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Abstract 

 
Resource sharing within Grid collaborations 

usually implies specific sharing mechanisms at 
participating sites. Challenging policy issues can arise 
within virtual organizations (VOs) that integrate 
participants and resources spanning multiple physical 
institutions. Resource owners may wish to grant to one 
or more VOs the right to use certain resources subject 
to local policy and service level agreements, and each 
VO may then wish to use those resources subject to VO 
policy. Thus, we must address the question of what 
usage policies (UPs) should be considered for 
resource sharing in VOs. As a first step in addressing 
this question, we develop and evaluate different UP 
scenarios within a specialized context that mimics 
scientific Grids within which the resources to be 
shared are computers. We also present a UP 
architecture and define roles and functions for 
scheduling resources in such grid environments while 
satisfying resource owner policies. 

 

1. Introduction  

Policy issues arise at multiple levels when sharing 
resources. Resource owners granting virtual 
organizations (VOs) the right to use certain resources 
want to express and enforce the usage policies (UPs) 
under which these resources are made available. VO 
representatives want to access and interpret UP 
statements published by resource owners. VOs 
typically also wish to represent and apply their own 
policies governing how resources aggregated from 
multiple resource owners are to be used. Both owners 
and VOs want to verify that policies are applied 
correctly. In this paper, we examine how UPs affect 
resource scheduling at both the resource owner and VO 
levels. We measure the impact of introducing UPs by 
means of two metrics: the aggregated site load (ARU) 
in meeting owner requirements and VOs achieved 
aggregated response time (ART).  

Resources may include computers, storage, and 
networks; owners may be either individual scientists or 
sites; and VOs are collaborative groups, such as 

scientific collaborations. A VO [8] is a group of 
participants who seek to share resources for some 
common purpose. From the perspective of a single site 
in a Grid such as Grid3 [2], a VO corresponds to either 
one or several users, depending on local access 
policies. However, the problem is more complex than a 
cluster fair-share allocation problem, because each VO 
has different allocations under different scheduling 
policies at different sites and, in parallel, each VO 
might have different task assignment policies. This 
heterogeneity makes the analogy untenable when there 
are multiple sites and VOs.  

We assume that individual resource owners 
negotiate service level agreements (SLAs) with each 
relevant VO to establish what resources are available 
for use by each VO. Those SLAs are based on the UP 
statements at each site. VOs must then aggregate 
resources provided by different owners to different VO 
purposes, and orchestrate distributed computations to 
use those aggregated resources efficiently. This 
problem encompasses challenging and interrelated UP, 
scheduling, and security issues. We focus in this paper 
on UP issues only. Specifically, we address the 
questions: “What UP configuration is best suited to the 
Grid3 environment with many VOs and sites?” and 
“How UPs can be made available to VO schedulers 
and data planners for better resource utilization?”  

In addressing these questions, we build on much 
previous work concerning the specification and 
enforcement of local scheduling policies [19,23]; for 
negotiating service level agreements (SLAs) with 
remote resource sites [4,6]; and for expressing and 
managing VO policy [5]. We introduce the notion of 
UP for grid resources, measure the achieved 
ARU/ART under different task assignment policies, 
and introduce an UP infrastructure that provides 
support for UP and a feasible solution for the second 
question in Grid3 [2].  

The rest of this article is as follows. We provide 
first a description of the scenario that we seek to 
address and identify the main players. In section 3 we 
elaborate the usage policy specifications used for 
scientific Grids. In section 4, we simulate and measure 
how well different UPs suit both user and resource 
owner perspectives. Section 5 contains the description 
of our usage policy infrastructures built in the Grid3 



 

 

context [2]. Section 6 presents several related work 
streams, and Section 7 includes our conclusions and 
future plans.  

2. Motivating Scenario  

To motivate why UP-based resource sharing 
management is important, we consider Grid3 [2]. This 
system comprises numerous resources, resource 
owners, VOs, and resource users. Each user and 
resource owner participates in and may contribute 
resources to multiple collaborative projects that can 
vary widely in scale, lifetime, and formality. (The 
largest collaborations associated with Grid3 encompass 
thousands of scientists at more than one hundred 
institutions.) Each such project generates workloads 
comprising dynamic mixes of work of varying priority, 
some requiring the efficient aggregation of large 
quantities of computing and storage. 
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Figure 1: Resource allocation schematic 

 
Figure 1 shows our model of resource allocation, in 

an architectural view that we describe in more detail in 
Section 5. In the two VOs (squares) and three sites 
(circles), shaded elements indicate the compute (C) and 
storage (S) resources allocated to each VO at each site. 
Sites and VOs share resources by defining how 
resource usage takes place in terms of where, what, 
who, and when it is allowed.  

In this context, there are three dimensions in the UP 
space, consisting of resource provider (sites), resource 
consumer (VOs), and time, which are modeled as UP 
attributes expressed in terms of limits. Policy makers 
who participate in such collaboration define resource 
usage policies involving various levels of this space. 

UPs represent owner statements about the policies 
that govern how their resources are to be allocated to 
resource consumers: i.e., they encode the SLAs that an 
owner has established with consumers. Such 
statements can vary in complexity from simple priority 
rules enforced at local resource managers to more 
complex descriptions that support complex SLAs and 
are implemented by specialized policy handling 
modules [17,24,25]. While diversity can be useful and 

may be inevitable, it is also important that resource 
consumers be able to interpret UPs; thus, simplicity 
and uniformity are to be desired. 

2.1. Usage Policy Issues 

Policy specification, enforcement, negotiation, and 
verification mechanisms are required at multiple levels 
within this environment.  

Owners want convenient and flexible mechanisms 
for expressing the policies that determine how many 
resources are allocated to different purposes, for 
enforcing those policies, and for gathering information 
concerning resource usage. Particular concerns may 
include achieving the policy flexibility needed to meet 
different and time-varying demands, and being able to 
resolve disputes as to whether policies were correctly 
enforced. 

VOs want to know UPs that owners impose under 
which resources are made available. VOs also want to 
interpret such SLAs to determine available resources 
and to guide resource allocation and task scheduling 
decisions. They also want to evaluate delivered service 
to verify that owners are respecting published UPs. 
VOs need to respond to resource requests from VO 
participants in ways that not only respect owner and 
VO policies but also, perhaps, maximize various 
performance metrics such as throughput. And VOs 
need to demonstrate to their participants that VO 
policies are followed correctly. In these latter respects, 
VOs also act as “owners” of the aggregate resources 
made available to them by sites. 

2.2. Resource Providers and Consumers 

The preceding material introduces the primary 
actors in the Grid3 UP environment and their 
interactions. Specifically, our policy framework deals 
with two classes of entities: resource providers and 
resource consumers. A physical site is a resource 
provider; a VO is a consumer (consuming resources 
provided by a site) and a provider (providing resources 
to users or user groups). We assume that each 
provider-consumer relationship is governed by an 
appropriate SLA, but do not address here the nature of 
those SLAs, an issue that can involve many trade-offs. 
For example, providers may prefer powerful but 
complex SLAs that provide flexibility in terms of how 
they allocate resources, while consumers may want 
simple SLAs that are easily interpreted. 

We use an example to illustrate some issues that 
can arise. Assume that provider P has agreed to make 
R resources available to consumer C for a period of 
one month. How is this agreement to be interpreted? 
These resources might be dedicated to C or, 
alternatively, P might make them available to others 



 

 

when C is not using them. In the latter case, P might 
commit to preempt other users as soon as C requests 
them, or might commit to preempt within a certain 
time period. If C is allowed to acquire more than R 
resources when others are not using them, then this 
may or may not result in C’s allocation being reduced 
later in the month. C may or may not allow 
reservations. The SLA between P and C should 
presumably capture such issues, as well (optionally) as 
issues such as price and acceptable use policy [17,29]. 

3. Evaluating Usage Policies 

Having described the principal actors in the policy 
space and their requirements, we turn out attention to 
the question of the policies that may be used at sites. 
We define three specific usage policies and also a set 
of task assignment policies and evaluation criteria used 
in our experiments.  

3.1. Usage Policies 

We consider now three UPs that are likely to be 
deployed in real contexts such as Grid3, namely, fixed-
limit, extensible-limit, and commitment-limit. 

Fixed-limit: A UP statement specifies a hard upper 
limit on the fraction of resources Ri available to a VOi. 
A request to run a job is granted if this limit is not 
exceeded, and rejected otherwise. More precisely, a job 
requiring J resources is admitted if and only if Ci + J � 
Ri, where Ci denotes the resources currently consumed 
by VOi at the site. Note that a job that is admitted will 
always be able to run immediately, unless the resource 
owner oversubscribes resources, i.e., �iRi > 1.  

Extensible-limit: A UP statement also specifies an 
upper limit, but this limit is enforced only under 
contention. Thus, we introduce a second condition 
under which a job requiring J resources is admitted, 
namely J � Cfree, where Cfree denotes the site’s current 
unused resources. Note that because this policy allows 
VOs to consume more than their allocated resources, 
whether or not an admitted job can run immediately 
may depend on the site’s preemption policy.  

Commitment-limit: A UP statement now specifies 
two upper limits, an epoch limit Repoch and a burst limit 
Rburst, and for each also specifies an associated interval, 
Tepoch and Tburst respectively. A job is admitted if and 
only if (a) the average resource utilization for its VO is 
less than the corresponding Repoch over the preceding 
Tepoch, or (b) there are idle nodes and the average 
resource utilization for the VO is less than Rburst over 
the preceding Tburst. More precisely, any jobs that 
verify the following algorithm are admitted.  

 
# Case 1: over-used site by VOi 
if EAi > EPi 

        reject job from VOi  
# Case 2: un-allocated site  
else if �k(BAk) = 0 and BAi + J < BPi   
        run job from VOi 
# Case 3: sub-allocated site 
else if �k(BAk) + J < TOTAL and BAi + J < BPi   
        run job from VOi 
# Case 4: over-allocated site 
else if �k(BAk) = TOTAL and BAi + J < EPi   
      schedule job from VOi 
else  
        reject job from VOi  

 
with the following definitions: 

EPi  = Epoch Usage Policy for VOi, i.e., Repoch 
BPi = Burst Usage Policy for VOi, i.e., Rburst 
BAi  = Burst Resource Usage for VOi 
EAi  = Epoch Resource Usage for VOi 
TOTAL = upper limit allocation on the site 
 

The following example illustrates the notation used 
to represent commitment-limit UPs in our work [17]:  

 
[CPU, Site1, VO0, (1month, 10%), (1day, 40%)] 

 
This policy specifies Site1 will provide 10% of its 

computing power to VO0 as long that the VO keeps a 
steady workload. The VO also can spike to 40% as 
long as free resources are available and VO0 does not 
exceed its 10% long term allocation. If the entire 
allocation is consumed, VO0 obtains further resources 
only in the next UP interval, in the next month in our 
example. 

3.2. Task Assignment Strategies 

The effectiveness of a specific UP may depend on 
the strategies used by consumers to assign tasks to 
nodes, and thus evaluate each UP in the face of 
different task assignment strategies.  

De Jongh [16] distinguishes static scheduling 
policies, which do not consider any time-varying 
information such as load when selecting a site for 
execution, and dynamic policies, which take into 
account factors such as site load and site capability.  

We started from two static policies, Random and 
Round-Robin, which assign each task to a randomly 
selected node and the “next” node, respectively. We 
extend these policies to consider only those sites at 
which current conditions would allow a task to be 
admitted. (Thus, neither extended policy is static as 
defined by DeJongh [16].) We also consider one 
dynamic policy, Least-Used, which assigns each task 
to the node that is currently the least loaded. We chose 
Least-Used because of its simplicity, even though it 
does not deliver the best performance in distributed 
environments, because of partial information available 



 

 

at any moment. Other more complex scheduling 
policies [16] are beyond our purpose in this paper, 
given our assumption that resource control in grid 
environments is considered distributed. 

3.3. VO-Centric Ganglia Simulator  

We have developed VO-Centric Ganglia [28], an 
meta-cluster simulator that can be used to study the 
behavior of different scheduling schemes, scheduling 
policies and workloads [28]. This system is derived 
from the Ganglia monitoring system by replacing its 
collectors (“gmonds”) with a module that supplies 
simulated system information. A part of the Ganglia 
[18] code is then used to run the simulator code, to 
collect simulated states, to aggregate monitoring 
metrics, to maintain the history log of the system and 
to provide a simple interface for data accessibility.  

VO-Centric Ganglia is a discrete event simulator, 
which means that every X seconds the simulator 
evaluates the state of all components in the system 
(jobs, queues, resource status, allocations, usages, etc). 
The system allows simulating a specific Grid 
environment, composed of a pre-specified number of 
sites, VOs and groups, VO planners and site managers, 
different task assignment policies, and usage limits. 
The simulator captures various costs associated with 
job execution, such as submission, staging, and 
termination. During each simulation step, various 
algorithms are used to adjust the state of different 
components in the framework.  

Jobs are submitted into planner queues and then 
moved to site queues based on different task 
assignment strategies. When a job is submitted but 
rejected at a site (e.g., because no disk space is 
available or epoch shares are exhausted), it is returned 
to the planner queue and re-entered the planning 
process. If there are no available burst shares, the job is 
held in the planner queue and scheduled as soon as 
shares become available for that VO. If the site’s 
network is not available, the job is queued for transfer 
and actually moved to a site when the network 
becomes available.  

In the simulations described in this paper, VO-
Centric Ganglia considers that once a job is scheduled 
to a site, the site runs the job even with delays. The 
delays can occur from site over allocation for keeping a 
steady workload at the site, and/or previous work that 
is not preempted. If no site is available for a workload, 
jobs are delayed from submission until a site becomes 
available [26]. 

3.4. Evaluation Criteria 

Having defined different UPs and task assignment 
strategies, we need to consider how to evaluate the 

effectiveness of different combinations of policies and 
strategies in practice. We proceed as follows. We 
assume an oversubscribed environment in which 
multiple VOs can generate more work than available 
sites can handle. Then, we evaluate the effectiveness of 
different UPs by measuring both aggregated resource 
utilization (a measure of how well a UP specification 
meets resource owner intent) and aggregated response 
time (a measure of how well a UP specification 
delivers resources). Both metrics are important. 

We define aggregated resource utilization (ARU) 
as the ratio of the CPU-resource actually consumed by 
users (ETi) to the total CPU-resources available. We 
compute this quantity as follows:  

 
ARU = � (ETi) / (#cpus * �t) 

 
We define the aggregated response time (ART) for 

an entire VO [12,19] as follows, with RTi being the 
individual job time response:  
 

ART = �i=1..N RTi / N. 

4. Simulation Studies 

We used VO-Centric Ganglia for simulation studies 
in order to evaluate alternative UP and task assignment 
schemes. We present results for a simulated 
environment comprising 10 sites (the approximate 
amount of available resources on Grid3 at the testing 
moment) with 7, 7, 7, 15, 15, 15, 15, 27, 27, and 39 
CPUs, respectively, for a total of 174 CPUs. We 
assume six VOs, each with two workloads (described 
below); and implement the three UPs and three task 
assignment policies described earlier. We also 
implement a “no-limit” UP, in which site owners 
accept any and all tasks on a first-come/first-served 
basis, meaning that a particular workload might 
consume the entire computing capacity of a site.  

The following four UP statements are a subset of 
those used in our experiments (the full set is available 
online [26]). All such statements are in effect without 
change throughout the simulation runtime. 

 
(1) [CPU, Site1, VO0, (1hour, 10%), (1minute, 40%)] 
(2) [CPU, Site2, VO0, (1hour, 10%), (1minute, 40%)] 
(3) [CPU, Site1, VO1, (1hour, 20%), (1minute, 60%)] 
(4) [CPU, Site2, VO1, (1hour, 20%), (1minute, 60%)] 

 
These UP statements are interpreted as follows. For 

the fixed and extensible UPs, only the limit from the 
first tuple is considered, while for the commitment UP, 
the intervals and limits specified in both tuples are 
considered. We note that the time periods were chosen 
for ease of evaluation in VO-Centric Ganglia (discrete 
simulator using real time yet) and are significantly 



 

 

smaller than the real values we would expect to use in 
real deployments, where the overall duration of a 
policy might be on the order of weeks or months, and 
the burst period might be on the order of hours to days. 

4.1. Workloads 

We use synthetic workloads to evaluate our usage 
policies. Each workload is composed of jobs, each 
corresponding to a certain amount of work and with 
precedence constraints determining the order in which 
jobs can be executed. Jobs arrive, are executed, and 
leave the system according to a Poisson distribution. 
Because in our simulations we consider an 
environment with several VOs, an important factor is 
synchronization among workloads. We consider two 
cases: all workloads start at the same moment in time 
(synchronized), and workloads start at different 
moments in times (un-synchronized) [16,17]. 

We defined 6x2x4 simple workloads, each of which 
overlays work entering the grid for six VOs. 
Workloads are associated with VO groups, and each 
group had associated four burst workloads scheduled at 
predefined time intervals (both synchronous and un-
synchronous cases). In addition, the simulator takes as 
input a set of files associated with each job and inter-
file dependencies, which captures the inter-job 
dependencies. 

Each workload consisted of 440 jobs, as shown in 
Table 1. These synthetic workloads are designed to 
imitate various workloads running on Grid3 in terms of 
CPU usage [2].  

 
Table 1: Grid-wide workload summary 

 

VO Workload #jobs Avg. Job Duration 
0 0 80 200 sec 
0 1 100 300 sec 
1 0 120 150 sec 
1 1 140 250 sec 

 
In all cases, the simulation period was one hour and 

the measurement interval was 30 seconds. Job 
durations and inter-arrival times were generated by 
Poisson and Gaussian distributions, respectively. Two 
of the six composite workloads are depicted in Figure 
2. The job completion times shown above are 
idealized; the start points of the workloads from 0 will 
match the simulated charts but the finish times on the 
simulator charts may be delayed from this “ideal.” 

 

 
Figure 2: Two VOs with two workloads  

4.2. Results 

We present the results achieved for the three task 
assignment policies and the four UPs. (Additional 
results are in a separate report [26]). Tables 2 and 3 
summarize results for the synchronized workloads, and 
Tables 4 and 5 for the un-synchronized workloads. As 
a side note, seconds can be interpreted as any time unit 
and only the length of all experiments and Grid3 
resource usage constrained as from using a different 
time length.  

Table 2: ARU, synchronized 

Policy/UP No-limit Fix-limit Ext-limit Cm-limit 

Random  0.72 0.75 0.69 0.78 

Round Robin 0.70 0.65 0.75 0.77 

Least Used  0.69 0.80 0.81 0.79 
 

Table 3: ART, synchronized  

Policy/UP No limit Fix-limit Ext-limit Cm-limit 

Random  10.64 19.25 12.83 15.83 

Round Robin 11.09 19.39 11.32 15.52 

Least Used 13.25 15.14 15.06 16.02 
 

We note first that Tables 3 and 5 indicate that the 
best user performance is achieved in the absence of any 
UP constraints (column No limit). This behavior is 
what we should expect: UPs function by rejecting jobs 
that could otherwise run. We see also that in this 
situation, Random performs marginally better than 
Round Robin and much better than Least Used for the 
synchronized workloads, while in the unsynchronized 
case, Round Robin is clearly superior. Further work is 
required to account for these differences. 

Considering next the behavior of different task 
assignment policies in the presence of UPs other than 
No Limit, we see that from the perspective of response 



 

 

time, the extensible limit task assignment provides the 
best aggregated response time. An explanation for this 
result is that whenever resources are available for a VO 
at a site, they are grabbed without any restriction.  

Table 3 shows that, for synchronized workloads, 
Random Assignment without any UP limit provides the 
best response time. Table 2 shows that Commitment 
provides almost the best approach for the resource 
owners to enforce different local preferences and 
priorities.  

 
Table 4: ARU, un-synchronized  

Policy/UP No-limit Fix-limit Ext-limit Cm-limit 

Random  0.70 0.67 0.70 0.69 

Round Robin 0.69 0.65 0.71 0.65 

Least Used  0.69 0.64 0.72 0.64 
 

Table 5: ART, un-synchronized  

Policy/UP No limit Fix-limit Ext-limit Cm-limit 

Random  10.3 12.59 10.64 13.35 

Round Robin 7.78 14.82 9.34 12.35 

Least Used 10.57 13.68 11.37 12.59 
 

Looking next at the unsynchronized workload 
execution results, we see the Round Robin policy 
without UP limits provides the best response time, 
while Commitment again provides the highest site 
utilization. However, while the un-synchronized 
workloads result in better user performance, 
aggregated site usage is lower by almost 10% for Fixed 
Limit and Extensible Limit UPs, while 10% higher for 
Commitment UP.  

5. Experimental Studies 

We have constructed a partial prototype framework 
to investigate the feasibility of integrating policies 
within Grid3 [2]. The components of the envisaged 
framework are described in Figure 3 [30].  

 

 
Figure 3: Revised architecture (one V-PEP) 

Resource Managers (RMs) represent the layer at 
which most resource managers (e.g., cluster schedulers 
[19,20], network reservation mechanisms [22]) 
operate. RMs are assumed to have basic mechanisms 
for job prioritization and resource acquisition.  

Policy Translators (PTs) usually take as input some 
RM low level priority description and publish further 
after a specific translation operation.  

VO policy enforcement point (V-PEP) make 
decisions on a per-job basis to enforce UP regarding 
both VO specifications and site specifications. V-PEP 
is invoked whenever a VO planner makes job planning 
and scheduling decisions.  

To verify the performance of this approach in 
meeting the simulation results presented in Section 4, 
we used two submission points that incorporate 
knowledge about each workload, site UPs, and 
monitoring elements for task assignment and job 
selection algorithms [30]. Results gathered from these 
experiments are presented in Tables 6 and 7, similarly 
to the ones in Section 5. All workload runs were done 
over a subset of Grid3 resources and took in account 
the actual local preferences [2]. Resources already 
busy were not counted in computing the following 
statistics.  

Table 6: ARU, synchronized 

Policy/UP No-limit Fix-limit Ext-limit Cm-limit 

Random  0.40 0.32 0.36 0.54 

Round Robin 0.42 0.46 0.44 0.65 

Least Used  0.28 0.20 0.18 0.30 

 
Table 7: ART, synchronized  

Policy/UP No-limit Fix-limit Ext-limit Cm-limit 

Random  69.98 83.62 106.48 82.66 

Round Robin 66.78 73.80 91.06 78.43 

Least Used  75.71 81.89 102.44 89.56 



 

 

The results for the un-synchronized workloads over 
Grid3 are presented in Tables 8 and 9. 

 
Table 8: ARU, un-synchronized 

Policy/UP No-limit Fix-limit Ext-limit Cm-limit 

Random  0.27 0.30 0.40 0.41 

Round Robin 0.31 0.29 0.43 0.55 

Least Used  0.23 0.16 0.25 0.33 
 

Table 9: ART, un-synchronized  

Policy/UP No limit Fix-limit Ext-limit Cm-limit 

Random  66.34 81.02 90.83 81.83 

Round Robin 62.05 80.83 73.78 79.71 

Least Used  71.98 75.91 95.65 84.00 

 
First, the Round Robin task assignment policy 

performs the best in almost all cases with respect to job 
response time. Second, for the aggregated site usages, 
Commitment does perform as well as in the simulated 
case. We note that latencies incurred in submitting jobs 
to site schedulers, and the subsequent scheduling 
delays, are an important factor, which is not captured 
by our VO-Centric Ganglia simulator [28].  

In addition, we have considered only a centralized 
enforcement point, in other words a single point of job 
assignment decision. In future work, we will focus on 
multiple enforcement points that do not have access to 
global usage and UP information. Lastly, at the time of 
the experiments, the local workloads were constant and 
insignificant with the amount of work submitted 
through our framework. In addition, we excluded all 
the busy CPUs from our computations for ARU and 
ART.  

6. Related Work  

Fair share scheduling strategies seek to control the 
distribution of resources to processes so as to allow 
greater predictability in process execution. These 
strategies were first introduced in the early 1980s in the 
context of mainframe batch and timeshared systems 
and were subsequently applied to Unix systems 
[12,13]. We exploit these techniques in our work. 

Author et al. investigate the question of scheduling 
tasks according to a user-centric value metric – called 
utility [27]. Sites sell the service of executing tasks 
instead of raw resources. The entire framework is 
centered on selling and buying services, with users 
paying more for better services and sites paying 
penalties when they fail to honor the agreed 

commitments. The site policies are focused on finding 
winning bids and schedule resource accordingly. This 
approach is different from our work here, as a more 
abstract form of resources is committed under different 
SLAs.  

The Maui scheduler [23] is an external job 
scheduler for use on clusters and supercomputers. It 
operates as a policy engine for controlling resource 
allocations to jobs while concurrently optimizing the 
use of managed resources. Maui operates by guiding 
the scheduling decisions of other cluster managers. It 
manipulates jobs, nodes, reservations, QoS structures, 
policies, and composite objects. Maui is the closest 
work to what we described in this paper, while it is 
mainly a cluster scheduler providing a flexible 
mechanism for scheduling policy specification and 
enforcement at the cluster level.  

LSF is a resource management product that 
schedules, monitors, and analyses the workload for a 
set of computers. LSF supports sequential and parallel 
applications running as interactive and batch jobs. LSF 
is a loosely coupled cluster solution for heterogeneous 
systems, with several scheduling strategies available, 
including Job Priority Based, Deadline Constraints, 
Exclusive, Preemptive, and Fair-share. Multiple LSF 
scheduling policies can be invoked in parallel for 
different sub-clusters [21]. Both Maui and LSF 
represent cluster level schedulers and deal with 
concepts such us queues, users, groups, nodes, and 
scheduling strategies. However, our problem is more 
complex due to the heterogeneity of the considered 
environment – many sites and VOs.  

7. Conclusions  

We have presented and evaluated an approach to 
representing and managing resource allocation policies 
in a multi-site, multi-VO environment. We present 
results in three distinct areas. Firstly, we experimented 
with UP scenarios. Secondly, we were interested to 
present a few simple and common UP examples that 
arise in grid environments, and to gather experience for 
other UP scenarios. Thirdly, we presented architecture 
for UP-based scheduling in the Grid3 environment. 
The main gains for Grid3 are additional usage 
information that gives grid planners, such as Euryale, 
Pegasus, or Sphinx [29], hints about what sites to 
consider for job placement; and time-based entitlement 
to resources, VOs being guaranteed under different FS 
policies that they get resources when they need them 
instead of maintaining constant workloads.  

There are still problems and technical details not 
fully explored in this paper. For example, our analysis 
did not consider the case of cluster administrators that 
over-subscribe local resources, in the sense of a local 
policy that states that 40% of the local CPU power is 



 

 

available to VO1 and 80% is available to VO2. A 
second issue not discussed in this paper is the 
hierarchic grouping and allocation of resources. 
Generally, VOs will group their users under different 
schemes. We are interested to use the same policy 
specification for such specifications, and come with 
some hierarchies of usage policies to encode this. 
While this is an important problem in Grid3 context, 
we leave it as an open problem at the current stage. 
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