25
and so the spatial order decreases.

Table 3: Comparison of short-term solution of a scaled Fisher’s equation with ρ = 1
t = 5.0 t = 10.0

Scheme N h ∆t L∞ L2 |c− ĉ| L∞ L2 |c− ĉ|
Present 128 1.0 0.2 3.52e−3 7.60e−3 9.50e−3 1.11e−2 2.55e−2 1.50e−2

128 1.0 0.1 8.80e−4 1.89e−3 2.39e−3 2.81e−3 6.45e−3 3.85e−3
64 2.0 0.01 9.78e−5 2.46e−4 2.14e−4 8.82e−4 1.87e−3 2.25e−3
128 1.0 0.01 5.65e−6 1.35e−5 3.11e−5 8.04e−5 1.76e−4 1.94e−4

[23] CN 512 1.0 0.2 5.18e−3 1.10e−3 1.18e−2 1.43e−2 2.99e−3 1.69e−2
512 1.0 0.1 1.35e−3 2.91e−4 3.48e−3 4.25e−3 8.88e−4 5.53e−3
64 2.0 0.01 1.02e−2 1.87e−3 4.47e−2 5.47e−2 1.16e−2 1.04e−1
128 1.0 0.01 2.66e−3 4.84e−4 1.15e−3 1.46e−2 3.06e−3 2.77e−2

[23] ASD 128 1.0 0.2 3.84e−2 7.24e−3 9.38e−2 1.09e−1 2.19e−2 1.26e−1
128 1.0 0.1 1.96e−2 3.73e−3 4.93e−2 5.62e−2 1.14e−2 6.68e−2
64 2.0 0.01 1.99e−3 3.83e−4 5.16e−3 5.67e−3 1.18e−3 7.06e−3
128 1.0 0.01 1.99e−3 3.83e−4 5.16e−3 5.72e−3 1.18e−3 7.06e−3

[23] FPS 128 1.0 0.2 1.34e−5 2.74e−6 4.25e−5 5.61e−5 1.17e−5 9.15e−5
128 1.0 0.1 9.01e−7 1.84e−7 2.94e−6 3.86e−6 8.03e−7 6.41e−6
64 2.0 0.01 3.16e−6 6.75e−7 6.89e−8 3.21e−6 6.76e−7 1.10e−7
128 1.0 0.01 1.27e−9 1.38e−10 4.01e−9 4.40e−10 8.78e−11 7.58e−10

[23] DSC 128 1.0 0.2 1.34e−5 2.74e−6 4.25e−5 5.61e−5 1.17e−5 9.15e−5
128 1.0 0.1 9.00e−7 1.84e−7 2.95e−6 3.86e−6 8.03e−7 6.41e−6
64 2.0 0.01 4.35e−6 9.38e−7 1.34e−7 3.12e−6 6.50e−7 1.19e−7
128 1.0 0.01 1.59e−9 2.50e−10 7.02e−9 1.39e−9 2.06e−10 8.43e−10

Table 4: Rate of convergence
Spatial order (∆t = 0.01) Temporal order (h = 1.0)

hi t = 5 t = 10 ∆ti t = 5 t = 10
2.00 0.200
1.00 4.18566 3.40724 0.100 2.00412 1.98237
0.50 −0.44913 1.32379 0.050 2.02090 1.92680
0.25 −0.04591 0.13910 0.025 2.08996 1.74021

We consider the strong reaction problem by choosing ρ = 104 in Eq.(12). Hence the wave speed of the analytical
solution (13) is c = 5

√
104/6 ≈ 204.124. With the strong reaction force, the solution evolves into a shock-like wave.

Therefore, to represent the rapidly changing solution correctly, very fine mesh has to be used in a low order method. Non-
uniform mesh can be used to avoid the large computation cost. Li et al.[18] and Qiu and Sloan[19] considered this strong
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reaction problem using moving mesh schemes. Olmos and Shizgal[25] solved this problem by using the overlapped multi
domain approach. In this study, we consider a uniform mesh for the strong reaction problem. Discretization parameters
are chosen as N = 64 and ∆t = 5 × 10−6. The solution domain is taken as [−0.2, 0.8] . The numerical results and the
analytical solution are illustrated together (continuous line is the analytical solution) in Fig.18 at times t = 0, 5 × 10−4,
1 × 10−3, 1.5 × 10−3, ..., 3.5 × 10−3. The error distributions at different times are graphed in Fig.19 where the error at
the right hand boundary at t = 0.0035 can be reduced to zero by extending the solution domain at that boundary. To see
the accuracy of the present method, the obtained results are tabulated in Table 5. In comparison, again the results of DSC
and FPS [23] are better than the purposed method while the present is more accurate than the results of [27] and CN, ASD
in [23] and almost same with the results of [19]

Table 5
Comparison of short-term solution of a scaled Fisher’s equation with ρ = 104, N = 64,
∆t = 5.0e−6. The results from [19] are (a) MMDAE with N = 50, (b) MMPDE6 with
N = 50 and τ = 10−7 and (c) method of lines on an even spaced grid with N = 300.

t
Scheme Error 5.00e−4 1.00e−3 1.50e−3 2.00e−3 2.50e−3 3.00e−3 3.50e−3
Present L∞ 2.05e−4 9.81e−4 2.30e−3 3.90e−3 5.49e−3 7.42e−3 9.04e−3

L2 4.25e−5 2.25e−4 5.35e−4 9.08e−4 1.31e−3 1.74e−3 2.18e−3
|c− ĉ| 6.14e−2 1.80e−1 2.44e−1 2.76e−1 2.93e−1 3.02e−1 1.98e−1

[27] L∞ 2.55e−3 1.62e−1 8.65e−2 6.98e−2
L2 6.47e−4 3.80e−1 2.03e−2 1.59e−2
|c− ĉ| 1.85e+0 5.58e+0 1.12e+1 1.26e+1

[23] CN L∞ 1.03e−2 5.55e−2 1.25e−1 2.04e−1 2.80e−1 3.60e−1 4.48e−1
L2 1.92e−3 1.17e−2 2.65e−2 4.36e−2 6.18e−2 8.04e−2 9.91e−2
|c− ĉ| 4.49e+0 1.04e+1 1.31e+1 1.46e+1 1.54e+1 1.60e+1 1.64e+1

[23] ASD L∞ 1.07e−2 2.88e−2 4.93e−2 7.10e−2 9.37e−2 1.24e−1 9.44e−1
L2 2.09e−3 6.07e−3 1.06e−2 1.53e−2 2.02e−2 2.68e−2 2.35e−1
|c− ĉ| 2.61e+0 3.45e+0 3.70e+0 3.80e+0 4.05e+0 1.59e+1 3.41e+2

[23] FPS L∞ 3.13E−6 3.47e−6 3.90e−6 5.00e−6 7.82e−5 4.23e−3 3.42e−1
L2 7.71E−7 6.79e−7 7.02e−7 9.04e−7 2.11e−5 1.19e−3 8.95e−2
|c− ĉ| 1.58E−3 7.72e−5 9.73e−5 1.87e−3 9.68e−2 5.54e−0 4.76e+2

[23] DSC L∞ 6.28E−6 3.03e−6 1.98e−6 3.23e−6 4.46e−6 5.44e−6 6.22e−6
L2 1.24E−6 6.53e−7 5.92e−7 8.35e−7 1.16e−6 1.43e−6 1.64e−6
|c− ĉ| 2.53E−3 1.06e−4 6.23e−5 6.58e−5 7.37e−5 1.00e−4 5.19e−4

[19] (a) L∞ 9.25e−3
(b) L∞ 4.29e−2
(c) L∞ 9.34e−3

Figure 18: Solution profiles Figure 19: Absolute error distributions
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4 Conclusions

This study explores the utility of quintic B-spline collocation method in the solution of Fisher’s equation. Forward
difference and Crank-Nicolson formulas are used for time discretization of the equation. To investigate the stability
of the method we employed the Von Neumann stability analysis. Four numerical experiments considered to illustrate the
accuracy and the efficiency of the present method. Numerical results are compared with analytical solutions or the steady
state wave speed. Obtained results are acceptable in terms of accuracy. Temporal order of convergence shows that the
present method has second order accuracy.

The main advantage of the presented method is the yielding less computational cost in the solution process. The
method leads to a matrix equation where the coefficient matrix is 5-band matrix and it requires relatively less CPU time.
Also simplicity in the implementation process of the collocation method can be stated as an another advantage.

In conclusion, quintic B-spline collocation method simulates the solution profiles successfully and it yields acceptable
results in comparison. In terms of accuracy, flexibility, stability, and efficiency it is comparable with other existing
numerical methods for the solution of Fisher’s equation
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