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Abstract

Correlation analyses are often included in bioinformatic pipelines as methods for inferring taxon–taxon interactions. In this

perspective, we highlight the pitfalls of inferring interactions from covariance and suggest methods, study design

considerations, and additional data types for improving high-throughput interaction inferences. We conclude that correlation,

even when augmented by other data types, almost never provides reliable information on direct biotic interactions in real-

world ecosystems. These bioinformatically inferred associations are useful for reducing the number of potential hypotheses

that we might test, but will never preclude the necessity for experimental validation.

Introduction

Correlation (i.e., normalized covariance), the measure of

statistical dependence between two variables, can be a

useful summary of the associations between features across

a dataset. Often, correlation refers to the linear relationship

between two random variables, which can be captured by

Pearson’s correlation coefficient, or nonparametric mea-

sures of dependence, like Spearman’s ρ, Kendall’s τ, or

mutual information. The degree of dependence between

variables can indicate a predictive relationship that can be

exploited, whether or not these variables are causally related

to one another. Overall, correlation is a useful statistical tool

for identifying apparent interdependencies among many

variables. Many researchers, implicitly or explicitly, use

correlation structure in microbial community datasets to

infer underlying ecological interactions. In general, these

inferences are fraught with challenges.

While useful, correlation-based approaches are inher-

ently limited when it comes to ecological interaction

inference. Complex nonlinear dynamics, compositionality

of sequencing data, environmental heterogeneity, latent

confounders, indirect associations, and batch effects all

hinder the usefulness of these correlation metrics when

inferring direct species–species associations. A variety of

newer metrics and methodologies have been developed in

recent years to address some of these challenges [1–9].

However, newer methods are far from infallible, and the

underlying assumptions of these approaches need to be

carefully considered when applied to data. Any method that

claims to accurately capture underlying biotic interactions

of a system using longitudinal or cross-sectional correlation

of taxon abundances or co-occurrences should be viewed

with a generous dose of skepticism.

The proliferation of correlation-based methods for

inferring ecological networks is understandable. In micro-

bial ecology, we are often limited in our ability to directly

observe interactions between microbial species. The most

definitive work on microbial interactions has been done

experimentally. For example, microscopy and staining

techniques, along with stable isotope labeling, have been

employed to observe co-localization and cross-feeding

between methanotrophic archaea and sulfate reducing bac-

teria [10]. In addition to mutualistic interactions, direct

bacterial antagonism through type VI secretion systems has

been demonstrated using a combination of genomics,

microscopy, and co-culturing assays [11]. Entire interaction

networks have been determined in simplified microbial
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consortia consisting of a few species, where community

membership can be manipulated to assess pairwise and

higher-order interactions [12, 13]. While these experimental

approaches represent gold standards for inferring interac-

tions between microorganisms, they are difficult and time

consuming. Furthermore, laboratory-based studies can fail

to capture the environmental context in which natural

interactions occur. Recent work has demonstrated just how

important this context can be in mediating interactions [14].

Thus, it is not practical to apply these experimental methods

to all potential interactions between thousands of taxa,

many of which cannot be cultured. As such, there is a strong

incentive for identifying bioinformatic methods for inter-

action inference.

While interactions are difficult to observe directly, rela-

tive fluctuations in population sizes can be readily quanti-

fied for thousands of bacterial phylotypes at once.

Bioinformaticians have developed a wide array of tools to

infer putative associations from these high-throughput

measures of relative abundance [15, 16]. In general, these

methods tend to generate correlation or covariance matrices,

which are often used to infer hypothetical interactions. At

their best, these inferences represent tentative hypotheses

that can be combined with other data types to help experi-

mentalists guide or constrain their work. At their worst,

these inferences are fundamentally flawed due to incorrect

assumptions about what they tell us about biotic interac-

tions. In this perspective, we review the application of

correlation-based methods in microbial ecology, the

strengths and limitations of these analyses, the pitfalls sur-

rounding how correlation can be misused or misinterpreted,

and how we might augment these analyses to improve our

inferences.

Theoretical considerations

Symmetric correlations and asymmetric interactions

To begin, we must recognize the inherent symmetry of

correlation metrics and the frequent asymmetry of ecolo-

gical interactions. It is impossible to identify the directed-

ness of interactions from cross-sectional associations

[3, 8, 17, 18]. By incorporating the ordering of events in

time and space into an analysis, it becomes somewhat

possible to infer directedness [8]. However, even when the

order of events is incorporated into association analyses,

biological, experimental, technical, and sampling noise can

greatly reduce the sensitivity and accuracy of our infer-

ences. Prior work has demonstrated that we are much more

likely to detect strong, symmetric interactions, like obligate

mutualisms or direct competition, and less likely to detect

weaker, directed interactions, like parasitism or amensalism

[16, 19, 20].

Dynamic models and mechanistic constraints can improve

inferences

In principle, when the underlying biochemical processes

that mediate microbial interactions are known, mechanistic

models can be developed and tested against data. When

applicable, this approach provides a powerful means of

predicting population dynamics and inferring interaction

structure. However, a priori knowledge of interaction

mechanisms is generally not available. Even when some of

these mechanistic details are known, building these models

is surprisingly challenging, even for simple two-species

systems [21]. Thus, while desirable, this approach is not

generally applicable when taxon abundances are the only

information available.

Lotka-Volterra (LV) models can be fit to longitudinal

data, where fluctuations in taxon abundances reflect growth

and death processes, without knowing the underlying

mechanisms that mediate interactions. LV models are

composed of nonlinear differential equations that describe

temporal changes in species abundance that result from

growth, death, and interspecies interactions. These models

take into account the temporal ordering of events, can

capture both positive and negative interactions, and can be

used to model arbitrary numbers of directed interactions

between species with the assumption that interactions are

additive and pairwise. When log-transformed, LV models

can be fit using linear regression, making the interaction

terms somewhat analogous to correlation coefficients [8].

Depending on the number of species and the para-

meterization, these models can have fixed steady-states,

limit cycles, or more complex behaviors. LV models can

provide a useful means of inferring species interactions and

predicting community dynamics in some contexts but have

limitations. For instance, if growth dynamics are not cap-

tured by sampling or the assumptions of the model are

violated (e.g., interactions are not additive and pairwise) the

application of LV is inappropriate. Furthermore, theoretical

and empirical studies have shown that LV models are

fundamentally incapable of accurately capturing all types of

pairwise interactions and can be a poor predictor of

dynamics under realistic conditions [13, 22]. Thus, while

these models are useful in certain systems, like in vitro

communities, their application is not always appropriate and

depends on the features of the system being studied

[12, 13, 20].

In the basic two-species predator–prey form of the LV

model (alternatively, the parasite–host model), the prey

species x is described by the equation dx
dt
¼ αx� βxy and the

predator y is described by dy

dt
¼ δxy� γy, where α and δ are

the growth rates and β and γ are the death rates for the prey

and predator species, respectively. Over a wide range of

parameter values in this system we observe oscillations in
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both predator and prey abundance as a function of time

(Fig. 1a). As the prey population grows, the predator

population has more food and also increases in abundance.

However, predation eventually out-paces the growth of the

prey population and drives the prey toward near-extinction,

until there are too few prey to sustain the predator popu-

lation. Once the predator population crashes, the few

remaining prey are able to recover, and the cycle begins

anew. Over the course of time, predator and prey popula-

tions transition between windows of positive covariance

and negative covariance (Fig. 1a). Contemporaneous cor-

relation is not capable of identifying this asymmetric

interaction between x and y inherent to the underlying

model [8]. However, if we time-lag x relative to y, we find

that a lag exists where the two variables are consistently

positively or negatively correlated over all time windows

(Fig. 1b). By observing the temporal ordering of this time-

lagged relationship, we see that the crash in the prey

population is preceded by a spike in the predator popula-

tion, which implies a directedness consistent with y pre-

dating upon x. These types of time-lagged interactions can

be formally assessed using Granger causality, which cap-

tures the degree of linear prediction of one variable (say,

species y) on the future values of another variable (say,

species x) and can provide directed relationships [6].

Similarly, transfer entropy is a nonparametric extension of

Granger causality that can be applied to infer nonlinear,

time-asymmetric associations between variables [18]. While

Fig. 1 Correlation alone cannot be used to infer drivers of species

dynamics. a Lotka-Volterra (LV) predator-prey oscillatory dynamics.

b Time-lagged LV predator–prey dynamics, with arrows indicating the

time lag used for shifting the prey dynamics backwards in time. In

both a and b blue rectangular boxes are used to indicate regions in

time where the dynamics show significant positive correlation (r > 0,

p < 0.05) and red boxes indicate significant negative correlation (r < 0,

p < 0.05). The symbols above each time window reflect the color

categorization, where “+” indicates a significant positive correlation,

“−” indicates a significant negative correlation and “ø” indicates an

insignificant correlation. Also shown is the overall correlation across

all time windows. c Hypothetical two-species community with mul-

tiple drivers of oscillatory dynamics operating at different frequencies.

For each of the hypothetical species, dynamics were simulated using a

linear combination two sine functions with different amplitude and

frequency. Noise was added to each abundance trajectory by sampling

from a normal distribution. d Spectral decomposition (i.e., Fourier

transform) of abundance data in (c) and species abundance relation-

ships for both high and low-frequency signal components
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these approaches suggest direct causal relationships, they do

not guarantee them. Latent factors, like pH, temperature, or

another unmeasured species, could indirectly drive similar

time-lagged population dynamics. However, if known a

priori, these associations can be accounted for [6]. Another

popular approach for inferring directed associations is

extended local similarity analysis [7]. Like transfer entropy,

this method provides a useful means of capturing both

temporal relationships and nonlinear associations. All of

these approaches work well in addressing the weakness of

contemporaneous correlations for the simple two-species

predator–prey relationship. However, in the more compli-

cated scenario of multispecies virus–microbe interactions,

time-lagged association inference methods have been

shown to be incapable of accurately capturing the features

of these complex networks [20].

Latent drivers of dynamics confound inference of species

associations

Interspecies interactions are not the only drivers of dynam-

ics. Complex population dynamics can arise due to latent

variables. In particular, environmental drivers, like changes

in nutrient availability or temperature, have a profound

influence on microbial population dynamics. These drivers

can operate over different spatial and temporal scales. When

these drivers are not taken into account they can lead to

inaccurate inferences of interspecies relationships. For

example, marine bacterial populations can exhibit both low-

frequency oscillations (e.g., seasonal changes) and high-

frequency oscillations (e.g., species–species competition or

day–night cycles). Martin-Plantera et al. [23] recently

applied spectral decomposition methods to marine microbial

communities to isolate the different frequencies embedded

within species population dynamics. They found that low-

frequency oscillations grouped species together that share a

similar seasonal niche, which reflected environmental fil-

tering and likely had nothing to do with species–species

interactions. Higher-frequency oscillations revealed negative

correlations between related species, which may be more

reflective of biotic interaction, although these dynamics

could also be driven by the environment [23]. Because the

low-frequency seasonal signal was much stronger than the

high-frequency signal, traditional correlation analyses were

dominated by seasonal effects and missed the higher-

frequency signals (e.g., see simulation data presented in

Fig. 1c, d). While this kind of environmental filtering can

mask putative species interactions, this information is still

valuable for inferring shared environmental niches within a

community and, when properly accounted for, can help

researchers to decouple the biotic and abiotic components of

community variance [6, 23, 24].

Neutral processes can drive covariance in the absence of

species interactions and environmental drivers

In some scenarios fluctuations in species abundance cannot

be attributed to interspecies interactions, changes in envir-

onmental factors, or niche constraints. In these cases,

observed fluctuations may simply be due to stochastic

variation in community structure. Neutral models simulate

changes in community structure with stochastic birth, death,

migration, and speciation. Methods have been developed

that allow the application of neutral models to both cross-

sectional and time-series data [25, 26]. These methods,

along with other types of neutral models, can provide an

effective null hypothesis when trying to fit interaction

models like LV or when trying to infer species associations

with correlative analyses [27].

Analytical considerations

Complex structure of microbiome data

Many of the assumptions of established statistical methods

are violated by microbiome sequencing datasets. Microbial

community species-abundance distributions are extremely

fat-tailed, with a large number of low-abundance taxa

detected in very few samples. Thus, microbiome data

matrices are highly sparse. Unfortunately, we do not yet

understand the functional form of this rare tail of microbial

diversity, which makes imputation and normalization diffi-

cult. It is hard to assess whether zeros represent true

absences of species or nondetection due to sampling lim-

itations. The presence of these zeros introduces artifacts into

rank-based correlation analyses [27]. Existing approaches

have not yet addressed the ambiguity of zeros in amplicon

and metagenomic sequencing datasets. In the absence of a

clear consensus, more conservative approaches, like

injecting random low-value pseudocounts to break zero

rank ties or removing low-abundance taxa, seem to be the

most appropriate when calculating correlations [27, 28].

Data transformations can introduce spurious correlations

When analyzing microbiome data from high-throughput

sequencing platforms, differences in library sizes across

samples must be dealt with prior to analysis. These differ-

ences in library sizes are technical artifacts and do not

contain biological information. The most common nor-

malizations are total sum scaling (i.e., converting counts to

proportions by dividing each species count in a sample by

the total sum of counts from within that sample) and sub-

sampling [29], which both effectively convert counts into

relative measures of abundance. Relative abundances are

2650 A. Carr et al.



non-Euclidean and cannot vary independently from one

another. Changes in the relative abundance of one species

will necessarily influence the relative abundances of the

other species due to the zero-sum constraint (Fig. 2). As

such, relative measures of abundance violate the assumption

of independence inherent to classical statistics.

The most relevant repercussion to interaction inference in

compositional data is the introduction of spurious correla-

tion structure (Fig. 2). Compositionally aware methods for

analyzing relative abundances were developed by Aitchison

in the 1980s, based around log-ratio transformations of

compositional features. Isometric log-ratio (ILR) transforms

provide the most stringent way of breaking composition-

ality, but they can be difficult to interpret, because they

involve comparing ratios of multiple data features, rather

than pairwise associations between individual features.

Recent work has extended these methods to microbiome

data, improving the interpretability of ILR results by taking

advantage of the placement of species on a phylogenetic

tree (i.e., ratios of species from one branch of the tree over

species on another branch) [30]. Others methods use log-

ratio transform procedures that approximate pairwise linear

correlations between individual taxon relative abundances

[2]. This later approach, implemented in SparCC, is a

popular choice for mitigating spurious, compositionally

driven correlation structure (Fig. 2c) [2]. While SparCC

provides a useful approach for dealing with composition-

ality, as with any method, it is important to keep the

assumptions it relies upon in mind to avoid potential pit-

falls. When SparCC’s sparsity assumption is violated (i.e.,

the assumption that there are very few underlying correla-

tions) it can yield erroneous results (Fig. 2b). Performance

is also hindered when there are few pairwise comparisons

with which it can estimate the underlying feature variances

and pairwise associations (Fig. 2a). When the sparsity

assumption is not violated and there are more than a few

pairwise comparisons with which it can produce estimates,

SparCC is able to accurately recapitulate much of the

known correlation structure from relative abundance data

(Fig. 2c). While we highlight the use of SparCC, it is worth

noting that there are several other valid choices for network

inference that can mitigate the issue of compositionality.

For a comprehensive review of network inference tools and

their performance characteristics see the following reviews

[16, 31]. Simulations and empirical analyses have shown

that the correlation structure in compositional data begins to

Fig. 2 Transformation from absolute to relative abundances introduces

spurious correlations, which can be mitigated by employing log-ratio

transformations (e.g., SparCC). a Simulated fluctuations in absolute

and relative abundance across a set of samples for a hypothetical six-

species community with one positive linear association. b Hypothe-

tical six-species community with one negative and two positive linear

associations. c Hypothetical fifteen-member community with three

positive and two negative linear associations. For each of these model

communities positive and negative associations are illustrated with

yellow and dark blue connecting lines, respectively. Mean abundances

of each species were chosen arbitrarily and random fluctuations were

simulated by sampling from a Poisson distribution centered around a

species’ mean abundance. Species associations were simulated using

linear relationships where the abundance of species Y was made a

function of its own random fluctuations about a mean and an additive

component that increased or decreased its abundance with respective

to another species x depending on the sign of the coefficient used.

Hypothetical community correlation matrices were generated using

Pearson correlation with absolute and relative abundance data. Also

shown is the correlation matrix inferred from relative abundance data

using SparCC with its default settings. Colored borders around cells in

the correlation matrices indicate associations where the p values were

<0.05 and the Benjamini–Hochberg false discovery rate (FDR) q

values were <0.1. Red borders indicate significant associations not

present in the model community (i.e., false positives), blue borders

indicate significant associations present in the model community (i.e.,

true positives), and yellow boarders indicate nonsignificant associa-

tions present in the model (i.e., false negatives)
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converge toward what we would expect from Euclidean

data as the Shannon diversity of the system increases (i.e.,

as the effective number of species increases) [2]. Thus,

compositional effects should be relatively weak in a typical,

diverse gut microbiome, but these effects can completely

overwhelm the correlation structure of the vaginal micro-

biome, which is often dominated by a single Lactobacillus

species [2]. However, even in very diverse communities, the

system is often positioned near the edge of the simplex (i.e.,

a single species is often dominant), which ensures that many

low-magnitude compositional correlations will always be

present. Overall, compositional effects inherent to micro-

biome data must be reckoned with prior to statistical

inference.

Noninformative indirect associations are introduced when

taxa engage in many pairwise interactions

When associations are obtained using correlative ana-

lyses, any species that interacts with more than one

additional taxon can produce indirect associations

between the taxa it interacts with (e.g., see significant

indirect associations in Fig. 2b, c). This is a serious issue

that can turn correlation networks into hairballs of inter-

connected features that are challenging to interpret. Both

classical correlation methods and more contemporary

approaches like SparCC are susceptible to indirect asso-

ciations (Fig. 2b, c). To address this issue, newer methods

like SPIEC-EASI and FlashWeave have been developed

[1, 32]. These methods utilize the concept of conditional

independence, which assesses how informative an asso-

ciation between two features is given information about

all other features, to reduce the number of spurious

indirect relationships inferred from the data.

Inferring associations between specific microbes and

environmental properties, like host phenotype, can be con-

founded by dense correlation networks. In recent years

correlative analyses have been used to associate specific

microbes in the human gut microbiome with a wide array of

diseases. These microbiome wide association studies

(MWAS) have produced many putative connections

between human gut microbes and host phenotypes. The

issue with these studies is they often produce conflicting

results and the number of associations generated by any

given study can be so numerous that they thwart inter-

pretation and complicate follow-up efforts [9]. Menon et al.

(2018) recently demonstrated how correlations between

microbes can produce spurious indirect associations in

MWAS using simulated case control data and a hypothe-

tical interaction network. To address this issue the authors

developed a method based on the maximum entropy models

in statistical physics, which they call direct association

analysis [9]. Like SPIEC-EASI and FlashWeave, the

author’s approach utilizes conditional independence to

remove uninformative, indirect associations. When applied

to data from a large inflammatory bowel disease study, the

author’s method was able to reduce a set of almost one

hundred putative associations between various microbiota

and the disease previously obtained by a conventional dif-

ferential abundance analysis to a more informative set of

five species and four genera, several of which were sup-

ported by mechanistic insights from other studies [9].

Whether inferring interspecies associations or species

associations with environmental properties, indirect effects

should be considered and accounted for to avoid reporting

spurious, noninformative relationships.

Biases due to batch effects

Microbiome data are prone to batch effects (i.e., biases),

arising from both biological (e.g., geographic or genetic

differences between otherwise similarly defined host

cohorts) and technical variation (e.g., different DNA

extraction methods or 16S primers) between batches of

sequencing data [33, 34]. These effects are highly com-

plex and nonlinear, potentially making parametric batch-

correction methods designed for other ‘omics data types

inappropriate for microbiome data [28]. If correlation

analyses are run across batches, many of the strongest

associations can be attributed to biases and batch effects

rather than true biological signals [28]. Recent progress

has been made in developing bias and batch-correction

methods [28, 34]. However, the safest course of action is

to restrict statistical analyses to within a given batch and

compare the results of these independent analyses across

batches.

Empirical considerations

Changes in relative abundance may not reflect population

growth rates

Often times, the assumption of interaction inference meth-

ods is that relative changes in species population size are

indicative of population growth or decay and can be used to

infer growth or death rates. On its face, this seems to be a

reasonable assumption. However, in the absence of absolute

abundance information, we cannot distinguish whether one

population of organisms is truly increasing, or whether this

rise in relative abundance is occurring due to a concomitant

decrease in the population size of another species. To

address this issue, researchers can take measures of absolute

biomass (e.g., quantitative polymerase chain reaction or cell

counts) for the samples that they sequence [35], or they can

use controlled spike-ins during sequencing to break the

compositionality of the data [36]. Methods for directly
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inferring growth rates from shotgun metagenomic data have

also been developed [37].

In addition to the challenges associated with relative

abundance data, temporal and spatial scales should be

considered prior to any analysis. For example, temporal

sampling resolution in the human gut is limited by defe-

cation frequency (~1 bowel movement per day), which is

generally too coarse to capture microbial population

dynamics (i.e., bacterial doubling times of 1–10 times

per day), despite the common assumption that population-

dynamics models can be fit to these data [3, 8, 38].

Consequently, most of the bacterial population dynamics

in the gut happen internally. Thus, fecal samples represent

the endpoint of dynamics. With the exception of major

perturbations that reduce standing populations in the gut

by several orders of magnitude and require days to

recover from (e.g., due to antibiotics or diarrhea) [3], we

probably cannot infer population growth rates from

human fecal 16S amplicon sequencing data. Therefore, it

is important to carefully consider whether or not the

spatiotemporal scale of sampling can capture relevant

dynamics for any system under investigation. If interac-

tion model assumptions are violated by the input data,

then any inferences dependent upon these assumptions are

suspect (Fig. 3).

Environmental heterogeneity is usually the strongest driver

of correlation structure in natural environments

In soils, drastic shifts in pH, carbon availability, and water

content can occur over microns-to-centimeter scales. If

environmental conditions vary over the spatial or temporal

scales that are sampled, the organisms—often phylogen-

etically related—that are adapted to these conditions vary

along with them [3, 23]. Cofluctuation of taxa due to var-

iation in niche space is known as habitat filtering, and can

be useful information about the niche requirements of

species in an ecosystem. However, habitat filtering provides

us with little-to-no information about direct species–species

interactions. Habitat filtering is usually the dominant driver

of correlation structure in natural microbial ecosystems and

should be carefully considered when attempting to identify

direct species–species interactions from ‘omics data.

Berry and Widder [39] showed that correlation networks

generated from multispecies LV models only reflected true

interactions under a narrow range of conditions, and that

any amount of interaction complexity or environmental

heterogeneity made correlation a poor predictor of interac-

tion. Concordantly, recent empirical work from an intertidal

ecosystem demonstrated that co-occurrence analyses were

unable to recapitulate most known interactions in their

Fig. 3 Sampling strategies

should be optimized to span the

appropriate spatial or temporal

scales. Soils are notoriously

heterogeneous environments.

a Context-dependent

interspecies interactions in a

hypothetical soil community:

blue and green species only

interact during a perturbation

event. b Infrequent sampling

appropriately captures

correlations from slower

recovery process. c Infrequent

sampling does a poor job of

capturing correlation structure

from a rapid recovery process
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system, with the exception of certain strong mutualistic or

antagonistic interactions [19]. The deconvolution of direct

species–species interactions from habitat filtering due to

environmental heterogeneity is one of the most intractable

challenges facing bioinformatic interaction inference in

real-world ecosystems. Thus, researchers should be extre-

mely skeptical and avoid explicit or implicit assumptions of

species–species associations when applying the myriad

methods that have been developed to infer putative “inter-

actions”, “connectivity”, or “cohesion” from covariance

structure in real-world systems [1–4, 8, 40].

Conclusion

We provide a few illustrative examples of the challenges

associated with interpreting correlation networks in micro-

bial ecology and highlight several methods that have been

developed to address these challenges. For a more in depth

discussion of the latest network inference methods, please

see recent comprehensive reviews on the topic [15, 16, 31].

In this perspective, we focus on our various concerns

regarding the use of correlation to infer biotic interactions.

While correlation analyses are extremely useful for pro-

cessing and digesting ‘omics data, they can also lead us

astray in several important ways. We discuss how correla-

tion metrics are inherently symmetric and cannot be used to

identify asymmetric interactions without including addi-

tional information. We demonstrate how various types of

community dynamics and interaction structures are funda-

mentally opaque to correlation analyses and how use of

models that incorporate temporal and mechanistic details

can aid inference of meaningful associations. We reveal

how data transformations and analysis techniques can warp

data and introduce spurious correlation structure that does

not reflect the underlying biology and we introduce several

methodological strategies to mitigate these issues. We note

that indirect associations can be produced by environmental

factors or taxa engaging in multiple interactions and present

methods for addressing these latent confounders. Finally,

we discuss how real-world ecosystems and the data we use

to investigate them are messy and complex, and how this

heterogeneity can confound our ability to infer species-

species interactions. Even the simplest cases of interaction

inference from correlations can fall apart. More often than

not, the presence or absence of a correlation between vari-

ables tells the researcher almost nothing about biotic

interactions.

Integrating other types of data into correlation ana-

lyses, like measures of potentially confounding environ-

mental variables, accurate noise and bias estimates,

absolute biomass, the ordering of events in space or time,

multi-omic measurements, and mechanistic constraints

can greatly improve our inferences. Perturbation experi-

ments, which dislodge an environmental system from its

steady state, can be used to generate more informative

correlation structure [41, 42]. The use of mesocosms or

microcosms helps to overcome the confounding influ-

ences of environmental heterogeneity and higher-order

species interactions. However, even in these simplified

systems, researchers should be supremely skeptical of

inferred interactions. In the end, bioinformatic approaches

only generate hypotheses. In order for these inferred

interactions to be accepted as truth, the hard work of

experimental validation is required.
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