
Informatica 36 (2012) 359-368 359

Usage of Holt-Winters Model and Multilayer Perceptron in Network
Traffic Modelling and Anomaly Detection

Maciej Szmit
Orange Labs Poland, 7 Obrzeżna Street, 02-691 Warsaw, Poland
E-mail: maciej.szmit@gmail.com, http://maciej.szmit.info

Anna Szmit
Technical University of Lodz, Department of Management, 266 Piotrkowska Street, 90-924 Lodz, Poland
E-mail: agorecka@p.lodz.pl, http://anna.szmit.info

Sławomir Adamus
Technical University of Lodz, Computer Engineering Department, 18/22 Stefanowskiego Street, 90-924 Lodz, Poland
AMG.lab, 11 Lakowa Street, 90-562 Lodz, Poland
E-mail: slawomir.adamus@hotmail.com

Sebastian Bugała
Technical University of Lodz, Computer Engineering Department, 18/22 Stefanowskiego Street, 90-924 Lodz, Poland
E-mail: sebastian.bugala@hotmail.com

Keywords: network behavioral anomaly detection, Holt-Winters model, multilayer perceptron

Received: September 16, 2012

This paper presents results of analysis of few kinds of network traffic using Holt-Winters methods and
Multilayer Perceptron. It also presents Anomaly Detection – a Snort-based network traffic monitoring
tool which implements a few models of traffic prediction.

Povzetek: Predstavljena je metoda za modeliranje in iskanje anomalij v omrežju.

1 Introduction
In modern computer networks and high-loaded business
or industrial systems there is a need of continuous
availability of services and hosts (see e.g. [28], [29] [30]
[34]). Inaccessibility of some mission critical can cause
large impact to business processing continuity and this as
a result would generate looses. Solution for such
potential problems could be permanent and uninterrupted
supervision on network health. This in turn can be
achieved by implementation of some monitoring
solution. Efficient monitoring method helps achieve high
service availability and it will be a good idea to extend
network security by tools such as Intrusion Detection
System, Intrusion Prevention System and Unified Thread
Managers (see e.g. [32] [33]). IDS is a tool which
monitors and analyses in real time every aspect of
inbound and outbound traffic of the network. Based on
the analysis and based on one of the mechanisms
responsible for threat detection creates reports of the
abnormalities of network traffic. Most common
mechanisms which detect threats used in IDS are misuse
detection and anomaly detection, they are two different
approaches to threat detection, first one relays on
determination abnormal parameters and network traffic
behavior, everything which we do not know is treated as
normal, second one is a reverse of the first one, it treats
everything which deviates from the standard is treated as
potential threat. IDS on its own only reports and logs the

abnormalities and does not take any further actions and
his role is to report to administrator which is whom
decides what action should be taken to prevent imminent
danger which can be a cumbersome for the administrator
with a large number of notifications. In order to relieve
the amount of work of administrator, ideas of IDS have
been extended by possibility to take defined actions
immediately in case of detection of typical and schematic
threats for the network, as a result IPS was created which
is a variety of IDS which is compatible with tools such as
firewalls and control its settings in order to counter the
threat.

A typical representative of the above-described tool
is Snort (see e.g. [2] [3] [31]), a software type of IDS/IPS
based on mechanism which detects attack signatures
originally intended only for the Unix platform, but now
also transferred to the Windows operating system,
developed on the principles of open source software
licenses. Large capacity and performance are
characteristics that gained snort popularity among users.
Its modular design makes the software very flexible and
thus can be easily adapted to the requirements of the
currently analyzed network environments, and expand its
functionality.

This article extends demonstration of the capabilities
of the AnomalyDetection tool (basic overview of the tool
was published in [15] and [36]) created for network

360 Informatica 36 (2012) 359–368 M. Szmit et a.

monitoring and future network traffic forecasting Snort-
based applications using the flexibility and easy
extensibility (the ability to create own preprocessors and
postprocessors) of this program. The preprocessor was
developed to extends Snorts possibilities of network
traffic analysis by anomaly detection mechanism [4].
Combination of the two mechanisms (i.e., misuse
detection and anomaly detection) provides more
comprehensive protection against all types of threats,
even those partially abstract, such as the malice of
employees. Tools included in the Anomaly Detection 3.0
allows analysis of movement, its forecasting with help of
its advanced statistical algorithms, evaluation of created
forecasts, real-time monitoring and verifying that the
individual volumes of network traffic parameters do not
exceed the forecasted value and in case of exceeding the
norms to generate the appropriate messages for the
administrator who should check each alarm for potential
threats.

Current (3.0) version (see e.g. [5], [6]) of
AnomalyDetection provides monitoring of following
network traffic parameters: total number of TCP, UDP,
and ICMP packets, number of outgoing TCP, UDP, and
ICMP packets, number of incoming TCP, UDP, and
ICMP packets, number of TCP, UDP, and ICMP packets
from current subnet, number of TCP packets with
SYN/ACK flags, number of outgoing and incoming
WWW packets – TCP on port 80, number of outgoing
and incoming DNS packets – UDP outgoing on port 53,
number of ARP-request and ARP-reply packets, number
of non TCP/IP stacks packets, total number of packets,
TCP, WWW, UDP, and DNS upload and download
speed [kBps].

Whole Anomaly Detection application consists of
three parts: Snorts preprocessor, Profile Generator and
Profile Evaluator. Data exchange between these parts is
realized by CSV (Comma Separated Values) files (see:
Figure 1).

Figure 1: Anomaly Detection data flow diagram.
Source: [15].

Gray solid arrows means saving to file and black dotted –
reading from file. Particular files stands for:
 Log file – this file gathers all network traffic data

collected with AD Snort preprocessor. Data from

this file is next used by Profile Generator for
network traffic forecasting.

 Profile file – this file stores network profile
computed with Profile Generator. This file is
generated by Profile Generator and used by AD
preprocessor for detecting anomalies and generating
alerts. After every passed time period preprocessor
reads profile file and looks for data corresponding to
current period. If value for some counter exceeds
minimum (MIN) to maximum (MAX) range then
alert is generated.

 Predicted pattern file – predicted pattern file contains
predicted future data for network – in fact this is the
same file as profile file, but with single value for
each counter. This is necessary for evaluating profile
in AD Evaluator script. Structure of pattern file is
the same as log file.

 Pattern file – this file is created like predicted pattern
file, but network traffic profile stored in this file is
historical data.

 Parameters file – this file stores information for
method of profile generation and method parameters
values. This file has different structure for every
algorithm of profile generation.

 Structures of log and profile files can be found in
[15]. Anomaly Detection have two main modes:

 data acquisition mode – only network traffic
statistics are saved into log file. Only log file is
created in this mode.

 alerting mode – instead of data acquisition there is
also created profile file and current traffic statistics
are compared to values stored in profile file. In this
mode log and profile file are required.

Pattern, predicted pattern and parameters files are always
optional and they're useful for future research.

Anomaly Detection 3.0 can be downloaded from
http://anomalydetection.info [24]. Preprocessor is
available as source or RPM package. Both Profile
Generator and Evaluator are available as R scripts –
additional R CRAN (free) software is required for use R
scripts. Additional instalation, update and removal scripts
are provided for Profile Generator and Evaluator.

2 Preprocessor
The main part of the Anomaly Detection system is a
preprocessor written in C programming language,
designed to enhance Snort possibilities to monitor,
analyze and detect network traffic anomalies using
NBAD (Network Behavioral Anomaly Detection)
approach. The first version of AnomalyDetection
preprocessor [6] for Snort version 2.4x was published in
a Master’s Thesis [25] in 2006. Next the project has been
developed (see e.g. [5] [7] [8] [9] [17]) till the current
version 3.0 designed for Snort 2.9.x.

The main task of the preprocessor is anomaly
detection, realized by using a simple algorithm based on
data acquisition and subsequent comparison of the
collected values with pattern. Preprocessor reads a
predicted pattern of the network traffic (of all

USAGE OF HOLT-WINTERS MODEL AND… Informatica 36 (2012) 359–368 361

parameters) from the ‘profile’ file and generates alert
when the current value exceeds ‘minimum’ to
‘maximum’ range for the current moment (the moment is
given by day of the week, hour, minute and second
corresponding to the intervals from the log file) from the
profile file.

The profile can be generated ‘manually’, using
external tools, or by a Profile Generator using
appropriate model, based on historic values from the log
file. The architecture affords easy implementation of
different statistical models of the traffic and usage of
different tools (i.e. statistical packets) for building
profiles. Data from the profile is read in intervals defined
by the user, there is only one line read into the structure
at a time, this gives possibility to dynamically alter the
profile file. In case of failure to find the correct entry in
the profile, anomaly report module is automatically
disabled to prevent generation of false positive alerts.

As mentioned above the current version of the
preprocessor can work with adaptive network models
through changes in the algorithm which loads profile
information. Abandoned single network profile load for
the load of single-line in specified time interval. Profile
data is loaded at exact time of writing counter to the log
file. This solution although increases the number of I/O
operations adversely affecting the performance but also
supports replacing another model during runtime without
having to restart whole application. In addition, all the
calculations have been relegated to third-party
applications and the profile has been changed so that it
contains the minimum and maximum value. This
approach makes the preprocessor is more flexible and
efficient, does not limit the user to use a single method to
generate a network profile, the profile can be freely
generated by any application while maintaining only the
appropriate input format. Reporting anomalies was
adjusted to snort standards by implementing a
mechanism which reports events and handle these events
by dedicated preprocessor rules. The user can freely
adjust the rules to fit his needs, for example; the content
of messages stored in the log, which is a priority or
which action should be taken when matching rules.
These changes make the application more customizable
and user-friendly. Improving algorithm for packet
acquisition by removing unnecessary comparisons and
optimizations of other ones and increased capacity of
counters made it possible to use preprocessor in networks
with high bandwidth 1Gb and above.

The next function of the preprocessor is generating
alerts. Preprocessor reads a predicted pattern of the
network traffic (of all parameters) from the ‘profile’ file
and generates alert when the current value exceeds
‘minimum’ to ‘maximum’ range for the current moment
(the moment is given by day of the week, hour, minute
and second corresponding to the intervals from the log
file) from the profile file.

The profile can be generated ‘manually’, using
external tools, or by a Profile Generator using
appropriate model, based on historic values from the log
file. The architecture affords easy implementation of
different statistical models of the traffic and usage of

different tools (i.e. statistical packets) for building
profiles. Data from the profile is read in intervals defined
by the user, there is only one line read into the structure
at a time, this gives possibility to dynamically alter the
profile file. In case of failure to find the correct entry in
the profile, anomaly report module is automatically
disabled to prevent generation of false positive alerts.

3 Profile Generator
In previous versions of AnomalyDetection system profile
generation module was included in preprocesor module –
because of this whole application was inflexible. The
current version of Profile Generator (see e.g. [7] [8] [9])
have been separated into independent module which can
be used to compute statistical models not only for AD
preprocessor. Furthermore current version is based on R
language / environment (The R Project for Statistical
Computing) (see e.g. [10] [11] [12] [13] [14]) which is
more flexible and user-friendly than previous
implementation in C language. R-project is an free, open
source packet for statistical computing and graphics. In
this implementation optional packages for R: tseries,
quadprog, zoo and getopt are used.

The whole implementation of Profile Generator is
divided into few parts. First part prepares data from log
file for further calculations and other parts – depending
on the given parameters – calculates future network
traffic forecasts. At the end all computed values are
written into proper files – based on given runtime
parameters. Data flow in ProfileGenerator module is
shown on Figure 2.

Figure 2: Profile Generator data flow diagram. Source:
[35].

Profile Generator is controlled with parameters passed
for script execution – all script parameters are handled
with getopt() function.

Particular columns of specification matrix contains
respectively:

 long flag name
 short flag

362 Informatica 36 (2012) 359–368 M. Szmit et a.

 parameters arguments
 arguments type
 description

Profile Generator actually implements five methods of
profile file generation: moving average, naive method,
autoregressive time series model, Holt-Winters model
and Brutlags version of HW model (see e.g. [1] [17]).
The value of dependent variable is given as follows:
Moving average:

k

y
y

t

kti
i

t

1

 (1)

Naive method:

Ttt yy
(2)

where T is day or week period, or

1 tt yy

(3)

Autoregressive time series model:

ktkttt yayayaay ...22110

(4)

Holt-Winters model:

Ttttt SPLy 11

(5)

where:
L is level component given by:

))(1()(11 ttTttt PLSyL (6)

P is trend component given by:

11)1()(tttt PLLP (7)

S is seasonal component given by:

Ttttt SLyS)1()((8)

Brutlag method:

TtTtttt mdSPLy 11
max

(9)

TtTtttt mdSPLy 11
min

(10)

where:

L , P and S are the same as in Holt-Winters model
d is predicted deviation given by:

1)1(ˆ ttt dyyd (11)

where:

k is number of measurements in time series
t is moment in time

y

is predicted value of variable in moment t

yt is real (measured) value of variable in

moment t

T is time series period
 is data smoothing factor

 is trend smoothing factor

 is the seasonal change smoothing factor

m is the scaling factor for Brutlags confidence
bands

4 Implementation of Naïve Method
Naïve method is the simplest method implemented in
Profile Generator module. For computing profile with
this method PG must be launched with '-m NAIVE'
parameter. Additional '--naive' parameter can be used for
defining detailed method 'periodicity'. Method implement
three version of naïve prediction – LAST, DAILY and
WEEKLY. For LAST version forecasted data are defined
as the same as previous measurement. DAILY version
means that predicted values for some day would be the
same as values in previous day of given time-series. The
last version stand for algorithm in which forecasted
values are determined based on logged data for the same
day-of-week in previous week.

Because of simplicity if this method it should be
used only in adaptive startup mode – this will cause less
false-positive alerts and more dynamically prediction. In
this mode profile is recalculated in regular intervals of
time, so predicted values refreshes with every oncoming
period of counter values registration. Figure 3 shows
graph with predicted values with 5 period interval of
method recalculation. It can be observed step changes of
predicted values in succeeding periods.

Y-axis on Fig 5 stands for minimal and maximal
border of permitted values for total number of TCP
packets. X-axis stands for sample number in forecasted
time-series

Figure 3: Naive method running in adaptive mode with 5
period interval of recalculation. Source: [35].

5 Implementation of Moving
Average Method

Moving average method is computed when Profile
Generator is run with '-m AVG' parameter set. Detailed
method periodicity and length of the horizon of values
used for calculation can be defined with '--avg'
parameter.

Similar to the naïve method – there are three
versions of periodicity: LAST, DAILY and WEEKLY.

USAGE OF HOLT-WINTERS MODEL AND… Informatica 36 (2012) 359–368 363

There is also required second parameter which stands for
number of values used to compute moving average. For
example 'DAILY,3' means that values from three
previous days would be used to compute prediction,
'LAST,5' means that average would be computed using
five previous values registered in log file.

6 Implementation of Autoregressive
Model

AR model can be calculated when run with '-m AR'
parameter. Calculations in this method are based on ar()
function from package stats in R environment. Function
ar() fits an autoregressive time series model to given data
and it is wrapper for the functions: ar.yw, ar.burg, ar.ols
and ar.mle. Setting 'method' parameter to ar() function
defines the method used to fit the model.

There are available four algorithms used to fit model
to given time-series: Yule-Walkers, Burgs, MLE
(maximum likelihood) and OLS (ordinary least squares).

7 Implementation of Holt-Winters
Model

The Holt-Winters model, called also the triple
exponential smoothing model, is a well-known adaptive
model used to modeling time series characterized by
trend and seasonality (see e.g. [20], [19] p. 248, [18],
[21], [22]). The model is sometimes used to modeling
and prediction of network traffic (see e.g. [23],[7], [8]).

For computing an Holt-Winters model Profile
Generator must be launched with parameter '-m HW'.
Optional parameter '--hw' can be set for defining model
periodicity and subset of data used to build model.

Implementation of Holt-Winters prediction method
in Profile Generator is based on function
HoltWinters() from package stats.
HoltWinters() functions requires time series data as
object of class 'ts' (time-series object). Object 'ts' is
created as follows:
ts_obj<-

ts(log.data[,column.log], frequency=pr
ofile.config.frequency, start=c(as.num
eric(log.first.date),log.first.sample.
no))
Function 'ts' gets in this implementation 3 parameters:
 data – a numeric vector of the observed time-series

values
 frequency – the number of observations per unit of

time
 start – the number of observations per unit of time.

This parameter can be a single number or a vector of
two integers – because of this in our implementation
human-readable date from log file is converted into
numeric value and second value is number of sample
of first observation in the day.

Next HoltWinters() function computes Holt-
Winters filtering of a given time series. Function tries to
find the optimal values of or or by minimizing the

squared one-step prediction error with optim()

function. Start values for L , P and S are inferred by
performing a simple decomposition in trend and seasonal
component using moving averages – it is realized with
decompose() function.

Figure 4 shows one weekly period (from January 1st
to January 7th) of testing data.

Figure 4: One period of testing data. Source: own
research.

Decompose() function decomposes a time series
into seasonal, trend and irregular components using
moving averages. For testing data decompose()
function returns values with trend, seasonal and random
component. Figure 5 shows those decomposed data.

Figure 5: Decomposed time series. Source: own research.

HoltWinters() function estimates HW model
smoothing parameters (alpha, beta and gamma), which
were for testing data as follows (see: Figure 6). Figure 7
shows Holt-Winters fitted to observed comparison.

Figure 6: Fitted Holt-Winters. Alpha=0.8140128; beta=0;
gamma=1. Source: own research.

364 Informatica 36 (2012) 359–368 M. Szmit et a.

Figure 7: Holt-Winters fitted to observed comparison.
Source: own research.

Fitted values compared to observed values for given
testing data:

Black line stands for observed data and gray line
stands for fitted model (in most range black line covers
gray).

When Holt-Winters model is computed, then future
prediction can be calculated simple with
predict.HoltWinters() function. Predict()
function takes in this case two arguments:

HoltWinters object with fitted model parameters
number of future periods to predict
Function returns a time series of the predicted values

for given future periods. For testing data values returned
from predict() function are shown on Figure 8.

Figure 8: Holt-Winters prediction. Source: own research.

8 Brutlags Algorihm
Holt-Winters method was used to detect network traffic
anomalies as described in the article [1]. In that paper,
the concept of “confidence bands” was introduced. As
described in the article, confidence bands measure
deviation for each time point in the seasonal cycle and
this mechanism bases on expected seasonal variability.

Illustration Fig 9 shows computed confidence bands
for HW time series prediction.

Figure 9: Brutlags confidence bands. Source: own
research.

Confidence band is computed by comparing last
period of collected network traffic values with fitted
Holt-Winters values for the same period. Subtract of real
and predicted values is next scaled with γ estimated by
Holt-Winters function – obtained value is finally
multiplied by scaling factor. Confidence band width is
controlled with '--scale' parameter – above example is
computed with scale parameter value of '2'. Brutlag
proposes sensible values of '--scale' parameter are
between 2 and 3. Particular lines stands for:

 black – observed values of time series
 medium gray – computed prediction of time

series with Holt-Winters model
 light gray – upper bound of Brutlags confidence

band
 gray – lower bound of Brutlags confidence band

9 Usage of Profile Generator
Generator can be launched like any script in CLI
(Command Line Interface) of operating system with R
software and necessary packages installed. Scripts
available at [24] were tested on few GNU / Linux
distributions: Fedora, Oracle Linux, CentOS, Debian,
and Ubuntu. Parameters for Profile Generator script are
validated against bellow BNF notation grammar:

ad_profilegenerator.r <mode>
<mode> ::= <m_help> | <m_generate>
<m_help> ::= -(-help|h)
<m_generate> ::= <log> <profile> <evaluator>

<pattern> <model_param> <method> <ahead> <scale>
<verbose>

<log> ::= -(-log|l) <<log_file_path>>
<profile> ::= -(-profile|p)

<<profile_file_path>> | <<empty>>
<evaluator> ::= -(-evaluator|e)

<<predicted_pattern_file_path>> | <<empty>>
<pattern> ::= -(-pattern|P)

<<pattern_file_path>> | <<empty>>
<model_param> ::= -(-save|s)

<<model_parameters_file_path>> | <<empty>>
<verbose> ::= -(-verbose|v) | <<empty>>
<ahead> ::= -(-ahead|a)

<ahead_val> | <<empty>>
<ahead_val> ::= WEEK|MONTH|<number>
<scale> ::= -(-scale|d)

<<scale_parameter>> | <<empty>>
<method> ::= -(-method|m) <pred_method> |

<<empty>>
<pred_method> ::= AVG <avg_param> |

NAIVE <naive_param> | AR <ar_param> | HW
<hw_param> | BRUTLAG <brutlag_param>

<avg_param> ::= --avg <avg_value> | <<empty>>

USAGE OF HOLT-WINTERS MODEL AND… Informatica 36 (2012) 359–368 365

<naive_param> ::= --naive <naive_value>
| <<empty>>

<ar_param> ::= --ar <ar_value> | <<empty>>
<hw_param> ::= --hw <hw_value> | <<empty>>
<brutlag_param>::= --brutlag <brutlag_value>

| <<empty>>
<avg_value> ::= (LAST|DAILY|WEEKLY),<number>
<naive_value>::= (LAST|DAILY|WEEKLY)
<ar_value> ::=

(DAILY|WEEKLY),(YW|BURG|MLE|OLE)
<hw_value> ::= (DAILY|WEEKLY)
<brutlag_value> ::= (DAILY|WEEKLY)
<number> ::=

<number><number>|0|1|2|3|4|5|6|7|8|9

Sense of each parameter impact is clarified under '--
help' parameter. At least one of
<profile>,<evaluator>,<pattern>, or <model_param>
parameter should be set for any sense of running script.

For example the simplest naïve prediction for real
data stored in 'log.csv' file with saving profile data to
'profile.csv' file can be launched with:
./ad_profilegenerator.r -l log.csv -p
profile.csv -m NAIVE --naive LAST

Prediction for one week for the same file based on
Holt-Winters algorithm with daily periodicity and with
'verbose' mode can be calculated with:
./ad_profilegenerator.r -l log.csv -p
profile.csv -m HW --hw DAILY –ahead
WEEK -v

10 Evaluator
Profile Evaluator is` the third part of Anomaly Detection
project. This script is designed for fast evaluation of
profile file compared to log file. This script calculates

simple statistic
M

MAE
for two files. Main application of

Evaluator is to check fit between pattern and current
logged values (with log and pattern file) or between
model and historical data (log and predicted pattern file).

MAE means Mean Absolute Error and M means
Mean.

n

t

n

t
ttt e

n
yy

n
MAE

1 1

1
ˆ

1
(12)

n

t
ty

n
M

1

1
(13)

where:

ty is real (current) value of counter in moment t

tŷ
is predicted (estimated) value of counter in

moment t

te is prediction error in moment t
Calculated values for each counter can be stored in
output file when '-s' parameter is set. Exemplary
comparison of real registered values with its prediction is
shown on Fig 10.

Figure 10: Real values compared to AVG - DAILY,3
prediction. Source: [35].

Profile Evaluator script is launched likewise Profile
Generator script. Profile Evaluator script parameters
grammar looks as follows:

ad_evaluator.r <mode>
<mode> ::= <m_help> |

<m_evaluate>
<m_help> ::= -(-help|h)
<m_evaluate> ::= <log> <pattern> <save> <skip>

<verbose>
<log> ::= -(-log|l) <<log_file_path>>
<pattern>::= -(-pattern|p)

<<pattern_file_path>>
<save> ::= -(-save|s)

<<save_maem_file_path>> <<empty>>
<skip> ::= -(-skip|S) <number> |

<<empty>>
<verbose> ::= -(-verbose|v) | <<empty>>

Evaluation of pattern stored in 'pattern.csv' file compared
with log data stored in 'log.csv' file can be done with:
./ad_evaluator.r -l log.csv -p
pattern.csv --verbose

11 Multilayer Perceptron
All our previous models can be classified as statistical
model assigned to one of two groups: Time Series
Models and descriptive models. The next step is usage of
artificial-intelligence methods, particularly Artificial
Neural Networks (ANN) which are implemented only as
offline models in the current state of our research.

Artificial Neural Networks are the mathematical
models inspired by biological neural networks. ANN
consist of an interconnected group of artificial neurons
operating in parallel. ANN function is determined by the
weights of the connections between neurons, which
usually change during a learning phase. There are a lot of
types and architectures of ANN according on their
purpose.

Because of the nature of IDS there are two main
groups of issues: pattern recognition, especially
classification and prediction. These issues correspond
with two main areas of application of ANN. In
consequence ANN can be used for intrusion detection in
two main ways: as a classifier which determine whether a
given object (for example: network packet, e-mail,
network flow) is normal or suspicious and as a predictor
which try to forecast a future values of system
parameters (for example: network traffic, CPU
utilization, number of network connections). There are a
lot of publications about usage different types of ANN
for network traffic prediction (See e.g.: [22], [23], [24],
[25]) or intruder detection (See e.g.: [19], [20], [21]).

366 Informatica 36 (2012) 359–368 M. Szmit et a.

In our current research we choose the simplest
artificial neural network – Multilayer Perceptron (MLP)
for prediction of traffic time series values.

An MLP is a network of neuron called perceptrons.
The perceptron is a binary classifier which compute a
single output from multiple inputs (and the 'bias', a
constant term that does not depend on any input value) as
function of its weighted sum.

n

i
ii bwxwy

1
0 (14)

where:
y is the output value
 is activation function
w is weight vector
x is input vector

b is bias

MLP is a feedforward artificial neural network model
consisting of layers of perceptrons, that maps sets of
input data onto a set of appropriate output (see: Figure
11).

Figure 11: Overall look of MLP. Source: own research.

There are a few possible MLP architectures which can be
used for time series prediction. One can use output layer
with single neuron and its output value can be interpreted
as the predicted value of the time series in the next
moment or output layer with a group of neurons, which
represent predicted time series values in a few next
moments. The input layer can consist of different number
of neurons too. When modelled time series has periodical
character it seems to be good idea to set the number of
input neuron equal to the period length or as multiple of
the length, but when the whole period consists of big
number of observations (i.e. our series day has 144 and
week – 1008 observations), the ANN constructed in this
way may be too big. Number of hidden layers and
number of neurons in the hidden layers may be arbitrarily
preselected or automatically set by ANN emulator.

In the research we decided to use the architectures
with input neurons concerning the investigated time
series value delayed by one, two, three measurements,
one day, one day and one measurement, one week and
one week and one measurement, one hidden layer and
one output neuron. The network architecture were
automatically optimized by adding input neurons (the
neurons that did affect to output value).

12 Results and Conclusions
We decided to collect network traffic data from a few
small- and middle-sized networks, described in the Table 1.

W1 Amateur campus network consisting of circa 25
workstrations. IDS has worked on the router
which act also as the gateway to the Intenret as
well as a few servers (www, ftp etc.).

T2 Campus network provided by middle-size IAP
(about 400 clients)

T3 A network in a block of flats; one of networks
mentioned in T1, containing about 20 clients

MM Home network connected to the campus amateur
network (with maximum speed of inbound
traffic set on the bandwidth manager to 4 Mbps.
The home network consist of five computers and
two servers protected by firewall.

II Local Area Network in small company (about 40
computers, two intranet servers).

Table 1: Investigated networks description
(detailed information about these networks and
descriptive statistics of collected time series are
described in [9]). Source: own research.

S
er

ie
s

P
ro

to
co

l

H
ol

t-
W

in
te

rs
MLP

Topology

M
A

E
/M

W1 TCP 45,92
2-1-1
(-1,-3)

46,18

W1 UDP 30,19
1-2-1
(-1)

31,73

W1 ICMP 31,27
4-2-1
(-1, -2, -3, -144)

34,54

T2 TCP 4,19
1-1-1
(-1)

4,23

T2 UDP 15,87
5-1-1
(-1, -2, -3, -144, -1009)

15,41

T2 ICMP 8,53
2-2-1
(-1, -2)

8,66

T3 TCP 4,11
1-1-1
(-1)

4,07

T3 UDP 15,45
1-1-1
(-1)

15,05

T3 ICMP 8,69
3-1-1
(-1, -3, -1008)

8,91

MM TCP 64,40
2-2-1
(-1, -2)

75,72

MM UDP 28,88
4-1-1
(-1, -3, -145, -1009)

30,12

MM ICMP 10,57
3-1-1
(-1,-2,-3)

10,93

II TCP 36,42
2-1-1
(-1,-2)

41,14

II UDP 49,55
5-1-1
(-1, -2, -3, -144, 1008)

48,42

II ICMP 110,65
1-1-1
(-1)

116,44

Table 2: Models fit. Source: own research.

USAGE OF HOLT-WINTERS MODEL AND… Informatica 36 (2012) 359–368 367

Detailed results (in percent) of Holt-Winters models from
the previous research and the MLP from the current one
are shown on the Table 2. The “topology” column
describes structure of particular MLP: number of neurons
in input, hidden and output layer (f.e. “3-2-1” means
“three input, two hidden and one output neuron”) and
information about delayed variables in input layer (f.e. “-
1, -145” means: delayed by one measurement on the first
input and delayed by 145 measurements on the second
one; because we use time series with 10-minutes interval
144 means one day and 1008 means one week).

As one can see ANN appears to be promising
solutions for traffic modelling. In the most of cases its fit
is similar to the Holt-Winters Model and to the other
models form our previous research. In the future works
we plan to develop appropriate anomaly detection
algorithm for MLP model and implement it as an
additional model in profile generator. Also we plan to
test another ANN models and architectures to improve
the fit of our models.

13 Direction for future research
At the moment the most needed improvement to out
program is to use a database for logging network traffic
parameters instead of flat comma separated values file.
For short logging time interval log file would grow
rapidly and in the course of time access to log data will
raise. Usage of database would have one other more
major advantage – obtaining a needed sub-collection of
log data will be easier and faster. Moreover by not using
file for log data there should be lower memory and disk
usage consumption – actually all data from log file are
loaded into memory during forecasts calculations. With
simple SQL queries there would be no need to do this –
only data for current counter (time series) are necessary.

Second awaited development is use of NetFlow /
IPFIX standard in storing and calculating network data.
By this it would be simple to collect network data from
many observation points. Afterwards device which
support IPFIX protocol can filter and aggregate data and
send it to Anomaly Detection server for further analysis.
Implementation of IPFIX protocol would be good
starting point for further improvements such as flow or
route analysis (see e.g. [26] [27]).

References
[1] J. D. Brutlag, “Aberrant Behavior Detection in

Time Series for Network Monitoring” 14th System
Administration Conference Proceedings, New
Orleans 2000, pp. 139-146

[2] J. Koziol, “Intrusion Detection with Snort”, Sams
Publishing, Indianapolis, 2003

[3] R. Rehman, “Intruder Detection with Snort”, New
Jersey 2003

[4] M. Skowroński, R. Wężyk, M. Szmit,
“Preprocesory detekcji anomalii dla programu
Snort” [inw:] Sieci komputerowe. T. 2. Aplikacje i
zastosowania, Wydawnictwa Komunikacji i
Łączności, Gliwice 2007, pp. 333-338

[5] M. Szmit, R. Wężyk, M. Skowroński, A. Szmit,
“Traffic Anomaly Detection with Snort” [in:]
Information Systems Architecture and Technology.
Information Systems and Computer
Communication Networks, Wydawnictwo
Politechniki Wrocławskiej, Wrocław 2007, pp. 181-
187

[6] M. Skowroński, R. Wężyk, M. Szmit, “Detekcja
anomalii ruchu sieciowego w programie Snort,”
„Hakin9” Nr 3/2007, pp. 64-68

[7] M. Szmit, A. Szmit, Usage of Modified Holt-
Winters Method in the Anomaly Detection of
Network Traffic: Case Studies, Journal of
Computer Networks and Communications, vol.
2012, DOI:10.1155/2012

[8] M. Szmit, A. Szmit, “Use of Holt-Winters method
in the analysis of network traffic. Case study”,
Springer Communications in Computer and
Information Science vol. 160, pp. 224-231.

[9] M. Szmit, “Využití nula-jedničkových modelů pro
behaviorální analýzu síťového provozu”, [in:]
Internet, competitiveness and organizational
security, TBU, Zlín 2011

[10] The R Project for Statistical Computing Homepage
http://www.r-project.org/

[11] P. Biecek, “Przewodnik po pakiecie R”, Gewert i
Skoczylas, 2011, Partly available on www
http://www.biecek.pl/R/Rwydanie2.pdf

[12] Ł. Komsta, “Wprowadzenie do środowiska R ”,
2004, Available:
http://cran.r-project.org/doc/contrib/Komsta-
Wprowadzenie.pdf

[13] P. Teetor, “R Cookbook”, O'Reilly Media, 2011
[14] P. Teetor, “25 Recipes for Getting Started with R”,

O'Reilly Media, 2011
[15] Szmit Maciej, Adamus Sławomir, Bugała

Sebastian, Szmit Anna: Anomaly Detection 3.0 for
Snort(R), [in:] SECURITATEA
INFORMAŢIONALĂ 2012, pp. 37-41, Laboratorul
de Securitate Informaţională al ASEM, Chişinău
2012

[16] M. Szmit, A. Szmit, Usage of Pseudo-estimator
LAD and SARIMA Models for Network Traffic
Prediction. Case Studies, Communications in
Computer and Information Science, 2012, Volume
291, 229-236, DOI: 10.1007/978-3-642-31217-5-25

[17] M. Szmit, Modelování, simulace a behaviorální
analýza procesů síťového provozu jako výzkumné
metody plánování efektivního využití síťového
provozu, [in:] Internet, competitiveness and
organizational security, pp. 139-144, Tomas Bata
University, Zlín 2012

[18] S. Gelper, R. Fried, C. Croux, “Robust forecasting
with exponential and Holt–Winters smoothing”
[in]: Journal of Forecasting, Volume 29, Issue 3,
pp. 285–300, April 2010

[19] B. Guzik, D. Appenzeller, W. Jurek,
Prognozowanie i symulacje. Wybrane zagadnienia,
Wydawnictwo AE w Poznaniu, Poznań 2004

368 Informatica 36 (2012) 359–368 M. Szmit et a.

[20] P. Goodwin, “The Holt-Winters Approach to
Exponential Smoothing: 50 Years Old and Going
Strong”, FORESIGHT Fall 2010 pp. 30-34

[21] E.S. Gardner, Jr., Exponential Smoothing: The state
of the art – Part II, International Journal of
Forecasting, 22/2006, pp. 637-666.

[22] R. J. Hyndman, A. B. Koehler, J.K. Ord, R. D.
Snyder, Forecasting with Exponential Smoothing:
The State Space Approach, Springer, Berlin 2008

[23] P. Cortez, M. Rio, M. Rocha, P. Sousa: Multi-scale
Internet traffic forecasting using neural networks
and time series methods, Expert Systems: The
Journal of Knowledge Engineering, (accepted
paper, in
press),http://onlinelibrary.wiley.com/doi/10.1111/j.
14680394.2010.00568.x/abstract

[24] AnomalyDetection Homepage
http://www.anomalygetection.info

[25] M. Skowroński, R. Wężyk, "Systemy detekcji
intruzów i aktywnej odpowiedzi", Master Thesis,
Politechnika Łódzka, 2004

[26] Byungjoon Lee, Hyeongu Son, Seunghyun Yoon,
Youngseok Lee, “End-to-End Flow Monitoring
with IPFIX” [in:] Lecture Notes in Computer
Science, 2007, Volume 4773/2007, pp. 225-234,
Available at:
http://www.springerlink.com/content/l868g0x63532
4129/

[27] Youngseok Lee, Seongho Shin, Taeck-geun Kwon,
“Signature-Aware Traffic Monitoring with IPFIX”
[in:] Lecture Notes in Computer Science, 2006,
Volume 4238/2006, pp. 82-91. Available at:
http://www.springerlink.com/content/w3127158213
74007/

[28] James W. Hong, Sung-Uk Park, Young-Min Kang,
Jong-Tae Park, “Enterprise Network Traffic
Monitoring, Analysis, and Reporting Using Web
Technology” [in:] Journal of Network and Systems

Management Volume 9, Number 1 (2001), pp. 89-
111.

[29] Miroslaw Malek, Bratislav Milic, Nikola
Milanovic, "Analytical Availability Assessment of
IT Services" [in:] Lecture Notes in Computer
Science, 2008, Volume 5017/2008, pp. 207-224.

[30] A. N. Nazarov, M. M. Klimanov, "Estimating the
informational security level of a typical corporate
network".

[31] J. Gómez, C. Gil, N. Padilla, R. Baños, C. Jiménez,
"Design of a Snort-Based Hybrid Intrusion
Detection System" [in:] Lecture Notes in Computer
Science, 2009, Volume 5518/2009, pp. 515-522.

[32] Joshua Ojo Nehinbe, "A Simple Method for
Improving Intrusion Detections in Corporate
Networks" [in:] Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, 2010, Volume
41, pp. 111-122.

[33] Nathalie Dagorn, "Cooperative Intrusion Detection
for Web Applications" [in:] Lecture Notes in
Computer Science, 2006, Volume 4301/2006, pp.
286-302.

[34] Kulesh Shanmugasundaram, Nasir Memon,
"Network Monitoring for Security and Forensics"
[in:] Lecture Notes in Computer Science, 2006,
Volume 4332/2006, pp. 56-70.

[35] S. Adamus, S Bugała, “Some aspects of network
anomaly detection”, Master Thesis (in Polish),
Technical University of Lodz, 2012

[36] M. Szmit, S. Adamus, S. Bugała, A. Szmit:
“Implementation of Brutlag's algorithm in Anomaly
Detection 3.0”, Proceedings of the Federated
Conference on Computer Science and Information
Systems, pp. 685–691, PTI, IEEE, Wrocław 2012,
IEEE Catalog Number CFP1285N-USB,
ISBN:978-83-60810-51-4

