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Abstract—While WiFi was initially designed as a local-area
access network, mesh networking technologies have led to in-
creasingly expansive deployments of WiFi networks. In urban
environments, the WiFi mesh frequently supplements a num-
ber of existing access technologies, including wired broadband
networks, 3G cellular, and commercial WiFi hotspots. It is an
open question what role city-wide WiFi deployments play in
the increasingly diverse access network spectrum. We study the
usage of the Google WiFi network deployed in Mountain View,
California, and find that usage naturally falls into three classes,
based almost entirely on client device type, which we divide
into traditional laptop users, fixed-location access devices, and
PDA-like smartphone devices. Moreover, each of these classes of
use has significant geographic locality, following the distribution
of residential, commercial, and transportation areas of the city.
When comparing the network usage of each device class, we find
a diverse set of mobility patterns that map well to the archetypal
use cases for traditional access technologies. To help place our
results in context, we also provide key performance measure-
ments of the mesh backbone and, where possible, compare them
to those of previously studied urban mesh networks.

Index Terms—Mesh networking, WiFi

I. INTRODUCTION

Municipal wireless networks have generated a great deal

of excitement and controversy in recent years, as the promise

of nearly ubiquitous Internet access for WiFi-capable devices

has led many city governments and private entities to propose

and deploy city-wide mesh networks. At the same time,

the number and type of WiFi-capable devices have exploded

due to the increasing popularity of laptops and WiFi-capable

smartphones like the Apple iPhone. Yet mesh WiFi networks

are far from the only networks on which such devices operate.

In urban environments, the WiFi mesh frequently supplements

a number of existing access technologies, including wired

broadband networks, 3G cellular, and WiFi hotspots.

Given the plethora of alternative access technologies, the

long-term economic feasibility of metropolitan mesh networks

appears uncertain. In particular, it is unclear what role city-

wide WiFi deployments play from a user’s perspective, in-

dependent of any particular network agreement or charging

policy. A great deal of academic research has focused on

developing and improving wireless mesh protocols, and studies
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of deployed wireless networks have recently begun appearing

in the literature [3], [7], [10], [11]. These studies focus almost

exclusively on the operation and effectiveness of the mesh

backbone, however; to the best of our knowledge, none have

yet to report upon how clients use a metropolitan network.

We study the usage of the Google WiFi network, a

freely available outdoor wireless Internet service deployed

in Mountain View, California, consisting of over 500 Tropos

MetroMesh pole-top access points. Due to its location in the

heart of Silicon Valley and no-cost access policy, we expect

usage in the Google network to represent an optimistic view

of potential client demand in other urban networks. Using 28

days of overall network statistics in Spring 2008, we analyze

the temporal activity of clients, their traffic demands on the

network, the mobility of users as they roam through the city,

and the diversity and coverage of the network.

We find that network usage uniquely blends the characteris-

tics of three distinctly different user populations into a single

metropolitan wireless network. Figure 1 shows one dramatic

example of this usage variation: when plotting bytes trans-

ferred as a function of session length (defined as the period

between association and disassociation at an access point),

three clusters emerge: one cluster of short, light sessions at the

left axis, another cluster of extremely long and heavy sessions

at the far right, and a third that spans the full range of session

lengths and sizes. If one classifies these sessions by device

type as shown in the figure, three distinct user populations

also emerge. Local residents and businesses use it as a static

WiFi mesh access network, a substitute for DSL or cable

modem service. Laptop users have mobility and workload

patterns reminiscent of campus and other public hotspot WiFi

networks (labeled hotspot in the figure). Finally, smartphone

users combine the ubiquitous coverage of cellular networks

with the higher performance of wireless LANs.

Each of these classes has significant geographic locality

in the Google WiFi network, following the distribution of

residential, commercial, and transportation areas of the city.

Additionally, we observe a diverse set of mobility patterns that

map well to the archetypal use cases for traditional access

technologies. Because the Google network is a production

network—as opposed to a research prototype—user privacy

is paramount. Hence, our study focuses exclusively on client

aggregates; we make no attempt to isolate or analyze the traffic

or mobility patterns of any particular client. Moreover, we

limit our traffic analysis to high-level application classification

based upon protocol and port numbers. Finally, because we do

not collect any client-side information, we report exclusively

upon the behavior of clients that successfully connect to

the Google network; potential clients that are either unable

(perhaps due to a high rate of motion or poor signal strength

at their location) or choose not to connect are not represented.



2 IEEE/ACM TRANSACTIONS ON NETWORKING

1k

10k

100k

1M

10M

100M

1G

10G

100G

 0  5  10  15  20  25

B
yt

es
 tr

an
sf

er
re

d 
pe

r 
se

ss
io

n

Session length, hours

Hotspot
Modem

Smartphone

Fig. 1. Bytes transferred as a function of session length during a typical
24-hour period.

While not the focus of our study, we also measure several

key metrics of the network backbone. These measurements

suggest that the Google network is likely better provisioned

than other networks studied in the literature. Hence, we refrain

from attempting to generalize our conclusions. Instead, we

provide direct comparisons to existing studies when possible,

and hope that our study will encourage researchers and net-

work operators to report upon other mesh deployments.

II. RELATED WORK

The Google WiFi network represents one of the latest in

various community, commercial, and rural efforts to use com-

modity 802.11 hardware to construct mesh backbone networks.

In addition to many studies that evaluate the performance of

long-distance 802.11b links [13], [32], [36], work in mesh

network deployment has encompassed nearly all aspects of

network design, including network architecture [7], MAC

protocol development [26], routing protocol design [8], and

network planning and provisioning [31].

Studies of urban WiFi mesh networks inform work in

network design, implementation, and deployment. Aguayo

et al.captured link-level measurements of the Roofnet com-

munity network in Cambridge, MA, to evaluate the network

performance and reliability [3]. One of the earliest deploy-

ments, Roofnet differs from most urban networks in that the

Roofnet nodes are themselves clients—each apartment houses

both users and a roof-top repeater. Most modern urban WiFi

networks have a separate mesh infrastructure maintained by

the network provider; clients connect to the infrastructure but

do not play a role in forwarding. Camp et al.used one such

urban mesh network, the Technology For All (TFA) network

in Houston, TX, to characterize how control and management

traffic degrade network performance [11], to develop models

to correlate link characteristics with application performance,

and to evaluate AP placement topologies to increase through-

put [12]. Robinson et al.introduced low-overhead techniques

for assessing mesh network geographic coverage for planning,

evaluating the techniques on both TFA as well as the Google

WiFi network we study in this paper [28]. Finally, Brik et al.

use passive and active measurements of a commercial mesh

network in downtown Madison, WI, to evaluate the mesh

planning, deployment, routing, and user experience [10].

Most previous studies has focused on the networks

themselves—as opposed to the users, which are the focus

of this study. The recent MadMesh study characterized some

aspects of user activity, however, and we make comparisons

when possible in Section IV. Some metrics, such as the daily

variation in the number of users, are in reasonable agreement,

suggesting that at least some aspects of the Google WiFi

network generalize beyond the uniqueness of being deployed

in the heart of Silicon Valley. In backbone measurements like

those presented in Section VI, on the other hand, the Google

WiFi network differs substantially from MadMesh. Hence, we

hesitate to generalize beyond the one network we evaluated.

The “modem” users in our study are similar to users of com-

munity and commercial backbone mesh networks exemplified

by Roofnet [3]. Community and commercial mesh networks

often serve as multi-hop transit between homes, businesses,

and public locales and the Internet. Mobility is possible, but

not necessarily the primary goal; as such, network use tends

to be similar to use with DSL or cable modem service. Their

application workloads and network utilization are most useful

as a point of comparison with the other two user populations

in our study; they only exhibit mobility to the extent to which

their AP associations flap over time.

The “hotspot” user base in our study most closely resembles

user populations of single-hop access wireless LANs, such as

university campus networks, both in the dominant applications

used and the relatively limited user mobility. Numerous studies

of indoor 802.11 networks have covered a variety of envi-

ronments, including university departments [14], [15], [33],

corporate enterprises [6], and conference and professional

meetings [5], [18], [19], [22], [25], [29]. These studies have

focused on network performance and reliability as well as user

behavior from the perspectives of low-level network character-

istics to high-level application use. With their more extensive

geographic coverage, larger-scale studies of outdoor 802.11

networks—primarily on university campuses—have provided

further insight into mobility and other user behavior [9], [16],

[17], [20], [23], [24], [30], [35].

The dominant presence of smartphone users represents

perhaps the most interesting aspect of the Google WiFi user

population. WiFi smartphones represent an emerging market

early in its exponential adoption phase, yet it is the WiFi

user population that is the least well understood. Tang and

Baker’s detailed study of the Metricom metropolitan wire-

less network [34] is most closely related to the smartphone

population of the Google WiFi network. Metricom operated

a Ricochet packet radio mesh network covering three major

metropolitan areas. The study covers nearly two months of

activity in the San Francisco Bay Area, and focuses on network

utilization and user mobility within the network. The data

rates were much lower then, however, and smartphones were

far less prevalent than they are today. Presumably cellular

providers measure cellular data characteristics extensively, but

such results are typically considered confidential.

Finally, we note that rural mesh networks in developing

regions typically support targeted services [27], such as audio
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Fig. 2. Google WiFi network. City regions are discussed in Section VI.

and video conferencing to provide remote medical treatment,

and consequently have application characteristics specific to

their intended use.

III. THE NETWORK

The Google WiFi network is a free, outdoor wireless

Internet service deployed in Mountain View, CA. The network

has been continuously operational since August 16, 2006,

and provides public access to anyone who signs up for an

account. The network is accessible using either traditional and

secure (WPA/802.1x) 802.11 clients. Aside from the standard

prohibitions of SPAM, hacking, and other inappropriate ac-

tivities, Google does not limit the types of traffic that can

be transmitted over the network.1 However, it does rate limit

individual clients to 1 Mb/sec.

A. Network structure

The network consists of over 500 Tropos MetroMesh pole-

top access points. Each Tropos node has a distinct identifier

and a well-known geographic location; Figure 2 shows the

approximate location of the Tropos nodes. Each Tropos node

serves as an access point (AP) for client devices, as well as

a relay node in a wide-area back haul mesh that provides

connectivity to the wired gateways. The topology of the

Tropos mesh network is constructed dynamically through a

proprietary Tropos routing algorithm. A pure mesh network of

this scale exhibits significant traffic congestion at nodes close

1The complete Google WiFi Terms of Service are available at
http://wifi.google.com/terms.html.
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Fig. 3. CDF of the average mesh degree of Tropos APs (x axis in log scale).

to the gateway router, however. To alleviate the congestion,

the Google WiFi network is hierarchically clustered around

approximately 70 point-to-point radio uplinks that serve as a

fixed long-haul backbone for the mesh network.

Traffic is eventually routed to one of three distinct wired

gateways spread across the city, which then forwards the traffic

to the main Google campus where it is routed to a centralized

authorization and authentication gateway. Google provides a

single sign-on authentication and authorization service, but,

at the link layer, 802.11 client devices continue to associate

with each Tropos AP individually. All Tropos nodes support

the RADIUS accounting standard [21] and provide periodic

updates to the central server.

1) Mesh connectivity: While not the main focus of our

study, we collected basic information about the mesh topology

through an administrative interface exported by the Tropos

nodes. The relatively dense deployment of APs provides

significant path diversity. Figure 3 shows three distinct ways

to measure the average Mesh degree.

When considering neighbors which provide acceptable link

quality (SNR ratio of 14 dB or better [31]), only 5% of APs

have a unique neighbor; the median AP can communicate with

at least four neighboring APs, and the most well-connected

10% have more than eight potential next hops. In comparison

to previously studied networks, the Google network is gener-

ally more dense than MadMesh [10]—likely due to the use

of directional antennae in the Madison deployment—but not

nearly as dense as the (much smaller) Roofnet network [3].

We observe, however, that very few of the potential links

in the Google backbone are used in practice. The ‘active link’

curve plots only the links which are being used by routes in

the network. For most access points, all routes use the same

link; i.e., most APs are leaves in the topology. (There is a very

small fraction of nodes with zero mesh links—these are nodes

with a point-to-point uplink, but no neighbors in the mesh.)

The substantial difference between the number of potential

links and those actively in use suggests that multi-path routing

algorithms could potentially provide better bandwidth. Simi-

larly, a third line plots ‘all links,’ which include all possible

links that receive at least one beacon in a measurement inter-

val, including ones with low SNR values that cannot guarantee
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Field Units

Acct-Status-Type Start/Update/Stop
NAS-Identifier Tropos ID string
Calling-Station-Id client MAC address
Acct-Session-Time seconds
Tropos-Layer2-Input-Octets (TLIO) bytes
Tropos-Layer2-Output-Octets (TLOO) bytes
Tropos-Layer2-Input-Frames (TLIF) frames
Tropos-Layer2-Output-Frames (TLOF) frames
Acct-Input-Octets (AIO) bytes
Acct-Output-Octets (AOO) bytes
Acct-Input-Packets (AIP) packets
Acct-Output-Packets (AOP) packets

TABLE I
PARTIAL CONTENTS OF A RADIUS LOG RECORD.

high delivery ratios. While such links are poor choices for

traditional routing algorithms, opportunistic routing techniques

[1] might be able to take advantage of them. The network does

not currently attempt to exploit either of these opportunities.

2) Access devices: To extend the network coverage indoors,

Google recommends the use of WiFi modems, or bridges,

which are typically outfitted with more capable antennas than

a standard 802.11 client. WiFi modems often provide a wired

Ethernet connection or serve as an in-home wireless AP,

allowing the connection of multiple physical machines. While

Google does not manufacture or sell WiFi modems, it has

recommended two particular WiFi modems to users of the

Mountain View network. In particular, Google suggests the

PePLink Surf and the Ruckus MetroFlex. Additionally, in

certain portions of the city, Google has deployed Meraki Mini

mesh repeaters to extend the reach of the Tropos mesh.

B. Data collection

We analyze a trace of 28 days of accounting information

collected by the central Google WiFi RADIUS server during

the Spring of 2008. Periodic updates are generated by all

Tropos nodes for each associated client every fifteen minutes.

Tropos nodes issue additional updates when clients first as-

sociate or disassociate (either explicitly—which is rare—or

through a 15-minute timeout). Table I shows the portion of

the RADIUS log records that we use for our study. For the

purposes of this paper, we focus almost exclusively on layer-

three information: we do not consider the link layer behavior

of the network. (Although we do make occasional use of layer-

two accounting information as described below.)

Additionally, to facilitate our study of the types of applica-

tion traffic in the network (Section IV-B2), we obtained five-

days worth of packet-header traces collected at the central

Internet gateway of the Google WiFi network. The header

trace contains only (a prefix of) the first packet of each

flow for the first fifteen minutes of each hour. Because the

trace was collected at the gateway—as opposed to inside the

wireless mesh itself—we do not observe layer-two protocol

traffic such as ARP, nor many DHCP requests handled by the

Tropos nodes themselves. Moreover, we only observe layer-

three traffic entering or leaving the Google WiFi network; our

traces do not contain traffic whose source and destination both

reside inside the WiFi network. A comparison of the trace

Class Manufacturers Count

Smartphone Apple 15,450
(45%) Nokia 138

Research in Motion (RIM) 107

Modem Ruckus 525
(3%) PePLink 297

Ambit 224

Hotspot Intel 9,825
(52%) Hon Hai 1,931

Gemtek 1,735
Askey Computer Corp. 667
Asus 385

TABLE II
A SELECTION OF MANUFACTURERS IN THE TRACE AND DISTINCT CLIENT

DEVICES SEEN, GROUPED BY DEVICE CLASS. THE FRACTION OF TOTAL

DEVICES IN EACH CLASS IS IN PARENTHESES.

content to the statistics reported by the RADIUS logs (which

do include traffic internal to the network) indicates the volume

of such traffic is negligible, however.

1) Data correction: During the course of our analysis, we

discovered several bugs in the Tropos accounting mechanism.

In particular, a number of fields are susceptible to roll-over,

but such events are readily detectable. More significantly, the

Acct-Output-Octets (AOO) field is occasionally corrupt, lead-

ing to spurious traffic reports for roughly 30% of all sessions.

In instances where the layer-three byte count (AOO) is larger

than layer two (TLOO), we deem the layer-three information

corrupt and estimate it using layer-two information.

2) Client identification: To preserve user privacy, we make

no attempt to correlate individual users with their identity

through the Google authentication service. Instead, we focus

entirely on the client access device and use MAC addresses to

identify users. Obviously, this approximation is not without its

pitfalls—we will incorrectly classify shared devices as being

one user, and are unable to correlate an individual user’s

activity across devices. While we speculate that a number

of users may access the Google WiFi network with multiple

distinct devices (a laptop and smartphone, for example), we

consider this a small concession in the name of privacy.

We have aggregated clients into groups based upon the

class of device they use to access the network. We classify

devices based upon their manufacturer, which we determine

based upon their MAC addresses. In particular, we use the first

three octets, commonly known as the Organizationally Unique

Identifier (OUI). Because many companies manufacture de-

vices using several OUIs, we have manually grouped OUIs

from similar organizations (e.g., “Intel” and “Intel Corp.”) into

larger aggregates. Table II shows some of the most popular

OUI aggregates in our trace.

Apple bears particular note. We attempted to determine

which OUIs are used for iPhones as opposed to other Apple

devices (PowerBooks, MacBooks, iPods, etc.), but observe

several OUIs used by both laptops and iPhones. Hence,

accurately de-aliasing these OUI blocks would require tedious

manual verification. For the purposes of this paper we lump all

Apple devices together, and consider them all to be iPhones.

Somewhat surprisingly, this appears to be a reasonable approx-

imation: we estimate that 88% of Apple devices in our trace

are iPhones.
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Fig. 4. Usage of the Google WiFi network for the duration of the trace, measured in 15-minute intervals.

To estimate the population of iPhone devices, we observed

that Apple products periodically check for software updates

by polling a central server, wu.apple.com. iPhones in

particular, however, poll iphone-wu.apple.com, which

is a CNAME for wu.apple.com. Hence, if one considers

the DNS responses destined to an iPhone device polling for

software updates, it will receive responses corresponding to

both iphone-wu.apple.com and wu.apple.com (ei-

ther because the DNS server proactively sent the A record

of wu.apple.com, or the client subsequently requested it).

Other Apple devices, on the other hand, will only receive an

A record for wu.apple.com. Comparing the total number

of DNS responses destined to clients with Apple OUIs for

iphone-wu.apple.com to those for wu.apple.com

present in our packet header traces, we determine that the

Gateway sees 1.13 times as many responses for wu.apple.

com. We conclude that 88% of the wu.apple.com re-

sponses resulted from queries for iphone-wu.apple.com.

iPhones constitute the vast majority of all devices we have

classified into the smartphone group, although we see several

other manufacturers, including Research in Motion—makers

of the Blackberry family of devices—and Nokia in the trace.2

As discussed previously, Ruckus and PePLink are two brands

of WiFi modems that Google recommends for use in their

network. Moreover, neither company appears to manufacture

other classes of WiFi devices in any large number. Hence, for

the remainder of the paper we have combined Ruckus and

PePLink OUIs into a larger class that we term modem. (We

also include Ambit, whose only WiFi-capable devices appear

to be cable modems.) We expect the modem class to represent

fixed installations, whose users are almost always located in

the same general physical location. They are also more likely

to aggregate the traffic from multiple distinct users than the

other classes, which tend to be used by one person at a time.

Finally, for lack of a better term, we classify the remaining

devices as hotspot users. While it is extremely likely that some

portion of these devices are mis-classified (i.e., some modem

2Apple released the 3G version of the iPhone after the completion of this
study. A comparison of the number of iPhone devices present on the network
in late July 2008 shows that while a significant fraction of the iPhone user
population upgraded to a new device (or at least the new software release),
the total number of iPhone devices did not increase significantly. The traffic
patterns, however, have changed (see Section IV-B).

and smartphone devices are likely lumped in with hotspot

devices) the general trends displayed by the hotspot users are

dominated by Intel, Hon Hai, and Gemtek, manufactures well

known to produce a significant fraction of the integrated laptop

WiFi chip-sets. (Notably, Hon Hai manufactures WiFi chip-

sets used in Thinkpad laptops.)

IV. USAGE

In this section we analyze when various classes of clients

are active in the Google WiFi network, and then characterize

the application workload these clients place on the network.

A. Activity

We begin by looking at overall aggregate network activity.

Figure 4 shows the number of active clients using the network

(left y-axis) and their average activity time (right y-axis) per

15-minute interval for the entire trace. We consider a client

to be active for a 15-minute reporting interval if it sends at

least one packet per second during the interval. If a client

sends fewer packets, we deem it to be active for a prorated

portion of the interval—i.e., a client that sends at least 54,000

packets is deemed active for the entire interval, while a client

that sends 18,000 packets is said to be active for 5 of the 15

minutes. We choose this metric in an attempt to reduce the

contribution of devices that are simply on but likely not being

used, as such devices still tend to engage in a moderate rate of

chatter [4]. We calculate activity time as the average number

of seconds each client was active during the hour.

The results show that the Google WiFi network has a

substantial daily user population, peaking around 2,500 simul-

taneous users in any 15-minute interval. The curves also show

the typical daily variation seen in network client traces, with

peaks in both users and activity during the day roughly twice

the troughs early in the morning. Weekend use is lower than

on weekdays, with roughly 15% fewer users during peak times

on the weekends. When users are connected, they are active

for only a small fraction of time. On an hourly basis, users

are active only between 40–80 seconds (1–2%) on average.

Even within a single day, variations over time in the number

of clients and their activity follow a steady pattern. For

example, there are multiple distinct peaks in clients on the
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Fig. 5. Hourly usage of the Google WiFi network divided between weekdays and the weekend.

weekday during morning rush hour (9 am), lunch time (12:30

pm), and the end of evening rush hour (6 pm); weekends,

however, are much smoother. Further, the largest peaks for

the number of clients and activity are offset by four hours.

The number of clients peaks at 6 pm at the end of rush

hour, but activity peaks at 10 pm late in the evening. We note

that the diurnal characteristics in the number of clients of the

Google network match those of the MadMesh network [10],

suggesting at least one high-level similarity in user populations

in two widely separated locales.

This behavior reflects the kinds of clients who are using

the network and how they use it. Figure 5(a) shows the

average daily variation of client usage on weekdays, but

separates clients by the type of device they use to access

the network. The graph shows three curves corresponding to

the number of active modem, smartphone, and hotspot clients

each hour. Separated by device type, we see that the different

types of clients have dramatically different usage profiles.

The number of modem clients is constant throughout the day.

This usage suggests homes and businesses with potentially

several computers powered on all day, with “chatty” operating

systems and applications providing sufficient network traffic to

keep the wireless access devices constantly active (analyses of

network traffic in Section IV-B shows that these users do have

substantial variation in traffic over time). Hotspot users show

more typical diurnal activity, with peak usage in late afternoon

twice the trough early in the morning. Hotspot user activity is

also high for more than half the day, from 9 am until 11 pm.

This activity profile echoes previous studies of campus [16]

and city [9], [24] WiFi networks, although activity remains

high in the Google network much later into the night than in

previously reported networks. Although we can only speculate

why, we do note that hotspot users in the Google network

concentrate in commercial areas (Section VI-B).

Smartphone users show the most interesting variation over

time. The activity profile is coarsely similar to hotspot users,

but it exhibits more fine-grained time-dependent behavior than

hotspot users in this and previously reported hotspot networks.

The curve shows three distinct peaks during the day (9 am,

1 pm, and 6 pm), suggesting that smartphone usage is highly

correlated with commute and travel times and that the devices

are active while users are mobile (Section V explores mobility

behavior further). Further, smartphone usage is much more

heavily concentrated during the day. Peak client usage at 6

pm is four times the trough at 5 am in the morning. There

are a number of possible explanations for this behavior. One

is that the majority of smartphone users are commuters, and

therefore are only within range of the network during the day.

Another is that, although they may make voice calls, users

do not access WiFi during the evening, perhaps preferring to

access the Internet with laptops or desktops when at home.

Figure 5(b) similarly shows the number of active clients

by device type as Figure 5(a), but for a typical day on the

weekend. Comparing weekdays with the weekend, we see

little difference for modem and hotspot users. Modem users

remain constant, and, although there are approximately 10%

fewer hotspot users during the highly active period than on

the weekday, the period of high activity remains similar.

Smartphone users again exhibit the most notable differences:

peak usage no longer correlates with commute times, peaking

at 1 pm and diminishing steadily both before and after.

B. Traffic

The results above show how many and when clients are ac-

tive. We now characterize the amount of traffic they generate.

Figure 6 plots a CDF of the total amount of data transferred

by clients of each class per day. Only active clients are

included; if a client did not connect at all during a day,

that data point was not included in the graph. For ease of

presentation, we combine upload and download traffic as

opposed to reporting each individually. The daily ratio of

download to upload traffic remains relatively constant across

our trace at approximately 3.15:1, although there are notable

distinctions among device classes. Hotspot and modem users

are roughly equivalent, at 2.9 and 3.2 to one, respectively,

while smartphone usage was noticeably more skewed at 5.9:1.

Figure 7 shows the distribution of transfer rates for 15-

minute intervals when the clients were active for the entire

trace period. In other words, if a client sends less than

one packet per second during an interval, that interval is
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not included. The graph shows curves for each of the three

user populations. Recall that Google limits transfer rates to

1 Mb/sec per client, or approximately 128 KB/sec. Very few

active periods approach this limit, though, so it has little

impact on sustained traffic demands by users.

The transfer rates vary substantially among the different

populations. The median rates in active periods are 3 KB/sec

for modem users, 512 bytes/sec for hotspot users, and 128

bytes/sec for smartphone users. Note that the very low transfer

rates in bytes/sec are an artifact of the measurement infrastruc-

ture. The trace records have a granularity of 15 minutes, so low

transfer rates reflect short activity averaged over a relatively

long time interval. Modem activity has the overall highest

transmission rates: the bulk of the active periods (80%) trans-

mit at 256 bytes/sec or higher, and 20% at 8 KB/sec. Hotspot

activity is roughly uniformly distributed across the range: over

80% of hotspot transfer rates fall between 64 bytes/sec and

8 KB/sec, with tails at either extreme. Smartphone activity

falls into three regions. Much of smartphone activity exhibit

very low rates (40% less than 96 bytes/sec), the next 40%

of activity is linear between 96 bytes/sec and 768 bytes/sec,

while the remaining 20% have higher rates.3

1) Sessions: Next we characterize how long clients are

active when associated with the network. We observed up

to 379 distinct sessions per client, with the median client

connecting only twice and a full 35% appearing only once.

At the high end, almost 7% of clients connected at least once

per day, on average, and more than 10% connected at least

once per weekday (20 times).

Figure 8 shows the distribution of session lengths during

our trace for the different client populations. We define a client

session as the period of time between 802.11 association and

disassociation with an access point. Clients in the different

user populations exhibit different session length distributions.

A significant fraction of modem clients have sessions that

span the entire trace; although 65% of modem sessions are

shorter than a day, these shorter sessions are due to oscillations

3A short follow-up study after the release of the 3G iPhone (July 2008)
indicates a noticeable uptick in the amount of data transferred by the
smartphone class, perhaps due to the enhanced functionality of the new
software version.
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between access points (see Section V). Many hotspot clients

have sessions shorter than an hour: the median hotspot session

length is 30 minutes, while 30% of hotspot sessions longer

than two hours. Smartphone clients have the shortest session

lengths: over half the sessions are less than 10 minutes, and

only 10% are longer than an hour. Hotspot sessions in the

Google network are similar to those reported for the Verizon

WiFi hotspot network in Manhattan [9], but session lengths

previously reported for PDA and laptop users on university

campuses [16], [23] more closely match smartphones.

Just because clients are associated with the network does

not necessarily mean that they are active during the entire

session. Figure 9 shows what fraction of their sessions the

clients were actually active. Not only do smartphone users

have short sessions, their session activity is quite low. For

over half of smartphone sessions, clients are active for less

than 10% of the time. This low activity suggests that users

have their phones and WiFi turned on when in the network,

but use Internet applications only infrequently. Modem clients

are much more active during their sessions. Over 40% of their

sessions are active at least half the time. Finally, hotspot clients

are the most active when connected to the network; the median

session is active almost 75% of the time. This activity suggests

that hotspot users connect to the network with the intention to

use it, and disconnect when finished.



8 IEEE/ACM TRANSACTIONS ON NETWORKING

10

100

1000

10000

100000

1e+06

 0  4  8  12  16  20

N
um

be
r o

f c
on

ne
ct

io
ns

Hour of day

(a) Modem connections

 0  4  8  12  16  20

Hour of day

Mgmt
P2P

Non-TCP
HTTP

Other TCP
VPN

Interactive

(b) Smartphone connections

 0  4  8  12  16  20

Hour of day

(c) Hotspot connections

10

100

1000

10000

 0  4  8  12  16  20

To
ta

l t
ra

ns
fe

r (
M

B)

Hour of day

(d) Modem bytes

 0  4  8  12  16  20

Hour of day

HTTP
Other TCP

P2P
Non-TCP

Mgmt
VPN

Interactive

(e) Smartphone bytes

 0  4  8  12  16  20

Hour of day

(f) Hotspot bytes

Fig. 10. Number of connections (a–c) and bytes (d–f) per hour for each device type (y-axis in log scale).

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
re

ce
nt

ag
e 

of
 c

lie
nt

s

Percent of session time when active

Modem
Smartphone

Hotspot

Fig. 9. CDF of percentage of the session during which the client was active.

2) Application classes: It is natural to ask what types of

traffic the Google WiFi network carries. Using a five-day

packet header trace spanning a weekend during our larger

trace, we classify the first packet of each flow based on

protocol and port numbers. Figure 10 plots both the number

of connections and the total amount of data transferred in the

network for each traffic class as a function of the time of day.

In each case, we separate the data by client type. To do so,

we build a mapping between the client MAC addresses and

assigned IP addresses in the RADIUS logs, and then classify

the traffic logs by IP address.

Not surprisingly, the three device types show markedly dif-

ferent application usage. Smartphones, in particular, generate

very few connections, and almost all their bytes are Web

or other TCP applications. We surmise that the bulk of the

other traffic is made up by streaming media (e.g., UPnP-based

smartphone video players like Mooncat) and VoIP traffic, but

further analysis is required.4 The distinctions between modem

and hotspot users are far more subtle. It is worth noting,

however, that there are an order of magnitude more hotspot

users than modem users, yet the modem users place similar

aggregate traffic usage demands on the network. The hotspot

application workload most closely resembles previous campus

studies of application traffic breakdowns [16], [30] with the

predominance of HTTP, peer-to-peer, and other TCP traffic,

and negligible interactive traffic.

While our port-based traffic classification mechanism is

imperfect, it is clear that peer-to-peer connections constitute

a significant fraction of the network use for both modem and

hotspot users. (While most of the traffic is BitTorrent, we see

a remarkable amount of “Thunder” traffic, a Chinese peer-to-

peer protocol also known as Xunlei, communicating on UDP

port 15000.) Peer-to-peer usage appears to be relatively time

insensitive, which is consistent with users that leave their file

sharing clients on almost all the time. Of note, the modem

P2P users appear to receive much higher per-connection

bandwidth than the Hotspot users, which is consistent with

our observations about the instantaneous bandwidth achieved

by each client type (cf. Figure 7).

Web traffic is significantly more diurnal, seeing a significant

dip in the early morning hours, and peaking in the evenings.

The other two main connection contributors, “Other TCP”

and “Non-TCP”, show less significant—but still apparent—

diurnal trends. We group SSH, telnet, X windows, and similar

remote log-in protocols into an interactive class;perhaps not

surprisingly they represent a consistently negligible fraction

of the total connections. Hotspot users are significantly more

likely to use interactive remote login applications than modem

4Assuming iPhones are extremely unlikely to be using BitTorrent clients
(although at least one exists), we use significant BT activity (more than 1
MB) as a filter to pull three presumably misclassified Apple laptops out of
the Smartphone grouping.
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Fig. 11. CDF of the number of oscillations per hour (x-axis in log scale).

users, but we have not attempted to determine why that may

be. Finally, we observe very few VPN connections, despite the

fact that Google promotes Google Secure Access, a free VPN

provided by Google—although the VPN connections that do

exist generate substantial traffic.

V. MOBILITY

We now turn to questions of client mobility; we study

how frequently, fast, and far hosts move. Because clients do

not report their geographical location, we use the location of

the AP to which they associate as a proxy for their current

location. The Google WiFi network has varying density, but

APs are approximately 100 meters apart on average. While that

estimate provides an effective upper bound on the resolution

of our location data, it is possible that clients may associate

to APs other than the physically closest one.

A. Oscillations

Moreover, signal strength is a time-varying process, even

for fixed clients. To gain an appreciation for the degree

of fluctuation in the network, we consider the number of

oscillations in AP associations. To do so, we record the last

three distinct APs to which a client has associated within

the last hour. If a new association is to one of the previous

three most recent APs, we consider it an oscillation. (While

it is possible that our definition captures some instances of

physical movement, only five oscillation occurrences include

APs physically separated by distances of 1500 meters or more,

so we believe it to be a reasonably accurate approximation.)

Using this definition, we detect a high frequency of oscil-

lations in the data. Figure 11 plots the number of oscillations

per hour for each client type. Overall, we see that 50%

of clients oscillate at least once an hour, and individual

clients oscillate as frequently as 2,900 times an hour (almost

once a second). The rate of oscillation varies between client

types, with modems exhibiting the lowest rate of oscillation—

likely because they are physically fixed, and oscillate only

due to environmentally induced signal strength variation—

and smartphones the highest. We eliminate oscillations from

the association data used in the remainder of this section in
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the course of the trace.

an attempt to more accurately capture physical movement (as

distinct from RF movement due to changes in signal strength).

B. Movement

We plot the number of distinct APs to which a client

associates during the course of our trace in Figure 12. Roughly

35% of all devices associate with only one AP; this corre-

sponds well to the fraction of clients that appear only once

in the trace (cf. Section IV-B1). As one might expect, each

client class exhibits markedly different association behavior.

Modems tend to associate with few APs—likely nearby to

a single physical location. Smartphones, on the other hand,

frequently associate with a large number of APs; 50% of

smartphones associate with at least 6 distinct APs, and the

most wide-ranging of 10% smartphones associate with over 32

APs. Hotspot clients, on the other hand, are significantly less

mobile—the 90% percentile associates with less than 16 APs

during the four-week trace. Both the smartphone and hotspot

populations are skewed, however, by a significant number of

clients that appear only once in the entire trace. If we restrict

the time window to a day—as opposed to 28 days as above—

the distribution shifts considerably (not shown): 90% of all

clients connect to at most 8 APs per day on average, with

only a handful of clients connecting to more than 16 APs.

Fully 90% of modems, 70% of hotspot users, and 40% of

smartphones connect to only one AP per day on average.

Notably, the Google user population associates with far

fewer APs than users in previous studies of other populations;

for instance, university campus users (e.g., medians of 12

APs [16] and 30 APs [23]). Possible explanations for the

differences are that these studies did not remove oscillations,

and that campus populations have fewer users that connect

only once to the network over the long time frames reported.

Next, we consider how geographically disperse these APs

are. In particular, we study the distance traveled between

consecutive associations by a single client. Figure 13 plots

the average distance in meters between non-oscillatory client

associations. Not surprisingly, very few devices associate with

APs less than 100 meters apart, as there are few locations

in the city with closely spaced APs (the library is a notable
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Fig. 13. CDF of the average distance between consecutive client associations.

exception). At the other extreme, we see devices that travel

over six miles between associations—roughly the maximum

distance between APs in the network. Few previous studies

report on distance traveled between associations, focusing

instead on mobility during a session. For a sense of how

these metrics might differ, perhaps not surprisingly Google

users travel much further distances between associations than

Dartmouth users during a session (median of 15 meters).

It is frequently possible to connect to a number of different

APs from one physical location. If we assume that modem

devices move infrequently (most are likely installed in homes

and businesses), we can infer that the Google WiFi signal

travels at most 500 meters from an AP. Moreover, by con-

sidering the number of APs with which modems associate in

Figure 12, we conclude that most locations in the city (where

WiFi modems are installed) can reach at most four APs. While

this number contrasts with the reported connectivity of Tropos

nodes (cf., Section III-A1), APs are outfitted with commercial-

grade antennae and located on top of light poles, frequently

with line-of-sight signal propagation to nearby APs.

While smartphones appear to travel further than hotspot

clients on average, both show significant range. The median

smartphone travels well over half a mile (approximately 1050

meters) between associations, compared to a quarter mile for

hotspot clients. The 90-th percentile smartphone travels just

slightly farther—1200 meters—than the median, while hotspot

usage is more varied: the 90-th percentile user travels almost

three times as far as the median.

Finally, to understand how fast clients are moving, we plot

the pause time between sessions in Figure 14. Interestingly,

we note that smartphones rarely re-associate in less than

thirty seconds, but usually within two minutes. In contrast,

a significant fraction of modems go very long periods without

re-associating (likely because the remain constantly attached

to the same AP). The majority of hotspot users, on the other

hand, re-associate between ten seconds and one minute.

VI. MESH BACKBONE

So far, we have considered characteristics of the users of the

network. In this section, we turn our attention to the network

itself and ask three distinct questions. First, we characterize
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the mesh topology in terms of route length, and quantify

how frequently routes change. Second, we consider whether

the network is utilized differently in different parts of the

city; we ask to what extent the full coverage of the network

is necessary—in other words, is it possible to deactivate

certain APs from time to time and preserve the overall user

experience. Finally, we measure several important metrics

relating to the performance of the mesh backbone. Wherever

possible, we discuss how the Google backbone compares to

previously studied community networks.

A. Topology

The hierarchical structure of the Tropos mesh ensures most

clients have short paths to the gateway. Figure 15 plots the

fraction of users and Tropos nodes located at varying distances

from an uplink. The network is shallow: the majority of active

clients are just one hop away from the uplink, and less than

10% are more than three hops away. The Google network

contrasts strongly with the far deeper MadMesh network,

where the majority of clients are 2 or more hops away, and

8% of the APs are over 5 hops away from the uplink [10].

Likely due to its shallower topology, the Google backbone is

also far more stable than the MadMesh network. We collected

log files which record each AP’s uplink once per minute. Fig-

ure 16 plots the frequency of routing changes per hour, where
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a routing change is defined as a change in the next-hop node

on the path to the uplink. The mesh topology continuously

evolves during our study (the median node changes parents

once every two days), but remains relatively stable in the short

term (the most dynamic node changes parents slightly more

than once an hour over the course of the trace). A large fraction

of the nodes see no route changes at all. In contrast, the median

MadMesh AP changes parents almost twice an hour [10]—far

more often than the most fickle AP we study.

B. Diversity

The usage of the Google WiFi network varies based on

physical location. Table III considers three disjoint regions

of the city (see Figure 2)—one residential, one commercial,

and one simply a thruway (Highway 101) at four distinct

periods throughout the day: 5–6 am, 9–10 am, 3–4 pm,

and 6–7 pm. For each time period and region, we show

the number of clients, activity time across those users, and

total bytes transferred. To facilitate comparison across time

periods and areas, yet preserve the privacy of users in these

select geographic areas, we normalize the histograms for each

particular value (bytes, activity, and users) to the average for

that value over all classes of clients and time periods—i.e.,

the sum of all the histograms for a particular value is 36.

We see significant differences between the network use

across the geographic areas. Not only does the proportion of

modem, smartphone, and hotspot users vary across locations,

but the usage patterns within these user classes also differs

substantially. For example, we see far more smartphones in

the transit area surrounding Highway 101 than any other

type of device, but the smartphones show almost no usage.

Indeed, the few hotspot users we do see transfer more data

cumulatively than the smartphones. In contrast, smartphones

are far less prevalent in the residential area, appearing in

similar numbers to hotspot users. However, those we do

observe are substantially more active than those in the transit

area. Not surprisingly, modem users represent a significant

fraction of the residential usage, at least in terms of traffic and

activity if not in total number. Moreover, their usage appears

less time dependent than the other devices.
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The commercial area is the most active, with significant

usage across all three classes of clients. Modem activity is

similar to that in residential areas, but the number of both

smartphones and hotspot users is higher. Mobile (i.e., smart-

phone and hotspot) usage peaks in the commercial area in the

mid-afternoon (hotspot usage is off scale, with a normalized

byte count of 6.2 and user count of 5.4), yet remains strong

across all periods, unlike the others, which show far less

usage in the early morning hours. Unsurprisingly, the number

of clients in the transit area peaks during rush hours, while

residential usage is highest during the evening (not shown).

C. Concentration

For a metropolitan network covering an entire city, an

interesting deployment question is to what extent the full set

of nodes in the network are actively being used. Figure 17

shows the average number of simultaneous clients supported

by each AP over the course of a day. Unlike the MadMesh

network, where the majority of clients were connected to

the most popular 20% of APs, and over half of the APs

serve less then one client on average, clients in the Google

network are distributed widely: the busiest AP supports just

over 14 simultaneous clients and all but the least-utilized 5%
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TABLE III
NETWORK USAGE FOR REPRESENTATIVE TIME PERIODS ACROSS DIFFERENT PARTS OF THE CITY.

are serving at least one client on average. By this accounting,

all APs contribute substantially to the network coverage.

The number of clients using the network varies by a factor

of two over the course of the day, however. Hence, one might

expect a similar variation in the number of APs in active use.

Figure 18 plots the number of access points in use throughout

the day for several definitions of “in use.” The “any clients”

line shows that even in the dead of night over 80% of the APs

are servicing at least one client. The diurnal usage pattern is

much more apparent if we consider only heavily used APs,

e.g., those with three or more simultaneous clients. Of course,

simply removing “lightly used” APs might leave some clients

without access. We plot a final line, “no oscillations,” which

counts only APs that are servicing one or more clients that

have no alternative. Because we do not have access to client-

side 802.11 information, we have no way to know definitively

if a client has more than one accessible AP at its current

location. Here, we consider a client to have an alternative AP

if it is currently associated to an AP that has been (or will

be) involved in oscillatory behavior at some point that day.

In other words, if there exists some client, C, that oscillates

between APs X and Y at any point in the day, we consider

all clients associated with either X or Y to have alternatives.

An alternative way to view network coverage is not in terms

of client connectivity but rather in terms of aggregate network

activity as in Figure 4. If one considers APs that supported

at least 100 and 1,000 seconds of activity in aggregate per

15-minute interval, rather than “lightly used” and “no os-

cillations,” respectively, the results are almost identical [2].

Moreover, if we calculate the total activity time at each AP,

we do not find a heavy tail; all nodes are relatively active and

contribute to useful network coverage.

D. Mesh signal quality

Finally, in an attempt to quantify the quality of the mesh

backbone, we collected signal strength and noise measure-

ments at the Tropos nodes as reported by the Tropos ad-
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ministrative interface.5 The Tropos administrative interface

updates its statistics every 15 minutes; we do not know how

the reported values are computed—they may be (weighted)

averages or simply the most recent instantaneous report. We

plot values reported for an interval in the early afternoon (on

one of the days for which we collected frame error ratios

below). Figure 19 shows a CDF of the signal to noise level

measured at each Tropos node for links to both other Tropos

mesh nodes and each class of network client. The AP curve

plots all possible links between Tropos nodes (cf., Figure 3),

including adequate links which are not currently in use and

those with SNRs of less than 14 dB. While qualitatively

similar, modem and hotspot users appear to enjoy a slightly

higher SNR than smartphones. Interestingly, the middle 70%

of APs have similarly poor SNR levels, yet the bottom 10%

and top 20% correspond better to the modem and hotspot

classes. While not shown, we confirm that noise levels are low

(less than -90 dBm in 95% of the cases; better than the “best”

levels reported in the MadMesh study [10]) and essentially

identical for all three classes of nodes and the APs. Hence,

the difference would seem to stem entirely from the strength

and attenuation of the devices’ signals. While understandable

for the smartphone class, which tends to have smaller (and

likely obstructed) antennae, the relatively poor signal strength

of many AP links is somewhat surprising.

It is well known that SNR levels do not correlate directly

with link quality, however. While we are unable to comment on

the quality of client links, Figure 20 plots the aggregate frame

error ratio (FER) of mesh backbone links—i.e., links between

Tropos nodes—as reported by the transmitter for four consecu-

tive weekdays. The Tropos nodes report the average number of

frame transmissions required to successfully transmit a packet

over each link for every one-minute interval; we plot the four-

day average across these one-minute interval averages. We

see that the median link needs to retransmit frames more

than 20% of the time. While higher than the PER reported

for the MadMesh backbone [10], it is not clear whether the

values are directly comparable. In particular, we report the per-

5To the best of our knowledge, however, the Tropos routing software
does not use link quality measurements to establish routes, instead preferring
reception probabilities—which we do not have the facilities to report.
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frame error rate (i.e., each failed frame transmission counts

as an error, so an eventually successful frame exchange may

still result in several errors), while they appear to report

only unsuccessful packet transmissions—i.e., those were all

retransmissions also failed. We have not studied whether any

particular aspects of Tropos node placement leads to better

or worse FER values. Interestingly, however, we do not see

significant variance in the FER over the course of the study,

possibly due to the stability of the weather in Mountain View.

VII. CONCLUSION

In this paper, we study the usage of the Google WiFi

network, a freely available outdoor wireless Internet service

deployed in Mountain View, California. We find that the

aggregate usage of the Google WiFi network is composed

of three distinct user populations, characterized by distinct

traffic, mobility, and usage patterns that are characteristic of

traditional wireline, wide-area, and localized wireless access

networks. Modem users are static and always connected, and

place the highest demand on the network. Hotspot users are

concentrated in commercial and public areas, and have mod-

erate mobility. Smartphone users are surprisingly numerous,

have peak activity strongly correlated with commute times

and are concentrated along travel corridors, yet place very

low demands on the network. The substantial difference in key

backbone metrics between the Google network and previously

studied networks like Roofnet and MadMesh, however, caution

against directly extrapolating our results to other networks.
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