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ABSTRACT : The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in 
the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior 
properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their ad-
vantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differen-
tiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial 
number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an 
in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Al-
though their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence 
can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic ef-
ficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed. 
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INTRODUCTION 

Human mesenchymal stem cells (hMSCs) show promise 

in the field of regenerative medicine because they can 

modulate numerous incurable diseases. Mesenchymal stem 

cells, also called mesenchymal stromal cells, are a type of 

adult stem cell, that play a role in maintaining and repair-

ing various adult tissues and organs (Pittenger et al., 1999). 

hMSCs have emerged as a promising candidate for the 

cell-based therapy of various diseases, such as cardiovas-

cular diseases (Faiella & Atoui, 2016), diabetic nephropa-

thy (Liu & Tang, 2016), and diverse brain injuries including 

stroke, neural trauma, and heatstroke (Hsuan et al, 2016).  

MSCs are non-hematopoietic, multipotent cells that are 

present in adult marrow. They are capable of self-renewal 

and multilineal differentiation into various tissues of meso-

dermal origin, such as bone, cartilage, tendon, fat, heart, 

muscle, and marrow stroma (Pittenger et al., 1999); (Deans 

& Moseley, 2000). hMSCs show several superior proper-

ties for therapeutic use compared to other types of stem 

cells. For successful cell-based therapies with hMSCs, a 

substantial number of cells are needed, requiring extensive 

ex vivo cell expansion. Owing to prolonged ex vivo expan-

sion needed in the clinic to obtain a sufficient number of 

cells for therapy, long-term culture will likely evoke con-

tinuous changes in hMSCs, including cellular senescence 
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(Yang et al., 2012); (Park et al., 2005). Considering the 

strengths and weaknesses of hMSCs in ex vivo cultures 

would provide us with some novel approaches for over-

coming limitations to their therapeutic efficacy and maxi-

mize their clinical value.  
 

Advantages of MSCs over Other Stem Cell 
Types in Clinical Applications 

Among various stem cell types, hMSCs show several 

superior properties for clinical use in cell-based therapies. 

The benefits and limitations of each stem cell type are dis-

cussed and summarized in Table 1.  

 Embryonic stem cells (ESCs) are produced in the inner 

cell mass of the blastocyst during mammalian embryonic 

development, late in the first week after fertilization   

(Evans & Kaufman, 1981); (Boyle et al., 2006). They are 

considered pluripotent, and can give rise to the three em-

bryonic germ cell layers, and almost all types of cells 

found in an organism. Because of their pluripotency, they 

have attracted much attention. Some pluripotent human  

ESC lines are established by using cells obtained from the 

inner cell mass of an early-stage human embryo (Thomson 

et al., 1998). Many protocols have been established for the 

differentiation of human ESCs into numerous mature and 

functional types of cells (Lee et al., 2007). Nevertheless, 

broad clinical application of ESCs remains controversial 

owing to concerns about teratoma formation and ethical 

issues raised from the embryonic source of the tissues 

(Wang et al., 2016). 

Ethical controversies regarding ESCs led to the devel-

opment of induced pluripotent stem cells (iPSCs), this de-

velopment was recognized by Nobel Prize in Medicine in 

2012, only six years after its initial publication. iPSCs 

were first reprogrammed from terminally differentiated 

fibroblasts by the transduction of four defined transcription 

factors, such as Oct3/4, Sox2, c-Myc and Klf4 or Nanog or 

Lin28 (Takahashi & Yamanaka, 2006); (Takahashi et al., 

2007); (Zhang et al., 2016). Like ESCs, iPSC also show 

great pluripotency. Recently, several promising protocols 

have been developed for differentiating human iPSCs into 

Table 1. Advantages and disadvantages of various stem cells for cell-based therapy 

Cell type Advantage Disadvantage 

MSC 

Availability 
Easy to isolate and expand 
Multilineal differentiation 
Immunosuppressive 
Both of the autograft and allograft are possible  
Free from ethical issues 
Limited replicative lifespan 
(safe from malignant formation) 

Limited replicative lifespan 
(alteration of various functions including 
multipotency) 

ESC Pluripotent (can differentiate into almost all types of cells) 
Ethical / political issues 
Risk of teratoma formation after trans-
plantation 

iPSC 
Pluripotent as ESCs 
Can be derived from somatic cells 

Risk of teratoma formation after trans-
plantation 

MSC: mesenchymal stem cell; ESC: embryonic stem cell; iPSC: induced pluripotent stem cell. 
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various types of cells (Tian et al., 2015); (Xia et al., 2013); 

(Carpenter et al., 2012). Even though iPSCs are attractive 

candidates for cell-based therapy, their use is limited by 

the associated risk of teratoma formation after transplanta-

tion, which is also a concern in ESC applications. Ge-

nomic instabilities and epigenetic variations of iPSs, such 

as aneuploidy (Amps et al., 2011), subchromosomal copy 

number variations (Laurent et al., 2011); (Martins-Taylor 

et al., 2011); (Mayshar et al., 2010), single nucleotide vari-

ations (Cheung et al., 2011); (Young et al., 2012), varia-

tions in X Chromosome inactivation (Wutz et al., 2012), 

and aberrant DNA methylation (Nazor et al., 2012), have 

been reported. These variations exist between iPSC lines, 

between iPSC and ESC lines, between different passages 

of the same iPSC lines, and even between different popula-

tions at a specific passage of the same iPSC line. Such 

variations potentially affect the properties of iPSCs and 

undermine their utility in cell-based regenerative medicine 

(Liang & Zhang, 2013). 

MSCs afford several advantages for clinical use, such as 

availability and ease of harvesting; multilineal differentia-

tion potential; potent immunosuppressive effects; safety 

without any possibility of malignant transformation after 

infusion of allogeneic cells, which is common in the case 

of ESCs and iPSCs; and the lack of ethical issues that oc-

cur with the application of human ESCs. One of the most 

promising benefits of MSCs for cell-based therapy is their 

availability and ease of harvesting. MSCs can be isolated 

and expanded from the stroma of virtually all organs such 

as bone morrow, adipose tissue (Zuk et al., 2002), umbili-

cal cord blood (Romanov et al., 2003), peripheral blood 

(Chong et al., 2012), amniotic fluid (In 't Anker et al., 2003) 

and placenta (In 't Anker et al., 2004). The most preferred 

and abundant sources are bone marrow and subcutaneous 

adipose tissue (Crisan et al., 2008); (Turinetto et al., 2016). 

Upon isolation, hMSCs are characterized by their ability to 

adhere to the surface of plastic plates and fibroblast-like 

morphology. Their overall isolation procedure is relatively 

simple compared to that for other types of stem cells (Pit-

tenger et al., 1999). Isolated and expanded ex vivo cells can 

be differentiated into osteocytes, chondrocytes, adipocytes, 

myocytes, and marrow stroma (Pittenger & Martin, 2004). 

Another characteristics of hMSCs that contributes to their 

therapeutic effect is that they secrete various soluble 

growth factors and cytokines that act in endocrine and 

paracrine fashions, in turn affecting their therapeutic effect 

(Monsel et al., 2015).  

Rodent and human MSCs are advantageous owing to 

their immunomodulatory characteristics in both in vitro 

and in vivo transplant models, allowing them to act as a 

universal reserve of donor cells (Atoui & Chiu, 2012). 

MSCs’ unique immunotolerant phenotype is due to their 

special distribution of surface markers that allows them to 

escape detection from immune cells. They possess low 

levels of MHC class I, CD40, CD80, and CD86, with no 

MHC class II molecules (Pittenger et al., 1999); (LeBlanc 

et al., 2003); (Faiella & Atoui, 2016). This immunomodu-

latory phenotype of MSCs permits the potential to use al-

logeneic cells for patients.  

MSCs have limited ability to proliferate in cultures. Se-

nescence activations were observed in hMSCs from differ-

ent sources, such as bone marrow (Park et al., 2005); 

(Minieri et al, 2015), dental pulp (Muthna et al., 2010), 

cord blood (Ko et al., 2012), and endometrium (Burova et 

al., 2013). The limited replicative lifespan of MSCs gua-

rantees safety from the threat of malignant transformation 

after transplantation. However, this limited cell lifespan 

can be a double-edged sword for clinical applications of 

hMSCs, as discussed later. 

Fig. 1 summarizes all the advantageous characteristics 

of hMSCs. 

 

Prerequisites for Successful Cell  
Therapy with MSCs 
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For successful cell-based therapies, stem cells must be 

able to differentiate into specific targeting cells, or must 

act via paracrine mechanisms. Their extraction and isola-

tion must be feasible and transplantation into humans must 

be safe and effective. Furthermore, to maximize the thera-

peutic effects of cell-based therapy, a substantial number 

of cells is essential, requiring extensive ex vivo cell expan-

sion for most cell types (Faiella & Atoui, 2016). The use of 

hMSCs in regenerative medicine strategies based on cell 

therapy relies on the ability of MSCs to proliferate readily 

and produce differentiated cells that can substitute for the 

targeting affected tissue. Therefore, it should be considered 

whether, after the ex vivo expansion necessary before their 

therapeutic use and transplantation, these cells still possess 

the properties of stem cells namely, self-renewal and multi-

lineal differentiation.  

 

Factors that Limit the Stemness of MSCs: 
Cellular Senescence  

Although MSCs have been widely applied in cell-based 

therapy, their clinical usefulness remains limited. MSCs 

from different donors are heterogeneous. Cell passages and 

culture conditions in vitro affect the cell phenotype (Liu 

and Tang, 2016); (Turinetto et al., 2016); (Kretlow et al., 

2008). Furthermore, MSC’s cellular senescence signifi-

cantly impairs their proliferation and differentiation poten-

tial (Park et al., 2005); (Turinetto et al., 2016). Aging af-

 
Fig. 1. Advantages of human mesenchymal stem cells in cell-based therapy. hMSCs have several advantages for cli-

nical use, such as the availability and ease of harvesting, multilineal differentiation potential, potent immunosup-

pressive effects, safety without any possibility of malignant transformation after infusion of allogeneic cells which 

is common in the case of ESCs and iPSCs, and the lack of ethical issues that occur with the application of human 

ESCs. Limited lifespan of MSCs can guarantee the safe from malignancy, but can alter various cell functions in-

cluding proliferation, differentiation and migration abilities that can limit the clinical usage. To expand the 

lifespan of hMSCs and maximize their clinical usefulness by improving their performance, various trials are under 

investigation. 
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fects the cell subpopulation dynamics and diminishes the 

function of MSCs (Duscher et al., 2014); (Wang & Ren, 

2014). The use of hMSCs is expected to be useful for treat-

ing degenerative diseases in elderly populations; however, 

the limited potential of the MSCs of aged patients can limit 

the efficacy of an autologous cell-based therapeutic ap-

proach.  

Cellular senescence aggravates various functions of 

hMSCs. With senescence, hMSCs show decreased differ-

entiation potential and altered commitment between osteo-

genic and adipogenic lineage determination, although the 

direction of this shift remains controversial. Some studies 

reported that the osteogenic activity of hMSCs were re-

duced according to their ex vivo culture (Banfi et al., 2000). 

On the other hand, the osteogenic potential of senescent 

hMSCs remained the same or even increased in some stud-

ies (Wagner et al., 2008); (Bruder et al., 1997); (Digiro-

lamo et al., 1999). Some studies reported that senescent 

hMSCs reveal the impaired balance between osteogenic 

differentiation to the osteogenic versus adipogenic lineages 

(Kim et al., 2012).  

The altered immunoregulatory activities of hMSCs dur-

ing cellular senescence also influence the therapeutic po-

tentials of cells (Sepulveda et al., 2014). Studies related to 

the altered immunomodulatory functions of senescent 

hMSCs strongly support the idea that in vivo administra-

tion of senescent hMSCs could evoke an inflammatory 

response at a systemic level and lead to sepsis (Turinetto et 

al., 2016).  

Proper cell migration toward relevant stimuli is also an 

essential factor for the functional engraftment of hMSCs 

into diseased loci. Another study demonstrated altered cell 

migration due to changes in MSC surface markers during 

prolonged cultivation, which can diminish the homing 

ability of hMSCs (Jung et al., 2011).  

Despite arrested growth upon senescence being a potent 

tumor suppressor mechanism, which can protect hMSCs 

from malignant transformation after transplantation, para-

doxically, senescence itself can affect the paracrine factors 

secreted from cells to evoke the tumor-promoting function 

(Liu et al., 2007). These studies suggest that the senes-

cence of hMSCs increases the complexity of paracrine 

communication among cells and further enhances their 

detrimental tumor-promoting effect.  

 

Trials to Overcome Senescence of MSCs 

Various approaches have been tested to expand the 

lifespan of hMSCs and maximize their clinical usefulness 

by improving their performance.  

The ectopic expression of telomerase in hMSCs is one 

way to combat the replicative senescence of cells (Park et 

al., 2008); (Tang et al., 2013). However, this approach can 

be dangerous owing to the possibility of malignant trans-

formation of cells. Therefore, gene engineering of telomer-

ase in hMSCs should be avoided in clinical applications. 

Allopathic treatments to solve the phenotype of senes-

cence in hMSCs may also be employed. The decreased 

expression of histone deacetylases is one of the phenotypes 

of senescent MSCs; therefore, the use of a histone acetyl-

transferase inhibitor prevents the replicative senescence of 

MSCs (Jung et al., 2010). Additionally, rapamycin has 

been shown to reverse the senescent phenotype and im-

prove immunoregulation (Gu et al., 2016).  

Cellular senescence can be reduced by modulating the 

oxidative stress level because oxidative stress is one of the 

main causes of senescence. Various attempts have been 

made to reduce oxidative stress during the in vitro culture 

of hMSCs. Some studies suggested that MSCs cultured 

under hypoxic conditions during in vitro culture can escape 

from senescence and show prolonged lifespan (Fahrer et 

al., 2007); (Jin et al., 2010). Antioxidants can be another 

effective and safe alternative to overcome the senescence 

of hMSCs. Reducing oxidative stresses by adding anti-

oxidants, such as ascorbic acids or N-acetylcysteine has 

been shown to prolong the replicative lifespan of human 
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cells including hMSCs in vitro (Kashino et al., 2003); (Lin 

et al., 2005).  

A separate attempt to maintain hMSC’s potential for 

self-renewal and differentiation by modifying the medium 

compositions showed limited success (Gharibi and Hughes, 

2012). Medium supplementation with fibroblast growth 

factor-2, platelet-derived growth factor-BB, ascorbic acid, 

and epidermal growth factor increased the proliferation 

potential of cells and increased their lifespan. However, the 

differentiation potential could not be maintained with me-

dium supplementation (Gharibi and Hughes, 2012).   

Many trials are currently aiming to overcome the limited 

lifespan of hMSCs. This limitation is a double-edged 

sword for clinical applications. On the one hand, it solves 

the problem of malignancy; on the other hand, it limits 

various functions that mitigate the therapeutic effect, in-

cluding self-renewal, multi-potency, migration, and im-

munomodulatory functions. Despite the need for more 

studies to improve the conditions of ex vivo expansion of 

cells, hMSCs are still considered a safe and effective 

source for cell-based therapy for numerous diseases. 
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