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Abstract

Genome-wide Association Studies (GWASs) for complex diseases often collect data on multiple 

correlated endo-phenotypes. Multivariate analysis of these correlated phenotypes can improve the 

power to detect genetic variants. Multivariate analysis of variance (MANOVA) can perform such 

association analysis at a GWAS level, but the behavior of MANOVA under different trait models 

has not been carefully investigated. In this paper, we show that MANOVA is generally very 

powerful for detecting association but there are situations, such as when a genetic variant is 

associated with all the traits, where MANOVA may not have any detection power. In these 

situations, marginal model based methods, however, perform much better than multivariate 

methods. We investigate the behavior of MANOVA, both theoretically and using simulations, and 

derive the conditions where MANOVA loses power. Based on our findings, we propose a unified 

score-based test statistic USAT that can perform better than MANOVA in such situations and 

nearly as well as MANOVA elsewhere. Our proposed test reports an approximate asymptotic p-

value for association and is computationally very efficient to implement at a GWAS level. We 

have studied through extensive simulations the performance of USAT, MANOVA and other 

existing approaches and demonstrated the advantage of using the USAT approach to detect 

association between a genetic variant and multivariate phenotypes. We applied USAT to data from 

three correlated traits collected on 5, 816 Caucasian individuals from the Atherosclerosis Risk in 

Communities (ARIC, The ARIC Investigators [1989]) Study and detected some interesting 

associations.
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1 Introduction

In the study of a complex disease, data on several correlated endo-phenotypes are often 

collected to get a better understanding of the disease. For example, in the study of 

thrombosis, the intermediate correlated phenotypes such as Factor VII, VIII, IX, XI, XII, 

and von Willebrand factor influence greatly the risk of developing thrombosis [Souto et al., 

2000; Germain et al., 2011]. An epidemiological study on type 2 diabetes (T2D) typically 

collects data on a number of risk factors and diabetes-related quantitative traits. The 

standard approach to analyze these phenotypes is to perform single-trait analyses separately 

and report the findings for individual trait.

van der Sluis et al. [2013] demonstrated several alternative models which would benefit 

from a joint analysis. Blair et al. [2013] illustrated the comorbidity between Mendelian 

disorders and different complex disorders, which indicates that there may be common 

genetic variants affecting several of these complex traits. Recently, many articles advocating 

joint analysis over univariate analysis of multiple correlated traits [Ferreira and Purcell, 

2009; Zhang et al., 2009; Korte et al., 2012; O’Reilly et al., 2012; Stephens, 2013; Aschard 

et al., 2014; Galesloot et al., 2014; Zhou and Stephens, 2014; Ried et al., 2014, and 

references therein] have been published that illustrate the benefits of jointly analyzing these 

correlated traits to improve the power of detection of genetic variants. Moreover this joint 

analysis could reveal some pleiotropic genes involved in the biological development of the 

disease.

Few approaches have been developed to perform association analysis with multivariate traits 

at a GWAS level. O’Reilly et al. [2012] proposed MultiPhen to detect association between 

multivariate traits and a single nucleotide polymorphism (SNP) with unrelated individuals. 

MultiPhen uses ordinal regression to regress a SNP on a collection of phenotypes and tests 

whether all regression parameters corresponding to the phenotypes in the model are 

significantly different from zero. It can accommodate both binary and continuous traits but 

may suffer from lack of power when a SNP is associated with all the highly correlated traits. 

van der Sluis et al. [2013] proposed Trait-based Association Test (TATES) for testing 

association between multiple traits and multiple SNPs using extended Simes’ procedure on 

the p-values derived from univariate trait and single SNP association analysis. Even when 

the phenotypes are strongly correlated, TATES gives appropriate type I error for varying 

minor allele frequency (m.a.f.). It may have low power when a SNP affects only a few of the 

strongly correlated traits. Maity et al. [2012] proposed a kernel machine method for 

unrelated individuals for joint analysis of multimarker effects on multiple traits. Kernel 

machine is a powerful dimension-reduction tool that can accommodate linear/non-linear 

effects of multiple SNPs. Their test for association between multiple SNPs and the 

phenotypes is equivalent to testing the variance components in a multivariate linear mixed 

model (mvLMM). Implementation of this approach requires parametric bootstrapping to 

estimate the distribution of the test statistic and could be computationally intensive at a 

GWAS level. Korte et al. [2012]; Zhou and Stephens [2012] implemented mvLMM for 

GWAS. Zhou and Stephens [2014] explored efficient algorithms for mvLMM in a GWAS 

setting.
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Recently, data reduction methods such as principal component analysis (PCA) and canonical 

correlation analysis (CCA) are being explored to perform multivariate association analysis 

[Tang and Ferreira, 2012; Basu et al., 2013; Aschard et al., 2014]. The advantage of using 

CCA to perform gene-based tests on multivariate phenotypes has been elaborately discussed 

in Tang and Ferreira [2012]; Basu et al. [2013]. Previously, Ferreira and Purcell [2009] 

proposed a multivariate test of association based on CCA to simultaneously test the 

association between a single SNP and multiple phenotypes. Their CCA approach is 

equivalent to multivariate analysis of variance (MANOVA) or more generally the Wilk’s 

lambda test in multivariate multiple linear regression (MMLR) approach [Muller and 

Peterson, 1984]. Basu et al. [2013] extended the MANOVA to family data. Both O’Reilly et 

al. [2012] and van der Sluis et al. [2013] found significantly high power for MANOVA 

when a subset of traits was associated with the causal variant or gene. One major advantage 

of MANOVA is that it can easily be extended to incorporate multiple phenotypes as well as 

multiple SNPs (such as a gene). Moreover other covariates can easily be incorporated in the 

model.

In this paper, we explore the performance of MANOVA to detect multi-trait association 

under various alternative trait models. Our simulation studies consider a single marker to 

investigate the properties of MANOVA. Further, we theoretically justify the behavior of 

MANOVA and provide a geometrical explanation as well. We demonstrate that MANOVA 

may lose significant power when the genetic marker is associated with all the traits and any 

test that does not consider the within trait correlation can have more power in such a 

situation. In such a scenario, methods based on marginal models have better power than 

MANOVA. Stephens [2013], too, emphasizes that “multivariate association analyses are 

often most advantageous when not all phenotypes are associated with the genetic variant 

being tested!” Utilizing these findings, we propose a novel unified score-based association 

test (USAT), which considers an optimal weighted combination of the multivariate score test 

(MANOVA) and a score-based test from marginal models. USAT maintains good power 

under various alternative trait models and performs significantly better than MANOVA 

when all the traits are associated.

This paper evolves as follows. Section 2 describes some popular existing methods for doing 

association analysis using multiple phenotypes. More specifically, section 2.1 describes the 

univariate methods that completely ignore trait correlations, section 2.2 describes a method 

that accounts for the within trait correlation only through the distribution of the test statistic 

while section 2.3 describes a multivariate method that directly incorporates the trait 

correlation structure. Section 2.4 theoretically and geometrically justifies some aspects of 

the behavior of MANOVA, for K traits and a single SNP, in situations that commonly arise 

in such genetic studies. Section 2.5 introduces our unified approach USAT for association 

analysis using multiple traits and a single marker for unrelated individuals. Section 3 

illustrates a comparison of different existing approaches and USAT using simulated data and 

a real dataset. Section 4 concludes this article with a short summary and discussion.
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2 Methods

Consider K correlated traits Y1, Y2, …, YK in n unrelated individuals. Let Yk be the n × 1 

vector of k-th trait and Y be the n×K matrix of traits for all individuals. Consider a GWAS 

setting with data on a large number p (≫ n) of genetic variants. We are interested in testing 

the association of a single SNP with the K correlated traits. For a given SNP, let Xi be the 

number of copies of minor alleles (0, 1 or 2) for i-th individual and X be the n × 1 vector of 

genotypes for all samples. Without loss of generality, it is assumed that the phenotype 

matrix Y and the genotype vector X are centered but not standardized.

Due to the correlatedness of the traits, a standard approach would be to consider an MMLR 

model for the association test of K traits and the SNP:

(1)

where β′ = (β1, …, βK) is the vector of fixed unknown genetic effects corresponding to the K 

correlated traits, and ℰ is the matrix of random errors. For testing that the SNP is not 

associated with any of the K traits, the null hypothesis of interest is H0 : β = 0.

In the MMLR model (1), each row of ℰ is i.i.d. with mean 0K×1 and variance ΣK×K. In 

particular, ℰ may be assumed to be an n × K normal data matrix from NK(0, Σ), where Σ is a 

positive definite (p.d.) matrix representing residual covariance among the traits. The 

likelihood ratio test (LRT) of H0 based on the MMLR model with matrix normal errors is 

equivalent to MANOVA [Muller and Peterson, 1984; Yang and Wang, 2012]. One may 

consider a further partition of ℰ to arrive at mvLMM:

where W is a matrix of random effects representing heritable component of the phenotypes, 

and ε is the matrix of errors characterizing random variation arising from unmeasured 

sources. In recent times, mvLMMs have been recognized as powerful tools for testing H0. 

mvLMM can not only control population structure, sample relatedness and other 

confounding factors, but can also account for dependence among multiple traits. Association 

tests based on mvLMM can be computationally challenging and many efficient algorithms 

have been developed to this end [Yang et al., 2011; Korte et al., 2012; Zhou and Stephens, 

2014].

Apart from multivariate models, one may use marginal/univariate models for such an 

association test. Although marginal modeling effectively assumes the traits to be 

uncorrelated, approaches based on marginal models are often computationally faster and 

easier to implement. The marginal model for testing association of a SNP with k-th trait is 

given by

(2)
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βM,k is the k-th genetic effect in the marginal model. For the k-th marginal model, our null 

hypothesis is H0,k : βM,k = 0. In order to carry out the simultaneous test H0, one still needs to 

devise an approach to combine the results from the marginal tests H0,k, k = 1, 2, …, K.

Broadly, the different statistical approaches for testing our global null hypothesis of no 

association can be classified into three categories: (1) tests that completely ignore the within 

trait correlation; (2) tests that incorporate within trait correlation only in deriving the 

distribution of the test statistic; and (3) tests that incorporate the within trait correlation 

directly in deriving the test statistic. We compare through extensive simulation studies these 

three broad approaches and discuss their advantages and shortcomings under various 

alternative trait models.

2.1 Combination Tests that completely ignore within trait correlation

This category of tests considers separate regression models for the K traits (i.e., K univariate 

analyses), thereby treating the traits as uncorrelated. Let pk be the p-value for testing H0,k 

based on the k-th marginal model in (2). This class of tests proposes several approaches of 

combining the p-values p1, …, pK for testing our global null hypothesis .

2.1.1 Fisher’s Test—Fisher’s method [Fisher, 1925] involves combining the logarithmic 

transformation of the p-values p1, …, pK. The test statistic is , which under 

H0 and the assumption of independent tests, has a  distribution. In the presence of strong 

correlation among traits, inflated type-I error is observed (‘anti-conservative’).

2.1.2 minP Test—The minP test statistic is based on the minimum of adjusted p-values, 

where adjustment is usually done by Bonferroni’s method to take care of multiple-testing 

issue. It is given by . Under H0 and the assumption of independence 

among the phenotypes, pmin is distributed as the minimum of independent U(0, 1) variables. 

In the presence of correlation structure, this test can be conservative. To take care of this 

conservativeness, van der Sluis et al. [2013] proposed TATES which combines p-values 

from univariate analyses while correcting for the relatedness among the phenotypes.

2.2 Test that incorporates trait correlation only through distribution

This category of tests does not explicitly consider the trait correlation in the test statistics. 

The correlation is taken into account in finding the true null distribution of the test statistic 

due to which the statistic maintains proper type I error. A notable test in this category is the 

Sum of Squared Score (SSU) test as outlined by Yang and Wang [2012], an extension of the 

SSU test for association of multiple SNPs with a single trait proposed by Pan [2009].

2.2.1 SSU Test—SSU is a score-based test where the score vector is derived from the 

marginal normal models in equation (2). Under the global null H0, the K × 1 vector of 

marginal scores is given by
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where  is the maximum likelihood estimate (MLE) of σ2 in 

equation (2) under the null. The SSU test statistic is TS = U′MUM, which has an approximate 

asymptotic scaled and shifted chi-squared distribution  [Zhang, 2005] under H0. The 

distributional parameters are determined as

(3)

where  are the ordered eigenvalues of .

An important aspect of the SSU test is that the test statistic does not incorporate the trait 

covariance structure. Notice that, according to equation (3), Cov(UM) contains information 

on within trait correlations and is used in deriving the distribution of the statistic. If U be the 

score vector from MMLR model (1) under H0, a test statistic of the form U′U will not be an 

SSU type test since the within trait covariance matrix is incorporated in U.

2.3 Multivariate Test that incorporates within trait correlation directly in the test statistic

This class of tests explicitly incorporates the within trait correlation structure in the test 

statistics as well as in finding their distributions.

2.3.1 MANOVA—Consider the MMLR model in equation (1). Assume each row of ℰ to be 

i.i.d. NK(0, Σ). The log-likelihood for the data matrix Y is given by

(4)

For testing H0, the LRT is equivalent to the MANOVA test statistic (Wilk’s Lambda), which 

is the ratio of generalized variances |E|/|H + E|. Here H is the hypothesis sum of squares and 

cross product (SSCP) matrix and E is the error SSCP matrix. The explicit forms of these 

SSCP matrices in terms of phenotype and genotype data are H = β̂(X′X)β̂′ and E = Y′Y − β̂(X
′X)β̂′, where β̂ = Y′X(X′X)−1 is the MLE of β. Thus, H is calculated as the covariance matrix 

of the fitted values, and E is calculated as the covariance matrix of the residuals of the 

model. Under H0, −2 logΛ = −n log (|E|/|H + E|) has an approximate asymptotic 

distribution.

Another such multivariate approach is MultiPhen where the genotype is modeled as ordinal 

using a proportional odds regression model. O’Reilly et al. [2012] empirically showed that 

for a single SNP, MultiPhen’s performance is similar to MANOVA. For testing the global 

null of no association, whether one treats Y as a multivariate response and X as a predictor 
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(as done in MANOVA) or treats X as a univariate response and Y as multiple predictors (as 

done in MultiPhen), both approaches lead to same p-values [Anderson, 1984; Stephens, 

2013].

2.4 MANOVA and its behavior

A major challenge in multivariate disease-related trait analysis is the lack of a test that is 

uniformly most powerful under different patterns/levels of association and different within 

trait correlation structures. The association tests which do not consider within trait 

correlation at all are either ‘conservative’ or ‘anti-conservative’. Our simulation studies with 

compound symmetry (CS) correlation structure show that MANOVA generally has better 

performance but loses significant power when within trait correlation is high and is in the 

same direction as all the genetic effects. For a moderate number of traits, MANOVA may 

fail to detect pleiotropy (phenomenon where a single genetic variant affects all the traits) 

even at low within trait correlations (refer sections 3.1, 3.2).

The following theorems provide conditions under which MANOVA loses power when a 

SNP is associated with all K correlated traits. We assume a CS residual correlation structure. 

Theorem proofs are provided in Appendix S1.

Theorem 1: Consider the MMLR model  with vec(ℰ) ~ NnK(0, In 

⊗ Σ), Σ = σ2 ((1 − ρ)IK + ρ11′), σ2 > 0, ρ(> 0) is the within trait correlation such that Σ is a 

p.d. matrix, and β′ = (β1, …, βK) is the vector of genetic effects. Assume that the genetic 

effects of the associated traits are equal in size and in positive direction. Consider two 

scenarios of association: ‘partial association’ (when the SNP is associated with u (< K) 

traits), and ‘complete association’ (when all K traits are associated). For testing H0 : β = 0, 

the power of MANOVA under partial association will be asymptotically more than that 

under complete association if . Here ΣK−u is the CS 

residual covariance matrix of the K − u truly unassociated traits.

For K = 2 traits, Theorem 1 can be generalized further to encompass genetic effects in 

opposite direction, and negative within trait correlation.

Theorem 2: Consider the MMLR model in Theorem 1 with K = 2 traits. The genetic effects 

of the associated traits may or may not be equal in size or in same direction. The within trait 

correlation ρ may or may not be positive. For testing H0 : β1 = β2 = 0, the power of 

MANOVA when only one trait is associated is asymptotically more than when both traits 

are associated if 0 < β2 < 2ρβ1 or 0 > β2 > 2ρβ1.

Corollary 1: In particular, let us assume that the genetics effects of the associated traits are 

equal in size. That is, |β1| = |β2| when the SNP is associated with both the correlated traits. 

Asymptotically, the power of MANOVA under Ha1 : β1 > 0, β2 = 0 will exceed the power of 

MANOVA under

i. Ha2,1 : β1 = β2 > 0 when ρ > 1/2;
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ii. Ha2,2 : β1 = −β2 > 0 when ρ < −1/2.

The theoretical 95% acceptance regions of SSU and MANOVA for K = 2 correlated traits in 

Figure 1 provide a geometrical explanation of the above theorems. The acceptance region of 

SSU is drawn using the marginal scores UM,1 and UM,2. MANOVA’s acceptance region is 

drawn using the 2 components Z1 and Z2 of vector Z since MANOVA is asymptotically 

equivalent to the test Z′I(0)Z. Here Z is an N(0, I(0)−1) variable and I(0) is Fisher 

Information matrix under H0 : β = 0. Details of this equivalence and the acceptance region 

plots are provided in Appendix S2. For SSU, a high true value of β1(β2) will be reflected by 

a high value of UM,1(UM,2). In Figure 1, observe that the SSU acceptance regions are almost 

circular in shape irrespective of correlation ρ. With increase in ρ, the shape of the acceptance 

region remains same. Only the size increases a little which causes slight loss in power to 

reject H0. For MANOVA, a high true value of β1(β2) will be reflected by a high value of 

Z1(Z2). When ρ → 1, notice that the acceptance region for MANOVA becomes elongated 

along the direction of 1 vector in Figure 1. Recall that for a CS correlation matrix, the eigen 

vector corresponding to the largest eigenvalue (for ρ > 0) is along the direction of 1 vector. 

When the true genetic effect sizes are equal and in the same direction, the corresponding 

components of Z are equal as well and they will lie on vector 1. This suggests that the Z’s 

(and hence the non-zero genetic effects) need to be really large to cross the MANOVA 

acceptance region boundary for high ρ. The black box in Figure 1 represents such a 

situation, and it arises when the SNP is associated with both the correlated traits. This fail-

to-reject situation will prevail even when the genetic effects are unequal but similar in 

magnitude. In genetic association studies, we may not expect equal effect sizes but we can 

expect them to be very close since each effect size is very small. On the other hand, if the 

effect sizes are very different, the Z vector will lie in some direction significantly away from 

the major axis 1 of the acceptance region. The closer it gets towards the minor axis, the 

greater is the chance for MANOVA statistic to fall outside the boundary and reject the null. 

The gray triangle in Figure 1 represents a situation where MANOVA’s power to reject H0 is 

higher when ρ is higher. This is the situation when only one of the two traits is associated. 

Furthermore, Figure 1 shows that MANOVA’s loss in power will not be observed 

(irrespective of the strength and direction of within trait correlation) in studies where the 

effect sizes are reasonably large. This was observed in our simulation study with large 

genetic effects (simulation results not provided). It is also to be noted that if all the traits are 

associated but not all are correlated, MANOVA is not expected to lose power (refer section 

3.4).

2.5 An alternative test: A Unified Score-based Association Test (USAT)

Our proposed test is motivated by the geometrical findings in section 2.4. As mentioned 

earlier, SSU test statistic does not explicitly incorporate within trait correlation and hence its 

acceptance region is not much affected when we increase the degree of dependency among 

the traits. On the other hand, MANOVA suffers from lack of power when the correlation is 

high and the genetic effect sizes are similar in magnitude and in same direction as the 

correlation. One, of course, does not know the true size and direction of the genetic effects 

and hence one would not know which association test to use. In such a scenario, one can see 

the clear advantage of combining MANOVA and SSU. We decided to choose the weight 
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optimally from the data. We call our test unified score-based association test (USAT). The 

USAT test statistic is not exactly the best weighted combination of MANOVA and SSU. It 

is the minimum of the p-values of the different weighted combinations. Lee et al. [2012] 

proposed a similar test statistic based on minimum p-value in the context of rare variants in 

sequencing association studies.

Let TM be the MANOVA test statistic based on Wilk’s lambda. From Bartlett’s 

approximation, . On the other hand, the SSU test statistic, denoted as TS, has an 

approximate  distribution, where the parameters a and b and the degrees of freedom d 

are estimated from the data using equation (3). Consider the weighted statistic Tω = ωTM +(1 

− ω)TS, where ω ∈ [0, 1] is the weight. Both MANOVA and SSU are special cases of the 

class of statistics Tω. Under the null hypothesis of no association, for a given ω, Tω is 

approximately a linear combination of chi-squared distributions. For a given ω, the p-value 

pω of the test statistic Tω can be calculated using Liu et al. [2009] algorithm for chi-square 

approximation of non-negative quadratic forms. It is worth noting that the calculation of pω 

does not require independence assumption of the two test statistics (refer Appendix S3).

Apriori the optimal weight ω is not known. We propose our optimal unified test USAT as

For practical purposes, a grid of 11 ω values were considered: {ω1 = 0, ω2 = 0.1, …, ω10 = 

0.9, ω11 = 1}. A finer grid of more ω values did not change the USAT power curve much.

To find the p-value of our USAT test statistic, we need the null distribution of USAT. One 

option is to calculate the empirical p-value by considering several permuted datasets or by 

generating several datasets under the null (as done for Figure 4). Finding empirical p-values 

is computationally intensive and is not suitable when USAT is applied on a GWAS scale 

with large number of traits. We propose an approximate p-value calculation using a one-

dimensional numerical integration. Observe that the p-value of statistic TUSAT is

where tUSAT is the observed value of USAT test statistic for a given dataset, qmin(ωb) is the 

(1 − tUSAT)-th percentile of the distribution of Tωb for a given ω = ωb, FTS(.) is the cdf of 

SSU test statistic TS,  and fTM(.) is the pdf of MANOVA 

test statistic TM. Mathematical details are provided in Appendix S3.

3 Results

We compared the performances of different methods mentioned in sections 2.1, 2.2, 2.3. We 

investigated their type I errors and powers by simulating data on unrelated subjects under a 
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variety of trait models. In Simulation 1 (section 3.1), we considered K = 2 correlated traits 

with genetic effects in different directions and correlation ρ varying between −1 and 1. For 

Simulation 2 (section 3.2), we considered K = 5, 10, 20 traits with genetic effects in the 

same direction as the positive correlation. CS correlation structure was considered. As part 

of Simulation 2, we also compared the performance of USAT against MANOVA and SSU. 

In Simulation 3 (section 3.3), we used data from Simulation 2 and investigated the type I 

error of USAT using the p-value approximation method described in section 2.5. In 

Simulation 4 (section 3.4), we used the same set-up as Simulation 2 to investigate the 

behaviors of existing methods under correlation structures other than CS.

For our simulation studies, we first simulated X taking values 0, 1, 2 with probabilities (1 − 

f)2, 2f(1 − f), f2 respectively. f = 0.2 was the m.a.f. of the the single SNP. The two alleles at 

the SNP were sampled independently to ensure Hardy-Weinberg equilibrium. Conditional 

on X, we simulated Y for a fixed K using the simulation model Y = β01 + βX + ε, where the 

vectors Y, 1, β, ε are K-dimensional. We took β0 = 1 and simulated ε from NK(0, σ2R(ρ)), 

where R(ρ) is a CS correlation matrix. The genetic effect size for a given associated trait was 

chosen such that h% (0 < h < 1) of the total phenotypic variance was explained by the SNP. 

For a given trait, the choice of h and the minor allele frequency of the SNP determine the 

effect size for the SNP. One may refer Section 2.4 of Basu et al. [2013] to find details on 

how the SNP effect sizes were found. The specific choices of h, β, σ2 and ρ for each 

simulation are given in their respective sections (3.1 and 3.2). Before applying any method 

on the simulated datasets, we centered both Y and X for each dataset. We are interested in 

testing H0 : β = 0. All the association tests except MultiPhen were coded by us in R 3.0.1 [R 

Development Core Team, 2014]. For MultiPhen, we used ‘Joint Model’ output (p-value) 

from the R package MultiPhen 2.0.0.

3.1 Simulation 1: K = 2 traits

We first studied the performances of different association tests by considering only 2 

correlated traits so that the genetic effects and the pairwise correlation can have different 

directions. We considered genetic effects β such that 0.2% of the total variance of an 

associated trait was explained by the SNP. The total variance of an associated trait was taken 

to be 10. This ensured that the variance due to SNP was 0.02 while the residual variance was 

σ2 = 9.98. For an unassociated trait, the variance explained by SNP was 0 and hence its 

residual variance was same as the total variance. We considered 3 possible levels of 

association: no trait was associated (β1 = 0 = β2), only the first trait was associated (β1 = 

0.25, β2 = 0) and both the traits were associated (β1 = 0.25 = β2). We also considered genetic 

effects in opposite directions (β1 = 0.25, β2 = −0.25).

First, type I error comparison was done for the 6 existing methods. Estimation of type I error 

generally requires a large number of replicates (N) and a large sample size (n) in order to 

generate a reliable estimate at a stringent level of significance α. The type I error is 

estimated as the proportion of null datasets in which the p-value ≤ α. We considered 

significance levels of α = 0.01 and 0.05. At α = 0.01, one expects to find one ‘non-null’ 

dataset out of every 100 null datasets. Hence, for this purpose, we simulated N = 10, 000 

null datasets with n = 4, 000 independent individuals. Table 1 shows the type I errors (along 
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with 100(1 − α)% confidence intervals of the estimates) for each of the methods for 4 values 

of ρ: −0.8, −0.2, 0.2, 0.8. For high magnitude of correlation ρ, notice that Fisher’s method 

has inflated type I error while minP is conservative. Unlike minP, TATES is not 

conservative since it corrects for the relatedness among the traits. SSU maintains proper type 

I error since the distribution of the test statistic incorporates the within trait correlation 

structure. As expected, MANOVA and MultiPhen maintain correct type I error.

Next, we compared the powers of the methods. Compared to type I error analysis, we 

reduced the number of datasets to reduce computation time while ensuring reasonably good 

estimates of the power for different methods. N = 500 datasets with n = 4, 000 unrelated 

individuals were simulated for different levels of association. 8 different values of 

correlation ρ were used: −0.8, −0.6, −0.4, −0.2, 0.2, 0.4, 0.6, 0.8. Since the methods do not 

have comparable type I errors (as seen in Table 1), we plotted empirical power curves for 

comparison. The empirical power at 5% error level was calculated in the following way. For 

each of Fisher’s method, MANOVA and SSU, the 95-th quantile of the empirical 

distribution of the test statistic was determined based on the N = 500 test statistics obtained 

from N null datasets. Empirical power for these methods was calculated as the proportion of 

test statistics that exceeded the 95-th quantile. For each of minP and TATES, the 5-th 

quantile of the empirical distribution of the test statistic was determined using the N = 500 

test statistics under null. Empirical power was, then, calculated as the proportion of test 

statistics that could not exceed the 5-th quantile. The empirical power of MultiPhen was 

determined using p-values in a way similar to empirical power calculation of minP and 

TATES. From Figure 2, we observe that, irrespective of the value of ρ, the tests that do not 

consider within trait correlation have increase in power with increase in the number of 

associated traits. They seem to have similar performance when both traits are associated. On 

the other hand, MANOVA and MultiPhen have similar performance and are usually the 

most powerful approaches for detecting association. But, both experience power loss when ρ 

> 0.5 and both traits have same direction of association. For traits with genetic effects in 

opposite directions, similar behavior of MANOVA was observed: MANOVA’s power drops 

when ρ < −0.5 (refer Figure S8 in Appendix S10). These empirical observations on 

MANOVA are consistent with Corollary 1 of Theorem 2. No such power loss is observed 

for multiple univariate model based approaches. In particular, SSU maintains correct type I 

error and does not experience power loss like MANOVA. This observation on SSU is 

consistent with our geometrical insight from Figure 1.

3.2 Simulation 2: K = 5, 10, 20 traits

To further study the performance of different tests with increase in the number of correlated 

traits, we simulated three sets of data where the first set had K = 5, second had K = 10 and 

the third had K = 20 correlated traits. Since this experiment involves a large number of 

comparisons for varying K and ρ, we reduced the sample size further to save computation 

time. We considered N = 500 simulated datasets for each scenario with n = 400 unrelated 

individuals. When we plotted estimated power as a function of N for five different 

simulation runs (results not provided), no appreciable between-simulation variability was 

observed at N = 500. This ensures that reasonably good estimates of power can be obtained 

for our choice of N and n. For this simulation study, we considered only non-negative 
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genetic effects, and positive correlation ρ = 0.2, 0.4, 0.6 between each pair of traits. The total 

variance of a trait was fixed at 10. Following Ferreira and Purcell [2009], β was chosen such 

that 0.5% of the total variance of an associated trait was explained by the single SNP. We 

considered 6 possible levels of association: 0%, 20%, 40%, 60%, 80% or 100% of the traits 

were associated with the SNP. Empirical power curves are presented for comparison.

From Figure 3, we again observe how MANOVA suffers from power loss at ‘complete 

association’ when the within trait correlation is high. This power loss increases with increase 

in total number of correlated traits. At ‘complete association’ (where MANOVA loses 

power), the power difference between MANOVA and other methods (such as SSU) 

increases with increase in number of correlated traits and decrease in correlation ρ. At a 

given ‘partial association’, MANOVA is seen to dominate over other methods. Here, the 

difference in powers of MANOVA and any other method increases with increase in number 

of traits as well as the correlation. MANOVA’s performance in this experiment is consistent 

with the asymptotic result in Theorem 1.

Next we studied the performance of our approach USAT compared to MANOVA and SSU. 

Since all three approaches can maintain proper type I error (type I error performance of 

USAT is established in section 3.3), asymptotic power curves are plotted for comparison. 

For each method, the asymptotic power is estimated as the proportion of datasets that give p-

value ≤ 0.05. For the calculation of asymptotic power of USAT, we used the p-value 

approximation method described in section 2.5. In Figure 4, observe that USAT has better 

power than MANOVA whenever it suffers from power loss due to same direction of 

residual correlation and equal-sized genetic effects. In such situations, SSU performs 

significantly better than MANOVA, and USAT follows the SSU power curve closely. In 

other situations where MANOVA is seen to be most powerful among existing methods, 

USAT tends to have power close to MANOVA. USAT maximizes power by adaptively 

using the data to combine the MANOVA and the SSU approach.

3.3 Simulation 3: p-value approximation for USAT

In this section, we applied our approximate p-value approach for finding USAT p-values to 

study its impact on type I error. We generated N = 100, 000 independent datasets (as in 

section 3.2) with n = 10, 000 unrelated individuals under H0. Since we aim to consider 

stringent error levels, a large sample size as well as a large number of datasets have been 

chosen. The type I error was estimated by the proportion of datasets in which the asymptotic 

approximate p-value of USAT test statistic was ≤ 10−4, ≤ 10−3, and ≤ 10−2. Table 2 gives the 

estimated type I error rates (along with 100(1 − α)% confidence intervals of the estimates) 

for USAT using p-value approximation. The estimated values of type I error for different 

values of K and ρ were very close to the true error level α in most scenarios. In general, 

USAT correctly maintains type I error at moderately low error levels (Table 2) but can 

exhibit slight inflatedness for more stringent levels (Table S1).

3.4 Simulation 4: Other correlation structures

We first considered an independent structure. Apart from the residual correlation matrix 

R(ρ), the data simulation was exactly same as in Simulation 2 (section 3.2). The figures and 
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detailed explanations can be found in Appendix S4. When all the traits are independent (i.e., 

R(ρ) = IK), MANOVA does not suffer from power loss at any level of association. Empirical 

power curves (Figure S5) showed that the performances of all the methods described in 

sections 2.1, 2.2, 2.3, except minP and TATES, were similar. As expected, the powers 

steadily increased with increase in number of associated traits. Next we considered a 

correlation structure where the first 80% of the traits had pairwise correlation ρ while the 

rest were independent. Empirical power curves (Figure S6) showed that MANOVA suffered 

power loss when only the correlated traits were associated. Performance of MANOVA 

improved when the SNP was associated with some of the uncorrelated traits. This simulation 

study showed us that MANOVA may not experience power loss even when all the traits are 

associated if some of them are uncorrelated. Appendix S5 provides a theoretical support for 

this observation. The third type of non-CS correlation structure that we considered was 

AR1(ρ) (Figure S7). MANOVA’s power loss was mainly observed for small K and strong ρ. 

With increase in K and decrease in ρ, MANOVA did not experience power loss even at 

‘complete association’. The strength of AR1(ρ) correlation becomes negligible at or near 

‘complete association’ when ρ is small and K is moderately large. For all these trait models, 

the power curves of multiple univariate model based approaches rose with increase in 

number of associated traits (irrespective of strength or direction of residual correlation). All 

these observations on MANOVA for various correlation structures were expected based on 

our geometrical insight from Figure 1 (section 2.4).

3.5 Real Data Analysis

The ARIC study is an ongoing prospective study designed to investigate the etiology and 

natural history of atherosclerosis and its clinical manifestations, and to measure variation in 

cardiovascular risk factors, medical care and disease by race, gender, place and time [The 

ARIC Investigators, 1989]. ARIC has collected measures on many T2D-related traits at 4 

separate visits over a 9-year period. For our analysis, we focused on the Caucasian 

participants and the following 3 T2D related quantitative traits measured at visit 4 (1996 – 

98): fasting glucose; 2-hour glucose from an oral glucose tolerance test; fasting insulin. The 

pairwise correlations among these 3 traits were within (0.2, 0.35). As in most studies of T2D 

[Dupuis et al., 2010; Manning et al., 2012; Scott et al., 2012, for example], BMI was 

adjusted as a covariate. Individuals with diagnosed or treated diabetes at visit 4 and 

individuals with missing traits were excluded, leaving 5, 816 in our analytic sample. More 

details on the phenotypes and the choice of covariates can be found in Appendix S6.

The ARIC cohort has been genotyped using the Affymetrix Genome-Wide SNP Array 6.0. 

Genotyping was completed at the Broad Institute of MIT and Harvard in three batches; the 

Birdseed algorithm was used for genotype calling. Imputation was performed using Mach 

1.0 86 and HapMap release 21 (Build 35). SNPs with a call rate < 90%, m.a.f. < 1%, or 

deviation from Hardy-Weinberg equilibrium (p < 10−6) were excluded for imputation. There 

was a total of 2.5 million genotyped or imputed SNPs. Apart from USAT and MANOVA, 

we also performed separate univariate analyses to emphasize the importance of joint 

analysis over univariate ones. Before implementing any of these approaches, we centered 

both phenotype and genotype data. SNPs with m.a.f. < 5% were excluded. All statistical 

models were adjusted for Age, Sex and BMI.
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Figure 5 shows the manhattan plots of negative log-transformed p-values for the single trait 

single SNP analyses for chromosomes 1–22. The red horizontal line (at 7.3) in each plot 

indicates the log-transformed GWAS significance p-value 5×10−8. There were 53 significant 

SNPs for fasting glucose, and none for the other two traits. On the other hand, there were 96 

and 77 signals for MANOVA and USAT respectively that reached this stringent threshold 

(refer Figure 6, and Table S3 in Appendix S8). Most of these signals mapped near the genes 

GCKR, ABCB11, C2orf16, CCDC121, ZNF512, FAM148A, C2CD4A, which are already 

known to be associated with diabetes related traits [Yamauchi et al., 2010; Kraja et al., 2011, 

for example]. It is worth noting that these detected SNPs are in high linkage disequilibrium 

(LD). Among the SNPs reported in Table S3, MANOVA and USAT respectively detected 

44 and 27 SNPs that none of the univariate analyses could detect. Most notable genes that 

the univariate analyses completely missed are GCKR (on chr 2) and FAM148A (on chr 15).

Since most of the detected SNPs in Figure 6 are in high LD, Table 3 reports only the 

important SNPs after removing the ones in high LD. In a group of highly correlated SNPs 

(i.e., SNPs with estimated absolute pairwise correlation coefficient > 0.8 with another SNP), 

we kept one SNP as a representative. The choice of representative SNP was based on 

previous reports of association. The correlation coefficients (as measures of LD) were 

obtained from PLINK [Purcell et al., 2007] using the command plink --file mydata --r. All 

of the signals in Table 3 have been previously reported. The minor allele T of rs1260326 

(gene GCKR of chr 2) is known to be associated with T2D and hypertriglyceridemia. Risk 

allele A of rs13022873 (gene ZNF512 of chr 2) was found to be significantly associated 

with waist circumference (a T2D related trait highly correlated with BMI) and triglycerides 

[Kraja et al., 2011]. rs13431652 (gene G6PC2 of chr 2) was reported to be a potentially 

causative SNP linking G6PC2 to increased fasting plasma glucose levels and elevated 

promoter activity [Bouatia-Naji et al., 2010]. The rs1402837 T allele (gene G6PC2 of chr 2) 

is known to be associated with blood sugar levels (glycated hemoglobin levels). McCaffery 

et al. [2013] reported that SNPs in ABCB11 (like rs484066) of chr 2 are associated with 

weight loss and regain. Meta-analysis of several GWAS found rs17271305 (gene VPS13C 

of chr 15) to be associated with glucose levels 2 hours after an oral glucose challenge 

[Saxena et al., 2010]. The diabetogenic A allele of rs7172432 (gene VPS13C/C2CD4A/

C2CD4B of chr 15) significantly impairs glucose-stimulated insulin response in non-

diabetics [Grarup et al., 2011].

In Table 3, we notice one SNP (rs7172432) that USAT missed at the stringent significance 

level of 5 × 10−8. One also notices that difference in the p-values of USAT and MANOVA 

for this SNP is negligible. If one takes a closer look at the manhattan plots of Figure 6, one 

will find that certain SNPs are prominently visible for USAT but not for MANOVA (even 

though none could reach genome wide significance). The most noticeable regions (details in 

Appendix S9) are in chromosomes 1, 5, 12 and 18. Regions in chr 18, for example, have 

only been identified by USAT, and some recent studies have reported findings on chr 18 for 

T2D [Morris et al., 2012; Yuan et al., 2014]. For most of these interesting findings, USAT 

gave more significant p-value than MANOVA by borrowing almost the entire information 

from SSU.
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4 Discussion

In the study of a complex disease, several correlated traits are often measured as risk factors 

for the disease. There may be genetic variants affecting several of these traits. Analyzing 

multiple disease-related traits could potentially increase power to detect association of 

genetic variants with such a disease. The elucidation of genetic risk factors of such diseases 

will help us in better understanding and developing therapeutics against them. In this paper, 

we have studied some of the common univariate and multivariate approaches for analyzing 

association between multiple phenotypes and a genetic variant. Our simulation results 

showed that no single method perform uniformly better than the others under the simulation 

scenarios we considered. Multivariate methods like MANOVA and MultiPhen usually had 

higher power than the univariate tests only in situations where a few of the correlated traits 

were associated. Univariate model based methods in sections 2.1 & 2.2 outperformed 

multivariate methods when all the correlated traits were associated and the genetic effects as 

well as the residual correlations were in the same direction. Under the assumption of a CS 

residual correlation structure, we not only established theoretical conditions for MANOVA’s 

loss of power but also provided geometrical explanation for the observed dominance of 

univariate methods over MANOVA (refer section 2.4). Although we have not established 

similar theoretical conditions for other correlation structures, we have seen similar behavior 

of MANOVA in our simulation studies.

We also proposed a novel weighted approach USAT, which maximizes power by adaptively 

using the data to optimally combine MANOVA and the SSU test. Approximate USAT p-

values can be computed using a very fast one-dimensional numerical integration, which 

makes implementation on GWAS data easy. It also allows for adjustment of other covariates 

(details in Appendix S7). As shown by our simulation studies, USAT maintains correct type 

I error in most scenarios (refer Table 2). It may be noted that the approximation involved in 

the p-value calculation can be slightly inflated for stringent error levels (refer Appendix S3). 

The magnitude of such inflatedness at stringent error levels not only depends on the number 

of traits and the correlation parameter but also on the correlation structure. To give an idea 

about the effect of approximation in real GWAS for stringent thresholds, the empirical 

USAT p-values along with approximate USAT p-values are provided for a few randomly 

chosen SNPs in the ARIC Study (refer Table S2). Unlike MANOVA, USAT is powerful in 

detecting pleiotropy under the simulation models we considered. For a large number of traits 

with weak correlations or for a few traits with strong correlations, USAT has clear 

advantage over MANOVA (refer Figure 4). For traits with AR1 covariance structure, USAT 

is more powerful in most situations (refer Appendix S11). Although the reported simulation 

studies considered multivariate normal traits, USAT performed well for multivariate t 

distributed traits (non-normal continuous traits) and common genetic variants. The 

conclusions from the ARIC data analysis are twofold. First, it emphasizes the importance of 

joint analysis of correlated phenotypes over multiple univariate analyses. Secondly, USAT 

can give significant findings by giving more weight to MANOVA for certain SNPs while 

giving more weight to SSU for the rest. For any real data, the underlying association 

scenario (which may vary from one SNP to another) is not known apriori and a specific 
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approach of association test (univariate vs multivariate modeling) may not be powerful 

enough. USAT overcomes this challenge and has proven to be a sensible choice.

Finally, the simulation scenarios we considered are not exhaustive. Under the scenarios we 

considered, the relative behavior of these two tests did not vary much with change in m.a.f. 

(refer Appendix S12), or with increase in the number of correlated traits. Our simulation 

studies also assumed no missing data and no trait outliers. USAT requires complete 

phenotype data. In presence of missing traits, one may consider imputation before 

performing association analysis. van der Sluis et al. [2013] showed that 10% missing-

completely-at-random data caused quite a drop in power for MANOVA when only 1 trait 

was associated. O’Reilly et al. [2012] showed that in the presence of outliers in the 

phenotype distribution, MANOVA and the standard univariate approach were substantially 

inflated for low m.a.f. We simulated data for an additive model only and did not consider 

any non-additive genetic model and/or interactions. In future, we intend to study how power 

of our USAT test would be affected in such situations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of theoretical 95% acceptance regions of SSU test and of MANOVA for K = 2 

traits and ρ = 0.2, 0.8 (Compound Symmetry correlation). The area within the gray (black) 

ellipse is the acceptance region when ρ = 0.2 (0.8). Details of these plots are provided in 

Appendix S2. SSU’s acceptance region is drawn using the marginal scores UM,1 and UM,2. 

MANOVA’s acceptance region is drawn based on the test Z′I(0)Z, where I(0) is Fisher 

Information matrix under H0 : β = 0. The black dotted line is the 1 vector and coincides with 

the major axes of the ellipses. When β1 = β2, we expect Z1 = Z2. The solid black square 

represents a situation where β1 = β2 ≫ 0. When β1 & β2 are significantly apart, we expect 

the same for Z1 & Z2, and such a situation in represented by the gray triangle.
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Figure 2. 
Empirical power curves of the different existing association tests for K = 2 traits and 

different within trait correlation values ρ = −0.8, −0.6, −0.4, −0.2, 0.2, …, 0.8 based on N = 

500 datasets with n = 4, 000 unrelated subjects. Same direction and same size genetic effect 

used when both traits are associated (i.e., datasets are generated from an alternative model 

Ha2,1 : β1 = β2 > 0). Effect size of 0.25 (proportion of variance explained is 0.2%) is used for 

the associated traits. The power is plotted along y-axis while the fraction of traits associated 

with the genetic variant is plotted along x-axis.
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Figure 3. 
Empirical power curves of the different existing association tests for K = 5, 10, 20 traits and 

different within trait correlation values ρ = 0.2, …, 0.6 based on N = 500 datasets with n = 

400 unrelated subjects. Same effect size of 0.395 (proportion of variance explained is 0.5%) 

is used for all the associated traits. The power is plotted along y-axis while the fraction of 

traits associated with the genetic variant is plotted along x-axis.
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Figure 4. 
Asymptotic power curves of the SSU and MANOVA tests along with our novel approach 

USAT for CS(ρ) within-trait correlation structure. K = 5, 10, 20 traits have been simulated at 

different within trait correlation values ρ = 0.2, 0.4, 0.6. For each value of K and ρ, there 

were N = 500 datasets of n = 400 unrelated individuals. Same effect size of 0.395 

(proportion of variance explained is 0.5%) was used for the traits that are associated. The 

power is plotted along y-axis while the fraction of traits associated with the genetic variant is 

plotted along x-axis.
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Figure 5. 
ARIC Study: Manhattan plots of negative log-transformed p-values of the univariate 

analyses are plotted against base pair positions for chromosomes 1–22. Only SNPs with 

m.a.f. > 5% are reported. Age, Sex and BMI were adjusted in the statistical models. The 

solid black horizontal line in each plot corresponds to the genome-wide significance level 

5×10−8. 53 SNPs (all from chr 2) detected as significant for fasting glucose; and none for the 

other traits. Note that many of these significant SNPs are in high linkage disequilibrium.
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Figure 6. 
ARIC Study: Manhattan plots of negative log-transformed p-values of multivariate analyses 

(USAT and MANOVA) are plotted against base pair positions for chromosomes 1–22. Only 

SNPs with m.a.f. > 5% are reported. Age, Sex and BMI were adjusted in the statistical 

models. The solid black horizontal line in each plot corresponds to genome-wide 

significance level 5 × 10−8. Note that many of these SNPs are in high linkage 

disequilibrium.
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