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This paper presents results of analysis of few kinds of network traffic using Holt-Winters methods and 
Multilayer Perceptron. It also presents Anomaly Detection – a Snort-based network traffic monitoring 
tool which implements a few models of traffic prediction.

Povzetek: Predstavljena je metoda za modeliranje in iskanje anomalij v omrežju.

1 Introduction
In modern computer networks and high-loaded business 
or industrial systems there is a need of continuous 
availability of services and hosts (see e.g. [28], [29] [30] 
[34]). Inaccessibility of some mission critical can cause 
large impact to business processing continuity and this as 
a result would generate looses. Solution for such 
potential problems could be permanent and uninterrupted 
supervision on network health. This in turn can be 
achieved by implementation of some monitoring 
solution. Efficient monitoring method helps achieve high 
service availability and it will be a good idea to extend 
network security by tools such as Intrusion Detection 
System, Intrusion Prevention System and Unified Thread 
Managers (see e.g. [32] [33]). IDS is a tool which 
monitors and analyses in real time every aspect of 
inbound and outbound traffic of the network. Based on 
the analysis and based on one of the mechanisms 
responsible for threat detection creates reports of the 
abnormalities of network traffic. Most common 
mechanisms which detect threats used in IDS are misuse 
detection and anomaly detection, they are two different 
approaches to threat detection, first one relays on 
determination abnormal parameters and network traffic 
behavior, everything which we do not know is treated as 
normal, second one is a reverse of the first one, it treats 
everything which deviates from the standard is treated as 
potential threat. IDS on its own only reports and logs the 

abnormalities and does not take any further actions and 
his role is to report to administrator which is whom 
decides what action should be taken to prevent imminent 
danger which can be a cumbersome for the administrator 
with a large number of notifications. In order to relieve 
the amount of work of administrator, ideas of IDS have 
been extended by possibility to take defined actions 
immediately in case of detection of typical and schematic 
threats for the network, as a result IPS was created which 
is a variety of IDS which is compatible with tools such as 
firewalls and control its settings in order to counter the 
threat.

A typical representative of the above-described tool 
is Snort (see e.g. [2] [3] [31]), a software type of IDS/IPS 
based on mechanism which detects attack signatures 
originally intended only for the Unix platform, but now 
also transferred to the Windows operating system, 
developed on the principles of open source software 
licenses. Large capacity and performance are 
characteristics that gained snort popularity among users. 
Its modular design makes the software very flexible and 
thus can be easily adapted to the requirements of the 
currently analyzed network environments, and expand its 
functionality.

This article extends demonstration of the capabilities 
of the AnomalyDetection tool (basic overview of the tool 
was published in [15] and [36]) created for network 
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monitoring and future network traffic forecasting Snort-
based applications using the flexibility and easy 
extensibility (the ability to create own preprocessors and 
postprocessors) of this program. The preprocessor was 
developed to extends Snorts possibilities of network 
traffic analysis by anomaly detection mechanism [4]. 
Combination of the two mechanisms (i.e., misuse 
detection and anomaly detection) provides more 
comprehensive protection against all types of threats, 
even those partially abstract, such as the malice of 
employees. Tools included in the Anomaly Detection 3.0 
allows analysis of movement, its forecasting with help of 
its advanced statistical algorithms, evaluation of created 
forecasts, real-time monitoring and verifying that the 
individual volumes of network traffic parameters do not 
exceed the forecasted value and in case of exceeding the 
norms to generate the appropriate messages for the 
administrator who should check each alarm for potential 
threats. 

Current (3.0) version (see e.g. [5], [6]) of 
AnomalyDetection provides monitoring of following 
network traffic parameters: total number of TCP, UDP, 
and ICMP packets, number of outgoing TCP, UDP, and 
ICMP packets, number of incoming TCP, UDP, and 
ICMP packets, number of TCP, UDP, and ICMP packets 
from current subnet, number of TCP packets with 
SYN/ACK flags, number of outgoing and incoming 
WWW packets – TCP on port 80, number of outgoing 
and incoming DNS packets – UDP outgoing on port 53, 
number of ARP-request and ARP-reply packets, number 
of non TCP/IP stacks packets, total number of packets, 
TCP, WWW, UDP, and DNS upload and download 
speed [kBps].

Whole Anomaly Detection application consists of 
three parts: Snorts preprocessor, Profile Generator and 
Profile Evaluator. Data exchange between these parts is 
realized by CSV (Comma Separated Values) files (see: 
Figure 1).

Figure 1: Anomaly Detection data flow diagram. 
Source: [15].

Gray solid arrows means saving to file and black dotted –
reading from file. Particular files stands for:
 Log file – this file gathers all network traffic data 

collected with AD Snort preprocessor. Data from 

this file is next used by Profile Generator for 
network traffic forecasting.

 Profile file – this file stores network profile 
computed with Profile Generator. This file is 
generated by Profile Generator and used by AD 
preprocessor for detecting anomalies and generating 
alerts. After every passed time period preprocessor 
reads profile file and looks for data corresponding to 
current period. If value for some counter exceeds 
minimum (MIN) to maximum (MAX) range then 
alert is generated. 

 Predicted pattern file – predicted pattern file contains 
predicted future data for network – in fact this is the 
same file as profile file, but with single value for 
each counter. This is necessary for evaluating profile 
in AD Evaluator script. Structure of pattern file is 
the same as log file.

 Pattern file – this file is created like predicted pattern 
file, but network traffic profile stored in this file is 
historical data.

 Parameters file – this file stores information for 
method of profile generation and method parameters 
values. This file has different structure for every 
algorithm of profile generation.

 Structures of log and profile files can be found in 
[15]. Anomaly Detection have two main modes:

 data acquisition mode – only network traffic 
statistics are saved into log file. Only log file is 
created in this mode.

 alerting mode – instead of data acquisition there is 
also created profile file and current traffic statistics 
are compared to values stored in profile file. In this
mode log and profile file are required.

Pattern, predicted pattern and parameters files are always 
optional and they're useful for future research.

Anomaly Detection 3.0 can be downloaded from 
http://anomalydetection.info [24]. Preprocessor is 
available as source or RPM package. Both Profile 
Generator and Evaluator are available as R scripts –
additional R CRAN (free) software is required for use R 
scripts. Additional instalation, update and removal scripts 
are provided for Profile Generator and Evaluator.

2 Preprocessor
The main part of the Anomaly Detection system is a 
preprocessor written in C programming language, 
designed to enhance Snort possibilities to monitor, 
analyze and detect network traffic anomalies using 
NBAD (Network Behavioral Anomaly Detection) 
approach. The first version of AnomalyDetection 
preprocessor [6] for Snort version 2.4x was published in 
a Master’s Thesis [25] in 2006. Next the project has been 
developed (see e.g. [5] [7] [8] [9] [17]) till the current 
version 3.0 designed for Snort 2.9.x.

The main task of the preprocessor is anomaly 
detection, realized by using a simple algorithm based on 
data acquisition and subsequent comparison of the 
collected values with pattern. Preprocessor reads a 
predicted pattern of the network traffic (of all 
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parameters) from the ‘profile’ file and generates alert 
when the current value exceeds ‘minimum’ to 
‘maximum’ range for the current moment (the moment is 
given by day of the week, hour, minute and second 
corresponding to the intervals from the log file) from the 
profile file.

The profile can be generated ‘manually’, using 
external tools, or by a Profile Generator using 
appropriate model, based on historic values from the log 
file. The architecture affords easy implementation of 
different statistical models of the traffic and usage of 
different tools (i.e. statistical packets) for building 
profiles. Data from the profile is read in intervals defined 
by the user, there is only one line read into the structure 
at a time, this gives possibility to dynamically alter the 
profile file. In case of failure to find the correct entry in 
the profile, anomaly report module is automatically 
disabled to prevent generation of false positive alerts.

As mentioned above the current version of the 
preprocessor can work with adaptive network models 
through changes in the algorithm which loads profile 
information. Abandoned single network profile load for 
the load of single-line in specified time interval. Profile 
data is loaded at exact time of writing counter to the log 
file. This solution although increases the number of I/O 
operations adversely affecting the performance but also 
supports replacing another model during runtime without 
having to restart whole application. In addition, all the 
calculations have been relegated to third-party 
applications and the profile has been changed so that it 
contains the minimum and maximum value. This 
approach makes the preprocessor is more flexible and 
efficient, does not limit the user to use a single method to 
generate a network profile, the profile can be freely 
generated by any application while maintaining only the 
appropriate input format. Reporting anomalies was 
adjusted to snort standards by implementing a 
mechanism which reports events and handle these events 
by dedicated preprocessor rules. The user can freely 
adjust the rules to fit his needs, for example; the content 
of messages stored in the log, which is a priority or 
which action should be taken when matching rules. 
These changes make the application more customizable 
and user-friendly. Improving algorithm for packet 
acquisition by removing unnecessary comparisons and 
optimizations of other ones and increased capacity of 
counters made it possible to use preprocessor in networks 
with high bandwidth 1Gb and above.

The next function of the preprocessor is generating 
alerts. Preprocessor reads a predicted pattern of the 
network traffic (of all parameters) from the ‘profile’ file 
and generates alert when the current value exceeds 
‘minimum’ to ‘maximum’ range for the current moment 
(the moment is given by day of the week, hour, minute 
and second corresponding to the intervals from the log 
file) from the profile file.

The profile can be generated ‘manually’, using 
external tools, or by a Profile Generator using 
appropriate model, based on historic values from the log 
file. The architecture affords easy implementation of 
different statistical models of the traffic and usage of 

different tools (i.e. statistical packets) for building 
profiles. Data from the profile is read in intervals defined 
by the user, there is only one line read into the structure 
at a time, this gives possibility to dynamically alter the 
profile file. In case of failure to find the correct entry in 
the profile, anomaly report module is automatically 
disabled to prevent generation of false positive alerts.

3 Profile Generator
In previous versions of AnomalyDetection system profile 
generation module was included in preprocesor module –
because of this whole application was inflexible. The 
current version of Profile Generator (see e.g. [7] [8] [9]) 
have been separated into independent module which can 
be used to compute statistical models not only for AD 
preprocessor. Furthermore current version is based on R 
language / environment (The R Project for Statistical 
Computing)  (see e.g. [10] [11] [12] [13] [14]) which is 
more flexible and user-friendly than previous 
implementation in C language. R-project is an free, open 
source packet for statistical computing and graphics. In 
this implementation optional packages for R: tseries, 
quadprog, zoo and getopt are used.

The whole implementation of Profile Generator is 
divided into few parts. First part prepares data from log 
file for further calculations and other parts – depending 
on the given parameters – calculates future network 
traffic forecasts. At the end all computed values are 
written into proper files – based on given runtime 
parameters. Data flow in ProfileGenerator module is 
shown on Figure 2. 

Figure 2: Profile Generator data flow diagram. Source: 
[35].

Profile Generator is controlled with parameters passed 
for script execution – all script parameters are handled 
with getopt() function.

Particular columns of specification matrix contains 
respectively:

 long flag name
 short flag
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 parameters arguments
 arguments type
 description

Profile Generator actually implements five methods of 
profile file generation: moving average, naive method, 
autoregressive time series model, Holt-Winters model 
and Brutlags version of HW model (see e.g. [1] [17]). 
The value of dependent variable is given as follows:
Moving average:
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Holt-Winters model:
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where:
L is level component given by:
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P is trend component given by:
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S is seasonal component given by:
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Brutlag method:
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where:

L , P and S are the same as in Holt-Winters model
d is predicted deviation given by:

1)1(ˆ  ttt dyyd  (11)

where:

k is number of measurements in time series
t is moment in time

y


is predicted value of variable in moment t

yt is real (measured) value of variable in 

moment t

T is time series period
 is data smoothing factor

 is trend smoothing factor

 is the seasonal change smoothing factor

m is the scaling factor for Brutlags confidence 
bands

4 Implementation of Naïve Method 
Naïve method is the simplest method implemented in 
Profile Generator module. For computing profile with 
this method PG must be launched with '-m NAIVE' 
parameter. Additional '--naive' parameter can be used for 
defining detailed method 'periodicity'. Method implement 
three version of naïve prediction – LAST, DAILY and 
WEEKLY. For LAST version forecasted data are defined 
as the same as previous measurement. DAILY version 
means that predicted values for some day would be the 
same as values in previous day of given time-series. The 
last version stand for algorithm in which forecasted 
values are determined based on logged data for the same 
day-of-week in previous week.

Because of simplicity if this method it should be 
used only in adaptive startup mode – this will cause less 
false-positive alerts and more dynamically prediction. In 
this mode profile is recalculated in regular intervals of 
time, so predicted values refreshes with every oncoming 
period of counter values registration. Figure 3 shows 
graph with predicted values with 5 period interval of 
method recalculation. It can be observed step changes of 
predicted values in succeeding periods. 

Y-axis on Fig 5 stands for minimal and maximal 
border of permitted values for total number of TCP 
packets. X-axis stands for sample number in forecasted 
time-series

Figure 3: Naive method running in adaptive mode with 5 
period interval of recalculation. Source: [35].

5 Implementation of Moving 
Average Method 

Moving average method is computed when Profile
Generator is run with '-m AVG' parameter set. Detailed 
method periodicity and length of the horizon of values 
used for calculation can be defined with '--avg' 
parameter. 

Similar to the naïve method – there are three 
versions of periodicity: LAST, DAILY and WEEKLY. 
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There is also required second parameter which stands for 
number of values used to compute moving average. For 
example 'DAILY,3' means that values from three 
previous days would be used to compute prediction, 
'LAST,5' means that average would be computed using 
five previous values registered in log file.

6 Implementation of Autoregressive 
Model

AR model can be calculated when run with '-m AR' 
parameter. Calculations in this method are based on ar() 
function from package stats in R environment. Function 
ar() fits an autoregressive time series model to given data 
and it is wrapper for the functions: ar.yw, ar.burg, ar.ols 
and ar.mle. Setting 'method' parameter to ar() function 
defines the method used to fit the model.

There are available four algorithms used to fit model 
to given time-series: Yule-Walkers, Burgs, MLE 
(maximum likelihood) and OLS (ordinary least squares).

7 Implementation of Holt-Winters 
Model

The Holt-Winters model, called also the triple 
exponential smoothing model, is a well-known adaptive 
model used to modeling time series characterized by 
trend and seasonality (see e.g. [20], [19] p. 248, [18], 
[21], [22]). The model is sometimes used to modeling 
and prediction of network traffic (see e.g. [23],[7], [8]).

For computing an Holt-Winters model Profile 
Generator must be launched with parameter '-m HW'. 
Optional parameter '--hw' can be set for defining model 
periodicity and subset of data used to build model.

Implementation of Holt-Winters prediction method 
in Profile Generator is based on function 
HoltWinters() from package stats. 
HoltWinters() functions requires time series data as 
object of class 'ts' (time-series object). Object 'ts' is 
created as follows:
ts_obj<-

ts(log.data[,column.log], frequency=pr
ofile.config.frequency, start=c(as.num
eric(log.first.date),log.first.sample.
no))
Function 'ts' gets in this implementation 3 parameters:
 data – a numeric vector of the observed time-series 

values
 frequency – the number of observations per unit of 

time
 start – the number of observations per unit of time. 

This parameter can be a single number or a vector of 
two integers – because of this in our implementation 
human-readable date from log file is converted into 
numeric value and second value is number of sample 
of first observation in the day.

Next HoltWinters() function computes Holt-
Winters filtering of a given time series. Function tries to 
find the optimal values of  or  or by minimizing the 

squared one-step prediction error with optim()

function. Start values for L , P and S are inferred by 
performing a simple decomposition in trend and seasonal 
component using moving averages – it is realized  with 
decompose() function.

Figure 4 shows one weekly period (from January 1st 
to January 7th) of testing data.

Figure 4: One period of testing data. Source: own 
research.

Decompose() function decomposes a time series 
into seasonal, trend and irregular components using 
moving averages. For testing data decompose()
function returns values with trend, seasonal and random 
component. Figure 5 shows those decomposed data.

Figure 5: Decomposed time series. Source: own research.

HoltWinters() function estimates HW model 
smoothing parameters (alpha, beta and gamma), which 
were for testing data as follows (see: Figure 6). Figure 7
shows Holt-Winters fitted to observed comparison.

Figure 6: Fitted Holt-Winters. Alpha=0.8140128; beta=0; 
gamma=1. Source: own research.
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Figure 7: Holt-Winters fitted to observed comparison.
Source: own research.

Fitted values compared to observed values for given 
testing data:

Black line stands for observed data and gray line 
stands for fitted model (in most range black line covers 
gray).

When Holt-Winters model is computed, then future 
prediction can be calculated simple with 
predict.HoltWinters() function. Predict()
function takes in this case two arguments:

HoltWinters object with fitted model parameters
number of future periods to predict
Function returns a time series of the predicted values

for given future periods. For testing data values returned 
from predict() function are shown on Figure 8.

Figure 8: Holt-Winters prediction. Source: own research.

8 Brutlags Algorihm
Holt-Winters method was used to detect network traffic 
anomalies as described in the article [1]. In that paper, 
the concept of “confidence bands” was introduced. As 
described in the article, confidence bands measure 
deviation for each time point in the seasonal cycle and 
this mechanism bases on expected seasonal variability. 

Illustration Fig 9 shows computed confidence bands 
for HW time series prediction. 

Figure 9: Brutlags confidence bands. Source: own 
research.

Confidence band is computed by comparing last 
period of collected network traffic values with fitted 
Holt-Winters values for the same period. Subtract of real 
and predicted values is next scaled with γ estimated  by 
Holt-Winters function – obtained value is finally 
multiplied by scaling factor. Confidence band width is 
controlled with '--scale' parameter – above example is 
computed with scale parameter value of '2'. Brutlag 
proposes sensible values of '--scale' parameter are 
between 2 and 3. Particular lines stands for:

 black – observed values of time series
 medium gray – computed prediction of time 

series with Holt-Winters model
 light gray – upper bound of Brutlags confidence 

band
 gray – lower bound of Brutlags confidence band

9 Usage of Profile Generator
Generator can be launched like any script in CLI 
(Command Line Interface) of operating system with R 
software and necessary packages installed. Scripts 
available at [24] were tested on few GNU / Linux 
distributions: Fedora, Oracle Linux, CentOS, Debian, 
and Ubuntu. Parameters for Profile Generator script are 
validated against bellow BNF notation grammar:

ad_profilegenerator.r <mode> 
<mode> ::= <m_help> | <m_generate> 
<m_help> ::= -(-help|h) 
<m_generate> ::= <log> <profile> <evaluator> 

<pattern> <model_param> <method> <ahead> <scale> 
<verbose>  

<log> ::= -(-log|l) <<log_file_path>> 
<profile> ::= -(-profile|p)  

<<profile_file_path>> | <<empty>> 
<evaluator> ::= -(-evaluator|e) 

<<predicted_pattern_file_path>> | <<empty>> 
<pattern> ::= -(-pattern|P) 

<<pattern_file_path>> | <<empty>> 
<model_param> ::= -(-save|s) 

<<model_parameters_file_path>> | <<empty>> 
<verbose> ::= -(-verbose|v) | <<empty>> 
<ahead> ::= -(-ahead|a) 

<ahead_val> | <<empty>> 
<ahead_val> ::= WEEK|MONTH|<number> 
<scale> ::= -(-scale|d) 

<<scale_parameter>> | <<empty>> 
<method> ::= -(-method|m) <pred_method> | 

<<empty>> 
<pred_method> ::= AVG <avg_param> | 

NAIVE <naive_param> | AR <ar_param> | HW 
<hw_param> | BRUTLAG <brutlag_param> 

<avg_param> ::= --avg <avg_value> | <<empty>> 
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<naive_param> ::= --naive <naive_value> 
| <<empty>> 

<ar_param> ::= --ar <ar_value> | <<empty>> 
<hw_param> ::= --hw <hw_value> | <<empty>> 
<brutlag_param>::= --brutlag <brutlag_value> 

| <<empty>> 
<avg_value> ::= (LAST|DAILY|WEEKLY),<number> 
<naive_value>::= (LAST|DAILY|WEEKLY) 
<ar_value> ::= 

(DAILY|WEEKLY),(YW|BURG|MLE|OLE) 
<hw_value> ::= (DAILY|WEEKLY) 
<brutlag_value> ::= (DAILY|WEEKLY) 
<number> ::= 

<number><number>|0|1|2|3|4|5|6|7|8|9

Sense of each parameter impact is clarified under '--
help' parameter. At least one of 
<profile>,<evaluator>,<pattern>, or <model_param> 
parameter should be set for any sense of running script.

For example the simplest naïve prediction for real 
data stored in 'log.csv' file with saving profile data to 
'profile.csv' file can be launched with: 
./ad_profilegenerator.r -l log.csv -p 
profile.csv -m NAIVE --naive LAST

Prediction for one week for the same file based on 
Holt-Winters algorithm with daily periodicity and with 
'verbose' mode can be calculated with:
./ad_profilegenerator.r -l log.csv -p 
profile.csv -m HW --hw DAILY –ahead 
WEEK -v

10 Evaluator
Profile Evaluator is` the third part of Anomaly Detection 
project. This script is designed for fast evaluation of 
profile file compared to log file. This script calculates 

simple statistic 
M

MAE
for two files. Main application of 

Evaluator is to check fit between pattern and current 
logged values (with log and pattern file) or between 
model and historical data (log and predicted pattern file).

MAE means Mean Absolute Error and M means 
Mean.
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where:

ty is real (current) value of counter in moment t

tŷ
is predicted (estimated) value of counter in 

moment t

te is prediction error in moment t
Calculated values for each counter can be stored in 
output file when '-s' parameter is set. Exemplary 
comparison of real registered values with its prediction is 
shown on Fig 10.

Figure 10: Real values compared to AVG - DAILY,3 
prediction. Source: [35].

Profile Evaluator script is launched likewise Profile 
Generator script. Profile Evaluator script parameters 
grammar looks as follows:

ad_evaluator.r <mode> 
<mode> ::= <m_help> | 

<m_evaluate> 
<m_help> ::= -(-help|h) 
<m_evaluate> ::= <log> <pattern> <save> <skip> 

<verbose> 
<log> ::= -(-log|l) <<log_file_path>> 
<pattern>::= -(-pattern|p) 

<<pattern_file_path>> 
<save> ::= -(-save|s) 

<<save_maem_file_path>>  <<empty>> 
<skip> ::= -(-skip|S) <number> | 

<<empty>> 
<verbose> ::= -(-verbose|v) | <<empty>>

Evaluation of pattern stored in 'pattern.csv' file compared 
with log data stored in 'log.csv' file can be done with:
./ad_evaluator.r -l log.csv -p 
pattern.csv --verbose

11 Multilayer Perceptron
All our previous models can be classified as statistical 
model assigned to one of two groups: Time Series 
Models and descriptive models. The next step is usage of 
artificial-intelligence methods, particularly Artificial 
Neural Networks (ANN) which are implemented only as 
offline models in the current state of our research.

Artificial Neural Networks are the mathematical 
models inspired by biological neural networks. ANN 
consist of an interconnected group of artificial neurons 
operating in parallel. ANN function is determined by the 
weights of the connections between neurons, which 
usually change during a learning phase. There are a lot of
types and architectures of ANN according on their 
purpose. 

Because of the nature of IDS there are two main 
groups of issues: pattern recognition, especially 
classification and prediction. These issues correspond 
with two main areas of application of ANN. In 
consequence ANN can be used for intrusion detection in 
two main ways: as a classifier which determine whether a 
given object (for example: network packet, e-mail, 
network flow) is normal or suspicious and as a predictor 
which try to forecast a future values of system 
parameters (for example: network traffic, CPU 
utilization, number of network connections). There are a 
lot of publications about usage different types of ANN 
for network traffic prediction (See e.g.: [22], [23], [24], 
[25]) or intruder detection (See e.g.: [19], [20], [21]). 
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In our current research we choose the simplest 
artificial neural network – Multilayer Perceptron (MLP)  
for prediction of traffic time series values.

An MLP is a network of neuron called perceptrons. 
The perceptron is a binary classifier which compute a 
single output from multiple inputs (and the 'bias', a 
constant term that does not depend on any input value) as 
function of its weighted sum. 
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where:
y is the output value
 is activation function 
w is weight vector
x is input vector

b is bias

MLP is a feedforward artificial neural network model 
consisting of layers of perceptrons, that maps sets of 
input data onto a set of appropriate output (see: Figure 
11).

Figure 11: Overall look of MLP. Source: own research.

There are a few possible MLP architectures which can be 
used for time series prediction. One can use output layer 
with single neuron and its output value can be interpreted 
as the predicted value of the time series in the next 
moment or output layer with a group of neurons, which 
represent predicted time series values in a few next 
moments. The input layer can consist of different number 
of neurons too. When modelled time series has periodical 
character it seems to be good idea to set the number of 
input neuron equal to the period length or as multiple of 
the length, but when the whole period consists of big 
number of observations (i.e. our series day has 144 and 
week – 1008 observations), the ANN constructed in this 
way may be too big. Number of hidden layers and 
number of neurons in the hidden layers may be arbitrarily 
preselected or automatically set by ANN emulator.

In the research we decided to use the architectures
with input neurons concerning the investigated time 
series value delayed by one, two, three measurements, 
one day, one day and one measurement, one week and 
one week and one measurement, one hidden layer and 
one output neuron. The network architecture were 
automatically optimized by adding input neurons (the 
neurons that did affect to output value). 

12 Results and Conclusions
We decided to collect network traffic data from a few 
small- and middle-sized networks, described in the Table 1.

W1 Amateur campus network consisting of circa 25 
workstrations. IDS has worked on the router 
which act also as the gateway to the Intenret as 
well as a few servers (www, ftp etc.). 

T2 Campus network provided by middle-size IAP 
(about 400 clients)

T3 A network in a block of flats; one of networks 
mentioned in T1, containing about 20 clients

MM Home network connected to the campus amateur 
network (with maximum speed of inbound 
traffic set on the bandwidth manager to 4 Mbps. 
The home network consist of five computers and 
two servers protected by firewall. 

II Local Area Network in small company (about 40 
computers, two intranet servers). 

Table 1: Investigated networks description
(detailed information about these networks and 
descriptive statistics of collected time series are 
described in [9]). Source: own research.
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W1 TCP 45,92
2-1-1
(-1,-3)

46,18

W1 UDP 30,19
1-2-1
(-1)

31,73

W1 ICMP 31,27
4-2-1
(-1, -2, -3, -144)

34,54

T2 TCP 4,19
1-1-1
(-1)

4,23

T2 UDP 15,87
5-1-1
(-1, -2, -3, -144, -1009)

15,41

T2 ICMP 8,53
2-2-1
(-1, -2)

8,66

T3 TCP 4,11
1-1-1
(-1)

4,07

T3 UDP 15,45
1-1-1
(-1)

15,05

T3 ICMP 8,69
3-1-1
(-1, -3, -1008)

8,91

MM TCP 64,40
2-2-1
(-1, -2)

75,72

MM UDP 28,88
4-1-1
(-1, -3, -145, -1009)

30,12

MM ICMP 10,57
3-1-1
(-1,-2,-3)

10,93

II TCP 36,42
2-1-1
(-1,-2)

41,14

II UDP 49,55
5-1-1
(-1, -2, -3, -144, 1008)

48,42

II ICMP 110,65
1-1-1
(-1)

116,44

Table 2: Models fit. Source: own research.
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Detailed results (in percent) of Holt-Winters models from 
the previous research and the MLP from the current one 
are shown on the Table 2. The “topology” column 
describes structure of particular MLP: number of neurons 
in input, hidden and output layer (f.e. “3-2-1” means 
“three input, two hidden and one output neuron”) and 
information about delayed variables in input layer (f.e. “-
1, -145” means: delayed by one measurement on the first 
input and delayed by 145 measurements on the second 
one; because we use time series with 10-minutes interval 
144 means one day and 1008 means one week).

As one can see ANN appears to be promising
solutions for traffic modelling. In the most of cases its fit 
is similar to the Holt-Winters Model and to the other 
models form our previous research. In the future works 
we plan to develop appropriate anomaly detection 
algorithm for MLP model and  implement it as an
additional model in profile generator. Also we plan to 
test another ANN models and architectures to improve 
the fit of our models.

13 Direction for future research
At the moment the most needed improvement to out 
program is to use a database for logging network traffic 
parameters instead of flat comma separated values file. 
For short logging time interval log file would grow 
rapidly and in the course of time access to log data will 
raise. Usage of database would have one other more 
major advantage – obtaining a needed sub-collection of 
log data will be easier and faster. Moreover by not using 
file for log data there should be lower memory and disk 
usage consumption – actually all data from log file are 
loaded into memory during forecasts calculations. With 
simple SQL queries there would be no need to do this –
only data for current counter (time series) are necessary. 

Second awaited development is use of NetFlow / 
IPFIX standard in storing and calculating network data. 
By this it would be simple to collect network data from 
many observation points. Afterwards device which 
support IPFIX protocol can filter and aggregate data and 
send it to Anomaly Detection server for further analysis. 
Implementation of IPFIX protocol would be good 
starting point for further improvements such as flow or 
route analysis (see e.g. [26] [27]).
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