

Usage Policy-based CPU Sharing in Virtual Organizations

Catalin Dumitrescu
Department of Computer Science

University of Chicago
catalind@cs.uchicago.edu

Ian Foster
Mathematics and Computer Science

Division, Argonne National Laboratory
& University of Chicago

Abstract

Resource sharing within Grid collaborations

usually implies specific sharing mechanisms at
participating sites. Challenging policy issues can arise
within virtual organizations (VOs) that integrate
participants and resources spanning multiple physical
institutions. Resource owners may wish to grant to one
or more VOs the right to use certain resources subject
to local policy and service level agreements, and each
VO may then wish to use those resources subject to VO
policy. Thus, we must address the question of what
usage policies (UPs) should be considered for
resource sharing in VOs. As a first step in addressing
this question, we develop and evaluate different UP
scenarios within a specialized context that mimics
scientific Grids within which the resources to be
shared are computers. We also present a UP
architecture and define roles and functions for
scheduling resources in such grid environments while
satisfying resource owner policies.

1. Introduction

Policy issues arise at multiple levels when sharing
resources. Resource owners granting virtual
organizations (VOs) the right to use certain resources
want to express and enforce the usage policies (UPs)
under which these resources are made available. VO
representatives want to access and interpret UP
statements published by resource owners. VOs
typically also wish to represent and apply their own
policies governing how resources aggregated from
multiple resource owners are to be used. Both owners
and VOs want to verify that policies are applied
correctly. In this paper, we examine how UPs affect
resource scheduling at both the resource owner and VO
levels. We measure the impact of introducing UPs by
means of two metrics: the aggregated site load (ARU)
in meeting owner requirements and VOs achieved
aggregated response time (ART).

Resources may include computers, storage, and
networks; owners may be either individual scientists or
sites; and VOs are collaborative groups, such as

scientific collaborations. A VO [8] is a group of
participants who seek to share resources for some
common purpose. From the perspective of a single site
in a Grid such as Grid3 [2], a VO corresponds to either
one or several users, depending on local access
policies. However, the problem is more complex than a
cluster fair-share allocation problem, because each VO
has different allocations under different scheduling
policies at different sites and, in parallel, each VO
might have different task assignment policies. This
heterogeneity makes the analogy untenable when there
are multiple sites and VOs.

We assume that individual resource owners
negotiate service level agreements (SLAs) with each
relevant VO to establish what resources are available
for use by each VO. Those SLAs are based on the UP
statements at each site. VOs must then aggregate
resources provided by different owners to different VO
purposes, and orchestrate distributed computations to
use those aggregated resources efficiently. This
problem encompasses challenging and interrelated UP,
scheduling, and security issues. We focus in this paper
on UP issues only. Specifically, we address the
questions: “What UP configuration is best suited to the
Grid3 environment with many VOs and sites?” and
“How UPs can be made available to VO schedulers
and data planners for better resource utilization?”

In addressing these questions, we build on much
previous work concerning the specification and
enforcement of local scheduling policies [19,23]; for
negotiating service level agreements (SLAs) with
remote resource sites [4,6]; and for expressing and
managing VO policy [5]. We introduce the notion of
UP for grid resources, measure the achieved
ARU/ART under different task assignment policies,
and introduce an UP infrastructure that provides
support for UP and a feasible solution for the second
question in Grid3 [2].

The rest of this article is as follows. We provide
first a description of the scenario that we seek to
address and identify the main players. In section 3 we
elaborate the usage policy specifications used for
scientific Grids. In section 4, we simulate and measure
how well different UPs suit both user and resource
owner perspectives. Section 5 contains the description
of our usage policy infrastructures built in the Grid3

context [2]. Section 6 presents several related work
streams, and Section 7 includes our conclusions and
future plans.

2. Motivating Scenario

To motivate why UP-based resource sharing
management is important, we consider Grid3 [2]. This
system comprises numerous resources, resource
owners, VOs, and resource users. Each user and
resource owner participates in and may contribute
resources to multiple collaborative projects that can
vary widely in scale, lifetime, and formality. (The
largest collaborations associated with Grid3 encompass
thousands of scientists at more than one hundred
institutions.) Each such project generates workloads
comprising dynamic mixes of work of varying priority,
some requiring the efficient aggregation of large
quantities of computing and storage.

C S C S C S

C S C S

Tasks

for VO A

Tasks

for VO B

VO A VO B

P P P

V V

Verifier Verifier

Figure 1: Resource allocation schematic

Figure 1 shows our model of resource allocation, in

an architectural view that we describe in more detail in
Section 5. In the two VOs (squares) and three sites
(circles), shaded elements indicate the compute (C) and
storage (S) resources allocated to each VO at each site.
Sites and VOs share resources by defining how
resource usage takes place in terms of where, what,
who, and when it is allowed.

In this context, there are three dimensions in the UP
space, consisting of resource provider (sites), resource
consumer (VOs), and time, which are modeled as UP
attributes expressed in terms of limits. Policy makers
who participate in such collaboration define resource
usage policies involving various levels of this space.

UPs represent owner statements about the policies
that govern how their resources are to be allocated to
resource consumers: i.e., they encode the SLAs that an
owner has established with consumers. Such
statements can vary in complexity from simple priority
rules enforced at local resource managers to more
complex descriptions that support complex SLAs and
are implemented by specialized policy handling
modules [17,24,25]. While diversity can be useful and

may be inevitable, it is also important that resource
consumers be able to interpret UPs; thus, simplicity
and uniformity are to be desired.

2.1. Usage Policy Issues

Policy specification, enforcement, negotiation, and
verification mechanisms are required at multiple levels
within this environment.

Owners want convenient and flexible mechanisms
for expressing the policies that determine how many
resources are allocated to different purposes, for
enforcing those policies, and for gathering information
concerning resource usage. Particular concerns may
include achieving the policy flexibility needed to meet
different and time-varying demands, and being able to
resolve disputes as to whether policies were correctly
enforced.

VOs want to know UPs that owners impose under
which resources are made available. VOs also want to
interpret such SLAs to determine available resources
and to guide resource allocation and task scheduling
decisions. They also want to evaluate delivered service
to verify that owners are respecting published UPs.
VOs need to respond to resource requests from VO
participants in ways that not only respect owner and
VO policies but also, perhaps, maximize various
performance metrics such as throughput. And VOs
need to demonstrate to their participants that VO
policies are followed correctly. In these latter respects,
VOs also act as “owners” of the aggregate resources
made available to them by sites.

2.2. Resource Providers and Consumers

The preceding material introduces the primary
actors in the Grid3 UP environment and their
interactions. Specifically, our policy framework deals
with two classes of entities: resource providers and
resource consumers. A physical site is a resource
provider; a VO is a consumer (consuming resources
provided by a site) and a provider (providing resources
to users or user groups). We assume that each
provider-consumer relationship is governed by an
appropriate SLA, but do not address here the nature of
those SLAs, an issue that can involve many trade-offs.
For example, providers may prefer powerful but
complex SLAs that provide flexibility in terms of how
they allocate resources, while consumers may want
simple SLAs that are easily interpreted.

We use an example to illustrate some issues that
can arise. Assume that provider P has agreed to make
R resources available to consumer C for a period of
one month. How is this agreement to be interpreted?
These resources might be dedicated to C or,
alternatively, P might make them available to others

when C is not using them. In the latter case, P might
commit to preempt other users as soon as C requests
them, or might commit to preempt within a certain
time period. If C is allowed to acquire more than R
resources when others are not using them, then this
may or may not result in C’s allocation being reduced
later in the month. C may or may not allow
reservations. The SLA between P and C should
presumably capture such issues, as well (optionally) as
issues such as price and acceptable use policy [17,29].

3. Evaluating Usage Policies

Having described the principal actors in the policy
space and their requirements, we turn out attention to
the question of the policies that may be used at sites.
We define three specific usage policies and also a set
of task assignment policies and evaluation criteria used
in our experiments.

3.1. Usage Policies

We consider now three UPs that are likely to be
deployed in real contexts such as Grid3, namely, fixed-
limit, extensible-limit, and commitment-limit.

Fixed-limit: A UP statement specifies a hard upper
limit on the fraction of resources Ri available to a VOi.
A request to run a job is granted if this limit is not
exceeded, and rejected otherwise. More precisely, a job
requiring J resources is admitted if and only if Ci + J �
Ri, where Ci denotes the resources currently consumed
by VOi at the site. Note that a job that is admitted will
always be able to run immediately, unless the resource
owner oversubscribes resources, i.e., �iRi > 1.

Extensible-limit: A UP statement also specifies an
upper limit, but this limit is enforced only under
contention. Thus, we introduce a second condition
under which a job requiring J resources is admitted,
namely J � Cfree, where Cfree denotes the site’s current
unused resources. Note that because this policy allows
VOs to consume more than their allocated resources,
whether or not an admitted job can run immediately
may depend on the site’s preemption policy.

Commitment-limit: A UP statement now specifies
two upper limits, an epoch limit Repoch and a burst limit
Rburst, and for each also specifies an associated interval,
Tepoch and Tburst respectively. A job is admitted if and
only if (a) the average resource utilization for its VO is
less than the corresponding Repoch over the preceding
Tepoch, or (b) there are idle nodes and the average
resource utilization for the VO is less than Rburst over
the preceding Tburst. More precisely, any jobs that
verify the following algorithm are admitted.

Case 1: over-used site by VOi
if EAi > EPi

 reject job from VOi
Case 2: un-allocated site
else if �k(BAk) = 0 and BAi + J < BPi
 run job from VOi
Case 3: sub-allocated site
else if �k(BAk) + J < TOTAL and BAi + J < BPi
 run job from VOi
Case 4: over-allocated site
else if �k(BAk) = TOTAL and BAi + J < EPi
 schedule job from VOi
else
 reject job from VOi

with the following definitions:

EPi = Epoch Usage Policy for VOi, i.e., Repoch
BPi = Burst Usage Policy for VOi, i.e., Rburst
BAi = Burst Resource Usage for VOi
EAi = Epoch Resource Usage for VOi
TOTAL = upper limit allocation on the site

The following example illustrates the notation used
to represent commitment-limit UPs in our work [17]:

[CPU, Site1, VO0, (1month, 10%), (1day, 40%)]

This policy specifies Site1 will provide 10% of its

computing power to VO0 as long that the VO keeps a
steady workload. The VO also can spike to 40% as
long as free resources are available and VO0 does not
exceed its 10% long term allocation. If the entire
allocation is consumed, VO0 obtains further resources
only in the next UP interval, in the next month in our
example.

3.2. Task Assignment Strategies

The effectiveness of a specific UP may depend on
the strategies used by consumers to assign tasks to
nodes, and thus evaluate each UP in the face of
different task assignment strategies.

De Jongh [16] distinguishes static scheduling
policies, which do not consider any time-varying
information such as load when selecting a site for
execution, and dynamic policies, which take into
account factors such as site load and site capability.

We started from two static policies, Random and
Round-Robin, which assign each task to a randomly
selected node and the “next” node, respectively. We
extend these policies to consider only those sites at
which current conditions would allow a task to be
admitted. (Thus, neither extended policy is static as
defined by DeJongh [16].) We also consider one
dynamic policy, Least-Used, which assigns each task
to the node that is currently the least loaded. We chose
Least-Used because of its simplicity, even though it
does not deliver the best performance in distributed
environments, because of partial information available

at any moment. Other more complex scheduling
policies [16] are beyond our purpose in this paper,
given our assumption that resource control in grid
environments is considered distributed.

3.3. VO-Centric Ganglia Simulator

We have developed VO-Centric Ganglia [28], an
meta-cluster simulator that can be used to study the
behavior of different scheduling schemes, scheduling
policies and workloads [28]. This system is derived
from the Ganglia monitoring system by replacing its
collectors (“gmonds”) with a module that supplies
simulated system information. A part of the Ganglia
[18] code is then used to run the simulator code, to
collect simulated states, to aggregate monitoring
metrics, to maintain the history log of the system and
to provide a simple interface for data accessibility.

VO-Centric Ganglia is a discrete event simulator,
which means that every X seconds the simulator
evaluates the state of all components in the system
(jobs, queues, resource status, allocations, usages, etc).
The system allows simulating a specific Grid
environment, composed of a pre-specified number of
sites, VOs and groups, VO planners and site managers,
different task assignment policies, and usage limits.
The simulator captures various costs associated with
job execution, such as submission, staging, and
termination. During each simulation step, various
algorithms are used to adjust the state of different
components in the framework.

Jobs are submitted into planner queues and then
moved to site queues based on different task
assignment strategies. When a job is submitted but
rejected at a site (e.g., because no disk space is
available or epoch shares are exhausted), it is returned
to the planner queue and re-entered the planning
process. If there are no available burst shares, the job is
held in the planner queue and scheduled as soon as
shares become available for that VO. If the site’s
network is not available, the job is queued for transfer
and actually moved to a site when the network
becomes available.

In the simulations described in this paper, VO-
Centric Ganglia considers that once a job is scheduled
to a site, the site runs the job even with delays. The
delays can occur from site over allocation for keeping a
steady workload at the site, and/or previous work that
is not preempted. If no site is available for a workload,
jobs are delayed from submission until a site becomes
available [26].

3.4. Evaluation Criteria

Having defined different UPs and task assignment
strategies, we need to consider how to evaluate the

effectiveness of different combinations of policies and
strategies in practice. We proceed as follows. We
assume an oversubscribed environment in which
multiple VOs can generate more work than available
sites can handle. Then, we evaluate the effectiveness of
different UPs by measuring both aggregated resource
utilization (a measure of how well a UP specification
meets resource owner intent) and aggregated response
time (a measure of how well a UP specification
delivers resources). Both metrics are important.

We define aggregated resource utilization (ARU)
as the ratio of the CPU-resource actually consumed by
users (ETi) to the total CPU-resources available. We
compute this quantity as follows:

ARU = � (ETi) / (#cpus * �t)

We define the aggregated response time (ART) for

an entire VO [12,19] as follows, with RTi being the
individual job time response:

ART = �i=1..N RTi / N.

4. Simulation Studies

We used VO-Centric Ganglia for simulation studies
in order to evaluate alternative UP and task assignment
schemes. We present results for a simulated
environment comprising 10 sites (the approximate
amount of available resources on Grid3 at the testing
moment) with 7, 7, 7, 15, 15, 15, 15, 27, 27, and 39
CPUs, respectively, for a total of 174 CPUs. We
assume six VOs, each with two workloads (described
below); and implement the three UPs and three task
assignment policies described earlier. We also
implement a “no-limit” UP, in which site owners
accept any and all tasks on a first-come/first-served
basis, meaning that a particular workload might
consume the entire computing capacity of a site.

The following four UP statements are a subset of
those used in our experiments (the full set is available
online [26]). All such statements are in effect without
change throughout the simulation runtime.

(1) [CPU, Site1, VO0, (1hour, 10%), (1minute, 40%)]
(2) [CPU, Site2, VO0, (1hour, 10%), (1minute, 40%)]
(3) [CPU, Site1, VO1, (1hour, 20%), (1minute, 60%)]
(4) [CPU, Site2, VO1, (1hour, 20%), (1minute, 60%)]

These UP statements are interpreted as follows. For

the fixed and extensible UPs, only the limit from the
first tuple is considered, while for the commitment UP,
the intervals and limits specified in both tuples are
considered. We note that the time periods were chosen
for ease of evaluation in VO-Centric Ganglia (discrete
simulator using real time yet) and are significantly

smaller than the real values we would expect to use in
real deployments, where the overall duration of a
policy might be on the order of weeks or months, and
the burst period might be on the order of hours to days.

4.1. Workloads

We use synthetic workloads to evaluate our usage
policies. Each workload is composed of jobs, each
corresponding to a certain amount of work and with
precedence constraints determining the order in which
jobs can be executed. Jobs arrive, are executed, and
leave the system according to a Poisson distribution.
Because in our simulations we consider an
environment with several VOs, an important factor is
synchronization among workloads. We consider two
cases: all workloads start at the same moment in time
(synchronized), and workloads start at different
moments in times (un-synchronized) [16,17].

We defined 6x2x4 simple workloads, each of which
overlays work entering the grid for six VOs.
Workloads are associated with VO groups, and each
group had associated four burst workloads scheduled at
predefined time intervals (both synchronous and un-
synchronous cases). In addition, the simulator takes as
input a set of files associated with each job and inter-
file dependencies, which captures the inter-job
dependencies.

Each workload consisted of 440 jobs, as shown in
Table 1. These synthetic workloads are designed to
imitate various workloads running on Grid3 in terms of
CPU usage [2].

Table 1: Grid-wide workload summary

VO Workload #jobs Avg. Job Duration
0 0 80 200 sec
0 1 100 300 sec
1 0 120 150 sec
1 1 140 250 sec

In all cases, the simulation period was one hour and

the measurement interval was 30 seconds. Job
durations and inter-arrival times were generated by
Poisson and Gaussian distributions, respectively. Two
of the six composite workloads are depicted in Figure
2. The job completion times shown above are
idealized; the start points of the workloads from 0 will
match the simulated charts but the finish times on the
simulator charts may be delayed from this “ideal.”

Figure 2: Two VOs with two workloads

4.2. Results

We present the results achieved for the three task
assignment policies and the four UPs. (Additional
results are in a separate report [26]). Tables 2 and 3
summarize results for the synchronized workloads, and
Tables 4 and 5 for the un-synchronized workloads. As
a side note, seconds can be interpreted as any time unit
and only the length of all experiments and Grid3
resource usage constrained as from using a different
time length.

Table 2: ARU, synchronized

Policy/UP No-limit Fix-limit Ext-limit Cm-limit

Random 0.72 0.75 0.69 0.78

Round Robin 0.70 0.65 0.75 0.77

Least Used 0.69 0.80 0.81 0.79

Table 3: ART, synchronized

Policy/UP No limit Fix-limit Ext-limit Cm-limit

Random 10.64 19.25 12.83 15.83

Round Robin 11.09 19.39 11.32 15.52

Least Used 13.25 15.14 15.06 16.02

We note first that Tables 3 and 5 indicate that the
best user performance is achieved in the absence of any
UP constraints (column No limit). This behavior is
what we should expect: UPs function by rejecting jobs
that could otherwise run. We see also that in this
situation, Random performs marginally better than
Round Robin and much better than Least Used for the
synchronized workloads, while in the unsynchronized
case, Round Robin is clearly superior. Further work is
required to account for these differences.

Considering next the behavior of different task
assignment policies in the presence of UPs other than
No Limit, we see that from the perspective of response

time, the extensible limit task assignment provides the
best aggregated response time. An explanation for this
result is that whenever resources are available for a VO
at a site, they are grabbed without any restriction.

Table 3 shows that, for synchronized workloads,
Random Assignment without any UP limit provides the
best response time. Table 2 shows that Commitment
provides almost the best approach for the resource
owners to enforce different local preferences and
priorities.

Table 4: ARU, un-synchronized

Policy/UP No-limit Fix-limit Ext-limit Cm-limit

Random 0.70 0.67 0.70 0.69

Round Robin 0.69 0.65 0.71 0.65

Least Used 0.69 0.64 0.72 0.64

Table 5: ART, un-synchronized

Policy/UP No limit Fix-limit Ext-limit Cm-limit

Random 10.3 12.59 10.64 13.35

Round Robin 7.78 14.82 9.34 12.35

Least Used 10.57 13.68 11.37 12.59

Looking next at the unsynchronized workload
execution results, we see the Round Robin policy
without UP limits provides the best response time,
while Commitment again provides the highest site
utilization. However, while the un-synchronized
workloads result in better user performance,
aggregated site usage is lower by almost 10% for Fixed
Limit and Extensible Limit UPs, while 10% higher for
Commitment UP.

5. Experimental Studies

We have constructed a partial prototype framework
to investigate the feasibility of integrating policies
within Grid3 [2]. The components of the envisaged
framework are described in Figure 3 [30].

Figure 3: Revised architecture (one V-PEP)

Resource Managers (RMs) represent the layer at
which most resource managers (e.g., cluster schedulers
[19,20], network reservation mechanisms [22])
operate. RMs are assumed to have basic mechanisms
for job prioritization and resource acquisition.

Policy Translators (PTs) usually take as input some
RM low level priority description and publish further
after a specific translation operation.

VO policy enforcement point (V-PEP) make
decisions on a per-job basis to enforce UP regarding
both VO specifications and site specifications. V-PEP
is invoked whenever a VO planner makes job planning
and scheduling decisions.

To verify the performance of this approach in
meeting the simulation results presented in Section 4,
we used two submission points that incorporate
knowledge about each workload, site UPs, and
monitoring elements for task assignment and job
selection algorithms [30]. Results gathered from these
experiments are presented in Tables 6 and 7, similarly
to the ones in Section 5. All workload runs were done
over a subset of Grid3 resources and took in account
the actual local preferences [2]. Resources already
busy were not counted in computing the following
statistics.

Table 6: ARU, synchronized

Policy/UP No-limit Fix-limit Ext-limit Cm-limit

Random 0.40 0.32 0.36 0.54

Round Robin 0.42 0.46 0.44 0.65

Least Used 0.28 0.20 0.18 0.30

Table 7: ART, synchronized

Policy/UP No-limit Fix-limit Ext-limit Cm-limit

Random 69.98 83.62 106.48 82.66

Round Robin 66.78 73.80 91.06 78.43

Least Used 75.71 81.89 102.44 89.56

The results for the un-synchronized workloads over
Grid3 are presented in Tables 8 and 9.

Table 8: ARU, un-synchronized

Policy/UP No-limit Fix-limit Ext-limit Cm-limit

Random 0.27 0.30 0.40 0.41

Round Robin 0.31 0.29 0.43 0.55

Least Used 0.23 0.16 0.25 0.33

Table 9: ART, un-synchronized

Policy/UP No limit Fix-limit Ext-limit Cm-limit

Random 66.34 81.02 90.83 81.83

Round Robin 62.05 80.83 73.78 79.71

Least Used 71.98 75.91 95.65 84.00

First, the Round Robin task assignment policy

performs the best in almost all cases with respect to job
response time. Second, for the aggregated site usages,
Commitment does perform as well as in the simulated
case. We note that latencies incurred in submitting jobs
to site schedulers, and the subsequent scheduling
delays, are an important factor, which is not captured
by our VO-Centric Ganglia simulator [28].

In addition, we have considered only a centralized
enforcement point, in other words a single point of job
assignment decision. In future work, we will focus on
multiple enforcement points that do not have access to
global usage and UP information. Lastly, at the time of
the experiments, the local workloads were constant and
insignificant with the amount of work submitted
through our framework. In addition, we excluded all
the busy CPUs from our computations for ARU and
ART.

6. Related Work

Fair share scheduling strategies seek to control the
distribution of resources to processes so as to allow
greater predictability in process execution. These
strategies were first introduced in the early 1980s in the
context of mainframe batch and timeshared systems
and were subsequently applied to Unix systems
[12,13]. We exploit these techniques in our work.

Author et al. investigate the question of scheduling
tasks according to a user-centric value metric – called
utility [27]. Sites sell the service of executing tasks
instead of raw resources. The entire framework is
centered on selling and buying services, with users
paying more for better services and sites paying
penalties when they fail to honor the agreed

commitments. The site policies are focused on finding
winning bids and schedule resource accordingly. This
approach is different from our work here, as a more
abstract form of resources is committed under different
SLAs.

The Maui scheduler [23] is an external job
scheduler for use on clusters and supercomputers. It
operates as a policy engine for controlling resource
allocations to jobs while concurrently optimizing the
use of managed resources. Maui operates by guiding
the scheduling decisions of other cluster managers. It
manipulates jobs, nodes, reservations, QoS structures,
policies, and composite objects. Maui is the closest
work to what we described in this paper, while it is
mainly a cluster scheduler providing a flexible
mechanism for scheduling policy specification and
enforcement at the cluster level.

LSF is a resource management product that
schedules, monitors, and analyses the workload for a
set of computers. LSF supports sequential and parallel
applications running as interactive and batch jobs. LSF
is a loosely coupled cluster solution for heterogeneous
systems, with several scheduling strategies available,
including Job Priority Based, Deadline Constraints,
Exclusive, Preemptive, and Fair-share. Multiple LSF
scheduling policies can be invoked in parallel for
different sub-clusters [21]. Both Maui and LSF
represent cluster level schedulers and deal with
concepts such us queues, users, groups, nodes, and
scheduling strategies. However, our problem is more
complex due to the heterogeneity of the considered
environment – many sites and VOs.

7. Conclusions

We have presented and evaluated an approach to
representing and managing resource allocation policies
in a multi-site, multi-VO environment. We present
results in three distinct areas. Firstly, we experimented
with UP scenarios. Secondly, we were interested to
present a few simple and common UP examples that
arise in grid environments, and to gather experience for
other UP scenarios. Thirdly, we presented architecture
for UP-based scheduling in the Grid3 environment.
The main gains for Grid3 are additional usage
information that gives grid planners, such as Euryale,
Pegasus, or Sphinx [29], hints about what sites to
consider for job placement; and time-based entitlement
to resources, VOs being guaranteed under different FS
policies that they get resources when they need them
instead of maintaining constant workloads.

There are still problems and technical details not
fully explored in this paper. For example, our analysis
did not consider the case of cluster administrators that
over-subscribe local resources, in the sense of a local
policy that states that 40% of the local CPU power is

available to VO1 and 80% is available to VO2. A
second issue not discussed in this paper is the
hierarchic grouping and allocation of resources.
Generally, VOs will group their users under different
schemes. We are interested to use the same policy
specification for such specifications, and come with
some hierarchies of usage policies to encode this.
While this is an important problem in Grid3 context,
we leave it as an open problem at the current stage.

Acknowledgements: We thank Robert Gardner, Ruth
Pordes, Harvey Newman, Michael Wilde, Matei
Ripeanu, and Rick Cavanaugh for insights,
discussions, and support, and Asit Dan for shaping the
motivating scenario. We also thank the Grid3 project.
This work was supported in part by the NSF
Information Technology Research GriPhyN project,
under contract ITR-0086044.

Bibliography

[1] Avery, P. and Foster, I. The GriPhyN Project: Towards
Petascale Virtual Data Grids, 2001, www.griphyn.org.

[2] Grid2003 Project, "The Grid2003 Production Grid:
Principles and Practice", Proc 13th IEEE Intl.
Symposium on High Performance Distributed
Computing, 2004.

[3] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C.
and Tuecke, S. The Data Grid: Towards an Architecture
for the Distributed Management and Analysis of Large
Scientific Data Sets. J. Network and Computer
Applications (23), 187-200, 2001.

[4] Czajkowski, K., Foster, I., Kesselman, C., Sander, V.
and Tuecke, S., SNAP: A Protocol for Negotiating
Service Level Agreements and Coordinating Resource
Management in Distributed Systems. in 8th Workshop on
Job Scheduling Strategies for Parallel Processing, '02.

[5] Pearlman, L., Welch, V., Foster, I., Kesselman, C. and
Tuecke, S., A Community Authorization Service for
Group Collaboration. in IEEE 3rd International
Workshop on Policies for Distributed Systems and
Networks, 2002.

[6] WSLA Language Specification, Version 1.0, IBM
Corporation, 2003.

[7] Ranganathan, K. and Foster, I., Decoupling
Computation and Data Scheduling in Distributed Data
Intensive Applications. in International Symposium for
High Performance Distributed Computing, Edinburgh,
UK, 2002.

[8] Foster, I., Kesselman, C., and Tuecke, S., The Anatomy
of the Grid. in International Supercomputing
Applications, 2001.

[9] Schopf, J., and Nitzberg, B., Grids: The Top Ten
Questions. in Special Issue of Scientific Programming
on Grid Computing, 2002.

[10] Zhao, T., and Karamcheti, V., Expressing and Enforcing
Distributed Resource Agreements. Department of
Computer Science, Courant Institute of Mathematical
Sciences, New York University, 2000.

[11] Lupu, E., A Role-based Framework for Distributed
Systems Management, PhD Dissertation, Imperial
College of Science, Technology and Medicine,
University of London, Department of Computing, 1998.

[12] Henry, G.J., “A Fair Share Scheduler”, AT&T Bell
Laboratory Technical Journal, Vol. 63, No. 8, Oct 1984.

[13] Kay, J., and Lauder, P., A Fair Share Scheduler,
University of Sydney and AT&T Bell Labs, 1988.

[14] Verma, D.C., Policy Based Networking, Architecture
and Algorithm, New Riders Publishing, Nov. 2000.

[15] Kosiur, D. Understanding Policy Based Networking”,
Wiley Computer Publishing, 2001.

[16] De Jongh, J. F. C. M., Share Scheduling in Distributed
Systems, Delft Technical University, 2002.

[17] Dumitrescu, C., Wilde, M., and Foster, I., "Policy-based
CPU Scheduling in VOs", GriPhyN/iVDGL Technical
Report, 2003-29.

[18] Massie, M., Chun, B., and Culler, D., The Ganglia
Distributed Monitoring: Design, Implementation, and
Experience. in Parallel Computing, May 2004.

[19] Condor Project, A Resource Manager for High
Throughput Computing, Software Project, The
University of Wisconsin, www.cs.wisc.edu/condor.

[20] OpenPBS Project, A Batching Queuing System,
Software Project, Altair Grid Technologies, LLC,
www.openpbs.org.

[21] LSF Administrator’s Guide, Version 4.1, Platform
Computing Corporation, February 2001.

[22] Foster, I., Fidler, M., Roy, A., Sander, V., and Winkler,
L., End-to-End Quality of Service for High-end
Applications. in Computer Communications,
27(14):1375-1388, 2004.

[23] MAUI, Maui Scheduler, Center for HPC Cluster
Resource Management and Scheduling,
www.supercluster.org/maui.

[24] RFC3060, Policy Core Information Model -- Version 1
Specification, www.faqs.org/rfcs/rfc3060.html.

[25] RFC3198, Terminology for Policy - Based
Management, www.faqs.org/rfcs/rfc3198.html.

[26] Dumitrescu, C., Policy-based Resource Allocation
Tools", people.cs.uchicago.edu/~cldumitr/Experiments.

[27] Irwin D., Chase J., and Grit L., Balancing Risk and
Reward in Market-Based Task Scheduling. in the
Thirteenth International Symposium on High
Performance Distributed Computing, HPDC-13, 2004.

[28] Foster, I. and Dumitrescu, C., “VO-Centric Ganglia
Simulator”, GriPhyN/iVDGL Technical Report, '04-31.

[29] In, J., and Avery, P., Policy Based Scheduling for
Simple Quality of Service in Grid Computing. in
International Parallel & Distributed Processing
Symposium (IPDPS), Santa Fe, New Mexico, April '04.

[30] Dumitrescu C., Wilde M., and Foster I., "Usage Policy
at the Site Level in Grid3", GriPhyN/iVDGL Technical
Report, '04-71.

