
1

Use and Misuse of Continuous
Integration Features

An Empirical Study of Projects that (mis)use Travis CI

Keheliya Gallaba, Student Member, IEEE, and Shane McIntosh, Member, IEEE

Abstract—Continuous Integration (CI) is a popular practice where software systems are automatically compiled and tested as changes

appear in the version control system of a project. Like other software artifacts, CI specifications require maintenance effort. Although

there are several service providers like TRAVIS CI offering various CI features, it is unclear which features are being (mis)used. In this

paper, we present a study of feature use and misuse in 9,312 open source systems that use TRAVIS CI. Analysis of the features that

are adopted by projects reveals that explicit deployment code is rare—48.16% of the studied TRAVIS CI specification code is instead

associated with configuring job processing nodes. To analyze feature misuse, we propose HANSEL—an anti-pattern detection tool for

TRAVIS CI specifications. We define four anti-patterns and HANSEL detects anti-patterns in the TRAVIS CI specifications of 894

projects in the corpus (9.60%), and achieves a recall of 82.76% in a sample of 100 projects. Furthermore, we propose GRETEL—an

anti-pattern removal tool for TRAVIS CI specifications, which can remove 69.60% of the most frequently occurring anti-pattern

automatically. Using GRETEL, we have produced 36 accepted pull requests that remove TRAVIS CI anti-patterns automatically.

Index Terms—Continuous integration, Anti-patterns, Mining software repositories

✦

1 INTRODUCTION

CONTINUOUS Integration (CI) is a software development
practice in which the latest code changes are regularly

downloaded onto dedicated machines to validate that the
codebase still compiles, and that unit and integration tests
still pass. A typical CI service is composed of three types
of nodes. First, build job creation nodes queue up new build
jobs when configured build events occur, e.g., a new change
appears in the project Version Control System (VCS). Next,
a set of build job processing nodes process build jobs from the
queue, adding job results to another queue. Finally, build job
reporting nodes process job results, updating team members
of the build status using web dashboards, emails, or other
communication channels (e.g., Slack1).

In the past, organizations needed to provision, operate,
and maintain the build job creation, processing, and report-
ing nodes themselves. To accomplish this, developers used
general purpose scripting languages and automation tools
(e.g., ANSIBLE2). Since these general purpose tools are not
aware of the phases in the CI process, boilerplate features
such as progress tracking, error handling, and notification
were repeated for each project. Dedicated CI tools such as
BAMBOO,3 JENKINS,4 and TEAMCITY5 emerged to provide

• K. Gallaba and S. McIntosh are with the Department of Electrical and
Computer Engineering, McGill University, Canada.
E-mail: keheliya.gallaba@mail.mcgill.ca, shane.mcintosh@mcgill.ca

Manuscript received date; revised date.
1. https://slack.com/
2. https://www.ansible.com/
3. https://www.atlassian.com/software/bamboo
4. https://jenkins.io/
5. https://www.jetbrains.com/teamcity/

basic CI functionality; however, these CI tools still require
that infrastructure is internally operated and maintained.

Nowadays, cloud-based providers such as TRAVIS CI,6

offer hosted CI services to software projects. Users of these
CI services inform the service provider about how build
jobs should be processed using a configuration file. This
file specifies the tools that are needed during the build job
process and the order in which these tools must be invoked
to perform build jobs in a repeatable manner.

Like other software artifacts, this CI configuration file is
stored in the VCS of the project. Since the build process
that is being invoked tends to evolve [1], [22], this CI
configuration file must also evolve to keep pace. Indeed, CI
configuration code may degrade in quality and may accrue
technical debt if it is not maintained properly.

Like programming languages, configuration languages
also offer features, which can be used or misused. For
example, TRAVIS CI users can use features like branches,
which specifies which VCS branches to monitor for commit
activity. Commits that appear on the monitored branches
will trigger build jobs. CI configuration can also be misused,
e.g., when unsupported or deprecated commands are used.

In this paper, we set out to study how CI features are
being used and misused. First, we set out to study how
features in CI configuration files are being used. While the
most popular CI service might differ from one source code
hosting platform to another, prior work has shown that
TRAVIS CI is the most popular CI service on GITHUB [15],
accounting for roughly 50% of the market share.7 Thus, we
begin by selecting a corpus of 9,312 open source projects
that are hosted on GITHUB and have adopted the popular

6. https://travis-ci.com/
7. https://github.com/blog/2463-github-welcomes-all-ci-tools

© 2018 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2018.2838131

https://slack.com/
https://www.ansible.com/
https://www.atlassian.com/software/bamboo
https://jenkins.io/
https://www.jetbrains.com/teamcity/
https://travis-ci.com/
https://github.com/blog/2463-github-welcomes-all-ci-tools
https://dx.doi.org/10.1109/TSE.2018.2838131

2

TRAVIS CI service. Through empirical analysis of the CI
configuration files of the studied projects, we address the
following research questions about feature usage:

• RQ1 What are the commonly used languages in TRAVIS CI
projects?
Despite being the default TRAVIS CI language, RUBY is
only the sixth most popular language in our data set.
NODE.JS is the most popular language in our corpus.

• RQ2 How are statements in CI specifications distributed
among different sections?
We find that 48.16% of the studied TRAVIS CI con-
figuration code applies to build job processing nodes.
Explicit deployment code is rare (2%). This shows that
although the developers are using tools to integrate
changes into their repositories, they rarely use these
tools to implement continuous delivery [16]—the process
of automatically releasing code that integrates cleanly.

• RQ3 Which sections in the CI specifications induce the most
churn?
Most CI configuration files, once committed, rarely
change. The sections that are related to the configura-
tion of job processing nodes account for the most modifi-
cations. In the projects that are modified, all sections
are likely to be modified an equal number of times.
Similar to RQ2, this again suggests that deployment-
related features in CI tools are not being used.

To study misuse, we define four anti-patterns:
(1) redirecting scripts into interpreters (e.g., curl

https://install.sandstorm.io|bash); (2) bypassing
security checks (e.g., setting the ssh_known_hosts prop-
erty to unsafe values); (3) using irrelevant properties; and
(4) using commands in an incorrect phase (e.g., using install
phase commands in the script phase). Using HANSEL—our
tool for detecting anti-patterns in .travis.yml files—we
address the following research question:

• RQ4 How prevalent are anti-patterns in CI specifications?
HANSEL detects at least one anti-pattern in the CI
specifications of 894 projects in the corpus (9.60%), and
achieves a recall of 82.76% in a sample of 100 projects.

Using GRETEL—our anti-pattern removal tool for CI config-
uration code—we address the following research questions:

• RQ5 Can anti-patterns in CI specifications be removed
automatically?
Yes, GRETEL can remove the detected cases of the most
frequent anti-pattern automatically with a precision of
69.60%. This increases to 97.20% if a post hoc manual
inspection phase is included.

• RQ6 Are automatic removals of CI anti-patterns accepted by
developers?
Yes, we submitted 174 pull requests that contain GRE-
TEL-generated fixes, of which, developers have: (1)
responded to 49 (response rate of 28.16%); and (2)
accepted 36 (20.69% of submitted pull requests and
73.47% of pull requests with responses).

Our study of CI feature usage leads us to conclude that
future CI research and tooling would have the most imme-
diate impact if it targets the configuration of job processing
nodes. Moreover, our study of misuse of CI shows that anti-
patterns that threaten the correctness, performance, and se-
curity of build jobs are impacting a considerable proportion

of TRAVIS CI users (9.60%). HANSEL and GRETEL can detect
and remove these anti-patterns accurately, allowing teams to
mitigate or avoid the consequences of misusing CI features.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 describes the modern CI process.
Section 3 outlines the design of our study of CI feature
usage, while Section 4 presents the results. Sections 5 and 6
outline the motivation for and design of our study of CI
misuse, respectively, while Section 7 presents the results.
Section 8 discusses the broader implications of our results.
Section 9 discloses the threats to the validity of our study.
Section 10 situates this paper with respect to the related
work. Finally, Section 11 draws conclusions.

2 MODERN CI PROCESS

The main goal of CI is automating the integration of soft-
ware as soon as it is developed so that it can be released
rapidly and reliably [11]. Figure 1 provides an overview of
the cycle. We describe each step below.

• Build-triggering events: In projects that adopt CI, the
cycle begins with a build-triggering event. These events
can occur in the development, review, or integration
stages. While a feature is being developed, builds can
be triggered manually by the developer to try out the
feature under development. Later, when the code is
submitted to be reviewed, builds are triggered to avoid
wasting reviewer’s time on patches that do not compile.
Finally, when the change is integrated into the project
VCS, a build is triggered to ensure that the change does
not introduce regression errors.

• Build job creation service: When a build-triggering
event occurs, a build job creation node will add a job
to the queue of pending build jobs if certain criteria are
met. For example, in TRAVIS CI, developers can specify
the VCS branches on which commits should (or should
not) generate build jobs.

• Build job processing service: Build jobs in the pending
queue will be allocated to build job processing nodes
for processing. The job processing node will first down-
load the latest version of the source code and apply the
change under consideration. Next, the job processing
node will initiate the build process, which will compile
the system (if necessary), execute a suite of automated
unit and integration tests to check for regression, and
in the case of Continuous Delivery (CD) [16], make
the updated system available for users to download or
interact with. Finally, the job processing node will add
the results of the build job to the reporting queue.

• Build job reporting service: In this final stage, build job
results in the reporting queue will be communicated
to the development team. Reporting preferences can
be configured such that particular recipients receive
notifications when build jobs are marked as successful,
unsuccessful, or irrespective of the job status. Tradition-
ally, these results were shared via mailing lists or IRC
channels; however, other communication media is also
popular nowadays (e.g., Slack, web dashboards).

Operating and maintaining CI infrastructure is a burden
for modern software organizations. As organizations grow,

3

Development Team

Version
Control
System

Code Review
System

Build-triggering
Events

Build Job
Creation Service

Build Job
Processing Service

Build Job
Reporting

Service

Load
Balancer

Build
Queue

Result
Queue

Build + Test

Try

Integrate

Schedule Builds Report Results

Verify

E-mail

Slack

Web
Dashboard

Continuous Integration System

Fig. 1: Main components of a continuous integration system:
Build job creation, processing, and reporting.

their CI infrastructure needs to scale up in order to handle
the increased load that larger teams will generate. More-
over, if additional platforms are added (e.g., to attract more
users), this too will generate additional CI load.

Instead of investing in on-site CI infrastructure, modern
organizations use cloud-based CI services, such as TRAVIS

CI, CIRCLECI, and CLOUDBEES. These service providers
enable organizations to have scalable CI services without
operating and maintaining CI infrastructure internally.

2.1 Configuring Travis CI

TRAVIS CI users can define which tools are needed and
the order in which they must be executed to complete
a build job. These configuration details are stored in a
.travis.yml file, which appears in the root directory of a
GITHUB repository. The .travis.yml file can also specify
programming language runtimes, and other environment
configuration settings that are needed to execute build jobs.

Figure 2 shows that .travis.yml files consist of node
configuration and build process configuration sections. We
describe each section below.

2.1.1 Node Configuration

This section specifies how CI nodes should be prepared
before building commences.

• Build job creation nodes: In this subsection, nodes that
are responsible for creating build jobs can be config-
ured. For example, the branches property specifies the
branches where commits should create build jobs.

• Build job processing nodes: In this subsection, nodes
that are responsible for processing build jobs can be
configured. For example, since different programming
languages have different basic toolchain requirements
(e.g., PYTHON projects require the python interpreter
to be installed, while NODE.JS projects require the node
interpreter to be installed), specifying the language

property allows the TRAVIS CI runtime to configure
processing nodes appropriately. Moreover, if there are
libraries and services that need to be installed on the
job processing nodes prior to build execution, they
can be specified using the services property. The

Fig. 2: A .travis.yml configuration file (left) and how it
maps to the TRAVIS CI life cycle (right). The file consists
of (1) node configuration, which specifies how the nodes for
build job creation, processing, and reporting are configured;
and (2) build process configuration, which specifies the com-
mands that are executed in the install, script, and
deploy phases and their sub-phases.

environment variables that need to be set prior to build
execution can be configured using the env property.

• Build job reporting nodes: In this subsection, nodes
that are responsible for reporting on the status of build
jobs can be configured. Notification services, such as
e-mail and Slack, are configured to notify the develop-
ment team about the status of build jobs. For example,
using the notifications property, TRAVIS CI users
can specify the list of recipients of build status reports
(recipients) and the scenarios under which they
should be notified (on_success, on_failure).

2.1.2 Build Process Configuration

This section is comprised of install, script, and
deploy phases, which each consists of sub-phases.
These sub-phases check pre- and post-conditions before
(before_X) and after (after_X) executing the main phase.

• The install phase prepares job processing nodes for
build job execution, and has install_apt_addons,

4

Data Filtering

Select
Active
and

Large
Projects

Select
Non-Forked

Projects
Google

BigQuery

2,991,522 145,876 Select
Projects
that use
Travis CI

56,947 Select
Non-Duplicated

Projects

12,153
9,312

Subject
Systems

DF1: DF2: DF3: DF4:

Fig. 3: An overview of our data filtering approach.

before_install, and install sub-phases. Unless
specified, the phase runs a default command for the
specified programming language. For example, TRAVIS

CI runs npm install by default for NODE.JS projects.
• The script phase executes the bulk of the build job,

and has before_script, script, after_success,
after_failure, and after_script sub-phases. In
this phase, systems are compiled, tested, scanned by
static code analyzers, and packaged for deployment.
Similar to the install phase, script runs default
commands for the specified programming language,
unless otherwise specified. For example, TRAVIS CI
runs npm test by default for NODE.JS projects.

• The deploy phase makes newly produced deliver-
ables visible to system users, and has before_deploy,
deploy, and after_deploy sub-phases. When this
phase is present, the CI process is transformed into a
continuous delivery process [16], where regression-free
changes are released to system users.

2.2 Research Questions

As a community, knowing how CI is being used in reality is
important for several reasons. First, CI service providers will
be able to make data-driven decisions about how to evolve
their products, e.g., where to focus feature development to
maximize (or minimize) impact. Second, researchers will be
able to target elements of CI that are of greater impact to
users of CI. Finally, individuals and companies who provide
products and services that depend on or are related to CI
(such as HANSEL and GRETEL) will be able to tailor their
solutions to fit the needs of target users.

Hilton et al. [15] analyzed a broad spectrum of properties
of CI specifications. We aim to complement the prior work
by studying how features within CI specifications are used
to configure their build nodes and jobs. To do so, we conduct
an empirical study of 9,312 GITHUB projects that use TRAVIS

CI, addressing the following research questions:

• RQ1 What are the commonly used languages in TRAVIS CI
projects?
We first aim to understand whether projects that are de-
veloped in certain languages are more common among
the TRAVIS CI user base. This will help future tool
developers and researchers studying CI processes to
identify potential target languages and technologies.

• RQ2 How are statements in CI specifications distributed
among different sections?
To develop an understanding of the spread of CI con-
figuration code across sections, we are interested in the
quantity of code that appears within each section.

• RQ3 Which sections in the CI specifications induce the most
churn?
While RQ2 provides a high-level view of which section

0 × 10
0

1 × 10
6

2 × 10
6

3 × 10
6

10 100 1,000 10,000 100,000

Threshold (# of commits)

#
 o

f
P

ro
je

c
ts

Fig. 4: Threshold plot for commit activity.

in CI specifications require the most code, it does not
help in understanding which sections require the most
change. To complete the picture, we set out to study
how churn is dispersed among the sections.

3 CI USAGE STUDY DESIGN

In this section, we provide our rationale for studying
GITHUB projects and explain our data filtering approach.

3.1 Corpus of Candidate Systems

In order to arrive at reliable conclusions, it is important to
select a large and diverse set of software projects. With this
in mind, we begin our analysis with systems that are hosted
on the popular GITHUB platform.

We start by querying the public GITHUB dataset on
Google BigQuery8 for project activity (i.e., the number
of commits) and project size heuristics (i.e., the number
of files). This query returns 4,022,651,601 commits and
2,133,880,097 files spanning 2,991,522 GITHUB repositories.

3.2 Data Filtering

While GITHUB is a large corpus, it is known to contain
projects that have not yet reached maturity [18]. To pre-
vent the bulk of immature projects from impacting our
conclusions, we first apply a set of filters to our GITHUB

data. Figure 3 provides an overview of our data filtering
approach. We describe each step in the approach below.

DF1: Select Active and Large Projects

We first remove inactive projects from our corpus. To detect
such projects, Figure 4 plots threshold values against the
number of surviving systems. Selecting a threshold of 100
commits reduces the corpus to 574,325 projects.

Next, we remove small projects from our corpus. To
detect such projects, Figure 5 again plots threshold values
against the number of surviving systems. Selecting a thresh-
old of 500 files further reduces the corpus to 145,876 projects.

8. https://cloud.google.com/bigquery/public-data/github

https://cloud.google.com/bigquery/public-data/github

5

0 × 10
0

1 × 10
5

2 × 10
5

3 × 10
5

4 × 10
5

5 × 10
5

6 × 10
5

10 100 1,000 10,000 100,000

Threshold (# of files)

#
 o

f
P

ro
je

c
ts

Fig. 5: Threshold plot for project size.

DF2: Select Projects that use TRAVIS CI

We focus our study on users of the TRAVIS CI service for two
reasons. First, while other CI services are available, TRAVIS

CI is the most popular, accounting for roughly 50% of the CI
market on GITHUB.7 CIRCLECI ranks second with roughly
25%, while JENKINS (a CI tool rather than a service) ranks
third with roughly 10%. Second, since other CI services
have a similar configuration syntax (YAML-based DSL), it
is likely that our observations will be applicable to other CI
services. We elaborate on this in Section 8.4.

To identify GITHUB projects that use TRAVIS CI, we
check for a .travis.yml configuration file in the root
directory. This filter reduces the corpus to 56,947 projects.

DF3: Select Non-Forked Projects

Forking9 allows GITHUB users to duplicate a repository in
order to make changes without affecting the original project.
Developers working on forked repositories can submit Pull
Requests to contribute changes to the original project.

Forks should not be analyzed individually, since they
are primarily duplicates of the forked repository. If forks
are not removed from the corpus, the same development
activity will be counted multiple times. We detect forks
using the GITHUB API. Repositories that are flagged as forks
according to this API are removed from our corpus. This
filter reduces the corpus to 12,153 projects.

DF4: Select Non-Duplicated Projects

The DF3 filter only removes explicitly forked repositories
that were created using the GITHUB fork feature. Repos-
itories may also be re-uploaded under a different owner
and/or name without using the fork feature.

To detect these duplicated repositories, we extract the
list of commit hashes (SHAs) in each of the candidate
repositories that survive the prior filters. If any two repos-
itories share more than 70% of the same commit SHAs,
we label both repositories as duplicates. Since we cannot
automatically detect which of the duplicated repositories
is the original repository and which ones are the copies,
we remove all duplicated repositories from our corpus.
9,312 candidate repositories survive this final filter and are
selected as subject systems for the following analyses.

To check if the selected similarity threshold for filtering
out duplicated projects is suitable, for each project that

9. https://help.github.com/articles/fork-a-repo/

140 73 2,768

0

2500

5000

7500

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Max. Similarity with Another Project

P
ro

je
c
t
C

o
u
n
t

Fig. 6: A histogram of the maximum commit similarity
among the candidate repositories.

TABLE 1: Domains in a sub-sample of our subject systems.

Type # Projects Percentage
Web Application 23 15.13
Graphics/Visualization 21 13.82
Application Framework/Library 15 9.87
Development Tools 15 9.87
Communication/Collaboration Tool 13 8.55
DevOps 10 6.58
Scientific Computing 10 6.58
Games/Game Engine 8 5.26
Mobile Application 7 4.61
Other 30 19.74
Total 152 100.00

survives the DF1–DF3 filters, we compute all pairwise
commit similarity percentages. Then, for each project, we
select the maximum similarity percentage. Figure 6 shows
the histogram of these maximum similarity percentages. We
observe a largely bimodal distribution where many projects
are either distinct (similarity = 0%) or almost identical to
another project in terms of commit SHAs (similarity ≈
100%). Indeed, a more stringent 60% threshold only removes
140 more projects (1.50%) and a more lenient threshold of
80% only adds 73 projects (0.78%), indicating that sample
does not depend heavily upon the threshold value.

3.3 Domain of the Subject Systems

To understand the domain of subject systems, we need to
classify each subject system by inspecting their source and
documentation. Since this is impractical in our context, we
analyze a randomly selected subset of 152 subject systems.
Table 1 shows that our corpus contains a broad variety of
subject systems, including games, and web and mobile apps.

4 RESULTS OF CI USAGE STUDY

In this section, we present the results of our CI usage
study with respect to our three research questions. For
each research question, we first present our approach for
addressing it followed by the results that we observe.

(RQ1) What are the commonly used languages in TRAVIS

CI projects?

Approach. We identify the commonly used languages in
TRAVIS CI projects by detecting the setting of the language
property in the TRAVIS CI configuration file.

https://help.github.com/articles/fork-a-repo/

6

TABLE 2: CI usage by programming language.

Language # Projects %
NODE.JS 1,460 15.68
JAVA 1,337 14.36
PHP 1,163 12.49
PYTHON 1,122 12.05
C++ 995 10.69
RUBY 811 8.71
C 702 7.54
GO 290 3.11
OBJECTIVE-C 250 2.68
ANDROID 195 2.09
OTHER 987 10.60

Results. Table 2 shows the ten most popular languages in
our corpus of studied projects. Hilton et al. [15] explored
the rate at which users of particular languages adopt CI,
observing higher rates of adoption in projects that are pri-
marily implemented using dynamic languages. Six of the
top ten languages with the highest rates of CI adoption [15]
appear in our list, i.e., JAVASCRIPT (NODE.JS in our setting),
RUBY, GO, PYTHON, PHP, and C++. The four languages
from the Hilton et al. setting that do not appear in our
sample (i.e., SCALA, COFFEESCRIPT, CLOJURE, and EMACS

LISP) are infrequently used, altogether appearing in 5.8% of
the projects in the top ten languages in their setting.

When compared with the language statistics released by
GITHUB,10 we find nine of our top ten languages are among
the ten most popular languages on GITHUB (by opened pull
requests). ANDROID does not appear in the list by GITHUB

because it is grouped with Java projects. C# appears in
GITHUB’s top ten, but not ours. Although not shown, C#
appears in 149 projects, and would rank eleventh.

Observation 1: Despite being the default TRAVIS CI lan-
guage, RUBY is not the most popular language in our corpus of
studied systems. Table 2 shows that 811 projects are labelled
explicitly as RUBY projects, making RUBY the sixth ranked
language in our corpus. There are an additional 421 projects
that do not specify a language property. In this case, the
TRAVIS CI execution environment assumes that the project
is using RUBY. Even if all 421 of these unlabelled projects are
indeed RUBY projects, this would only increase the RUBY

project count to 1,232, which would rank third.

Observation 2: NODE.JS is the most popular language in
our corpus of studied systems. Table 2 shows that there are
1,460 projects (16%) that are labelled explicitly as NODE.JS

projects in our corpus. Our study is not the only context
in which the popularity of NODE.JS has been observed. For
example, according to a recent StackOverflow survey11 of
64,000 developers, NODE.JS was the most commonly used
framework. Moreover, the recent left-pad debacle, where the
removal of an NPM package for left-padding strings had a
ripple effect that crippled several popular e-commerce web-
sites,12 highlights the pivotal role that NODE.JS plays in the
development stacks of several prominent web applications.

Since some languages may require more files than others,
we repeat our analysis with four file count threshold values

10. https://octoverse.github.com/
11. http://stackoverflow.com/insights/survey/2017
12. https://www.theregister.co.uk/2016/03/23/npm left pad

chaos/

0%

5%

10%

15%

N
o

d
e
.j
s

J
a
va

*P
y
th

o
n

*R
u

b
y

*P
H

P

*C
+

+ C

G
o

O
b

je
c
ti
ve

−
C

A
n

d
ro

id

P
e

rc
e

n
ta

g
e

 o
f
C

o
rp

u
s

File Threshold 200 300 400 500

Fig. 7: The percentage of the corpus that uses the ten
most popular languages. Asterisks (*) denote languages that
change ranks when the file count threshold changes (DF1).

(DF1). Figure 7 shows that while the third through sixth
ranked languages vary, six ranks are resilient to threshold
changes and NODE.JS remains the most popular language.

Summary: Although RUBY is the default language in
TRAVIS CI, NODE.JS is more popular in our sample.
Implications: Since language popularity fluctuates, CI
service providers should carefully consider whether a
popular language of the day should be implicit when no
language is declared explicitly.

(RQ2) How are statements in CI specifications dis-

tributed among different sections?

Approach. To answer this research question, we first label
each property in the .travis.yml file as related to CI node
configuration or build process configuration. The tags that
specify the phases in the CI process are labelled as build
process configuration. The tags that are related to CI node
configuration are further divided into four sub-categories
depending on the type of CI nodes that are being con-
figured, i.e., build job creation, build job processing, build
status notification, or other. Table 3 shows our mapping of
.travis.yml tags to these sub-categories.

We then parse the .travis.yml files of our subject
systems. We use the parsed output to count lines in each
of the sections of each file. Finally, we apply the Scott-Knott
Effect Size Difference (ESD) test [31]—an enhancement to
the Scott-Knott test [27], which also considers the effect size
when clustering CI sections into statistically distinct ranks.

Results. Table 4 shows the popularity of the sections, as well
as their overall length and proportion within the corpus.

Observation 3: For CI node configuration, sections that are
related to job processing nodes appear in the most projects. Ta-
ble 4 shows that 8,852 (95.06%) of the studied .travis.yml

https://octoverse.github.com/
http://stackoverflow.com/insights/survey/2017
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

7

TABLE 3: The identified build process configuration tags.

Sub-category Key
Creation branches

Processing addons, android, bundler_args,

compiler, cran, d, dart, dist,

dotnet, elixir, env, gemfile,

ghc, git, go, haxe, jdk,

julia, language, lein, matrix,

mono, node, node_js, nodejs,

os, osx_image, otp_release,

perl, php, podfile, python, r,

r_binary_packages, r_build_args,

r_check_args, r_github_packages,

r_packages, repos, ruby, rust,

rvm, sbt_args, scala, services,

smalltalk, solution, sudo,

virtualenv, warnings_are_errors,

with_content_shell, xcode_scheme,

xcode_sdk, xcode_workspace,

xcode_project

Notification notifications

Other before_cache, cache, group,

source_key

TABLE 4: The popularity of .travis.yml sections, as well
as their length and proportion of lines in our corpus.

Section # Projects # lines % lines

C
I

N
o

d
e

C
o

n
fi

g
. creation 1,441 2,236 1.45

processing 8,852 74,285 48.16
reporting 2,914 7,361 4.77
other 1,836 3,500 2.27

B
u

il
d

P
ro

ce
ss

C
o

n
fi

g
.

before install 3,551 14,452 9.37
install 3,519 11,895 7.71
before script 3,863 14,597 9.46
script 7,122 18,972 12.30
after script 626 1,111 0.72
before deploy 115 362 0.23
deploy 343 2,918 1.89
after deploy 23 41 0.03
after failure 223 391 0.25
after success 1,243 2,113 1.37

files include job processing. Moreover, 48.16% of the CI code
is in the job processing node configuration section.

Observation 4: For build process configuration, sections that
are related to the script phase appeared in the most projects. Ta-
ble 4 shows that 7,122 (76.48%) of the studied projects have
script commands in their .travis.yml files. Moreover,
12.30% of the CI code appears in the script phase.

Observation 5: Job processing configuration and script

phase configuration appear in statistically distinct ranks when
compared to other sections. Figure 8a shows the distribution
of commands in each section. The sections are ordered
according to the ranks from the Scott-Knott ESD test. For ex-
ample, the jruby/activerecord-jdbc-adapter project,13 a database
adapter for RUBY ON RAILS, uses 400 lines for job processing
configuration. Most of the lines in this case are used for
specifying different JDK and JRUBY version combinations
to be installed on the job processing nodes. Moreover, in
the joshuarowley42/BigBox-Pro-Marlinr project,14 (3D printer
firmware) 109 lines appear in the script phase.

Observation 6: Although the deploy phase only appears in
343 (4%) of all projects, the median number of commands is high
when compared to other sections. Since it is not mandatory to
specify commands for all of the sections, it is rare that all
valid sections appear in any given configuration file. Fig-

13. https://github.com/jruby/activerecord-jdbc-adapter
14. https://github.com/joshuarowley42/BigBox-Pro-Marlin

ure 8b shows the distribution of commands after removing
zero-length sections. The difference in the deploy phases
in Figure 8a (with zeros) and Figure 8b (without zeros) is
striking. It appears that when the deploy phase is included,
it tends to require plenty of .travis.yml configuration
code. For example, the oden-lang/oden project15 requires 42
lines of code to describe their deployment process. These
lines of code describe how to deploy the release artifacts for
a specific release and the current commit on the master

branch to Amazon S3. Indeed, it may be the case that
organizations avoid using deploy phase features because
it requires lengthy and complex configuration.

The .travis.yml file supports configuration of de-
ployment to many popular cloud services including AWS,
AZURE, GOOGLE APP ENGINE, and HEROKU. So it is un-
likely that the reason for developers not using TRAVIS CI
for deployment is lack of platform support. Since ANSIBLE

is a popular tool used by developers for the automation of
deployments, we study the use of ANSIBLE as an alternative
to the deployment features of TRAVIS CI in our corpus by
searching for syntactically valid ANSIBLE playbooks. Un-
fortunately, we find only 109 (1%) projects where ANSIBLE

is being used. Further studies are needed to identify why
deployment features of TRAVIS CI are rarely used.

Summary: Although code for configuring job processing
nodes is most common (48.16%), and deployment code is
rare (1.89%), when present, deployment code accounts for
a large proportion of the CI specification.
Implications: Research and tooling for CI configuration
would have the most immediate impact if it were focused
on supporting the configuration of job processing nodes
or reducing the complexity of deployment configuration.

(RQ3) Which sections in the CI specifications induce the

most churn?

Approach. First, we count the number of commits that have
modified the .travis.yml file of each project. Then, using
the line-to-section mapping (see Section 2), we attribute
changed lines to sections in the file that have been modified
by each of these changes. Finally, we apply the Scott-Knott
ESD test to split the sections into statistically distinct ranks.

Results. Figure 9a shows the churn of each phase over time.
The .travis.yml files in the subject systems are modified
18.06 times on average in their lifetime, with a maximum
of 366 changes in the lolli42/TYPO3.CMS-Catharsis project;16

however, the churn in each phase is very low. In more
than 75% of the studied projects, configuration sections are
modified fewer than 10 times. These results complement
the work of Hilton et al. [15], who observed similar overall
trends in the rates of change in .travis.yml files (median
of 12, maximum of 266).

Observation 7: The sections that are related to job pro-
cessing node configuration account for the most modifica-
tions over time. For example, TechEmpower/FrameworkBench-

15. https://github.com/oden-lang/oden
16. https://github.com/lolli42/TYPO3.CMS-Catharsis

https://github.com/jruby/activerecord-jdbc-adapter
https://github.com/joshuarowley42/BigBox-Pro-Marlin
https://github.com/oden-lang/oden
https://github.com/lolli42/TYPO3.CMS-Catharsis

8

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●
●
●●

●

●

●●●
●

●
●●

●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●
●
●●●●
●
●
●

●

●

●
●●

●

●●●

●

●
●●●
●
●
●●●

●

●

●

●●●

●

●
●
●●
●

●

●

●
●●●●●
●

●
●
●●
●

●

●
●

●

●
●

●

●●

●

●
●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●●●

●

●●

●

●

●●●●
●●●
●
●

●

●
●

●●●●
●
●
●
●●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●
●
●
●

●
●

●

●●
●

●

●

●

●●

●

●●
●

●

●●

●

●●

●

●
●
●

●

●

●

●
●
●
●●●●●●●
●

●

●

●●

●●
●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●
●

●●●

●

●●●●●

●●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●

●●

●

●

●●

●
●
●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●●●●●●●●

●

●●

●
●

●

●
●

●●●●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●●●

●
●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●
●
●●

●●

●

●

●

●●●●●

●

●

●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●

●

●●

●

●●●●

●

●●●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●●●●●●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●
●

●

●●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●●●

●

●●●

●

●●●

●
●

●●

●

●

●

●

●●●●

●
●

●●●

●

●●

●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●

●●

●●●●●

●

●

●●●●●●●●

●

●●●

●

●●●●

●

●

●

●

●●

●

●●●●

●●

●●●●●●

●

●●●●

●●

●

●●●

●
●

●●●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●●●

●

●

●
●

●●●●●●●

●

●●●

●

●

●●

●

●●●

●●
●

●

●●●●●

●

●●

●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●●●●●●●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●
●

●●●

●●

●●●●

●

●●

●

●

●

●

●
●

●●●

●

●●●●●●

●
●
●

●●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●●

●●●

●●●●●●●●

●

●●●

●

●●●●●●

●

●

●●●●

●
●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●

●
●●●

●

●

●

●

●●

●

●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●
●

●

●●●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●●●●●●●

●

●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●●

●●

●

●

●
●
●

●

●●●●

●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●●●●●

●

●●●●

●
●

●

●

●●

●

●●●●

●

●●●●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●
●

●●●

●

●●●●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●●●

●

●●●●●●

●

●
●

●

●

●●●●●●

●

●

●
●
●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●

●●●●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●●●●●

●

●●

●●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●●●

●

●●●

●

●●●●

●
●

●●●

●

●●

●

●

●

●●

●
●

●

●

●●●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●

●

●

●

●

●●●●

●
●
●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●●●

●

●

●

●

●●●●●●●

●
●

●●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●

●

●●

●

●●

●

●

●●●

●
●
●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●●●

●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●
●

●

●

●●

●

●●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●

●●●●●●●●

●
●

●●

●●

●

●●

●

●

●

●●●●●

●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●
●

●●●●

●

●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●

●●●●●●●●

●

●

●

●●●

●

●

●●

●

●●●●●●

●●●

●●

●

●

●

●

●●●

●●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●

●

●●●●

●

●●●●●●●

●

●

●●●●●●●

●

●●●●

●

●

●●

●

●
●●

●●●

●
●

●

●●●●●●

●

●

●●

●

●●●●

●

●
●

●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●●●

●

●●●●●●

●
●

●

●●

●

●

●
●

●●●●●

●
●

●

●

●

●

●●
●

●●●●●●

●

●●

●

●●●

●
●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●

●
●●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●●●●●●●●●●●

●

●●

●●

●●●●

●

●●●●

●

●

●

●●

●

●●

●

●●●●●

●

●
●

●●

●

●

●

●●

●

●●

●
●

●●

●

●●●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●

●
●

●●

●
●

●●

●

●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●●

●●●●●●●●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●

●●

●●

●

●●●●

●

●●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●

●●●●●●●●●●●●

●
●

●

●

●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●●

●●●

●●

●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●

●

●

●●●●

●●

●

●●

●

●
●
●
●
●●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●●

●

●

●●

●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●●

●●
●
●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●●

●

●
●●●
●●
●●

●

●

●

●
●
●●●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●
●
●
●●
●
●

●
●
●
●
●

●

●
●
●
●
●●
●
●
●
●●

●

●

●
●

●●
●●●

●

●

●●
●●
●

●

●
●

●

●

●

●

●●●

●

●
●●
●

●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●●●
●●●
●
●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●
●
●

●
●

●
●
●

●

●

●●●

●

●

●

●●

●

●

●●

●
●

●●
●
●

●

●●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●
●●

●●●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●●
●
●

●

●
●
●

●
●

●●●
●

●●

●

●
●●
●
●

●●

●

●

●

●
●●

●●

●

●

●

●
●●
●

●

●

●

●●●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●●●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●
●

●
●
●
●●

●
●
●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●
●

●
●

●
●

●●●
●
●●

●

●

●

●

●
●●

●
●●

●●

●
●

●

●
●
●

●

●

●
●
●

●
●

●

●

●●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●●●

●●

●

●
●
●●
●

●

●

●●
●

●
●
●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●●●●

●
●

●

●

●●
●
●

●

●

●

●

●
●●●●

●

●

●
●●
●
●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●●
●●
●
●

●

●

●●
●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●●
●

●

●
●

●
●
●

●

●
●

●●
●●

●●●
●
●

●

●

●

●

●

●
●
●
●

●

●●●

●

●

●
●

●

●

●●

●

●●

●

●

●
●●
●
●●

●
●

●

●●
●

●
●
●●●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●

●●

●●
●
●
●
●

●
●●

●

●

●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●
●
●

●●

●

●●

●

●

●
●

●

●
●
●

●●●
●
●

●●
●●●

●●

●●
●
●
●

●●●
●
●
●●●
●
●
●●

●
●●
●

●

●

●

●

●●●

●●
●
●

●

●
●
●
●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●●●

●

●
●
●

●

●

●

●●●
●
●●●
●●
●

●

●●
●●

●

●

●
●●

●●●●●●

●

●

●

●

●
●
●

●

●

●
●

●
●●●
●●
●
●●

●

●

●
●●
●●
●
●●
●
●
●
●

●

●
●●
●●●●●

●●●
●

●●

●

●
●●●
●
●●
●●●

●

●

●●
●
●
●

●

●●

●
●●
●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●
●
●
●●
●●●
●
●●

●
●

●●●

●
●●
●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●●
●●
●●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●●●

●

●
●
●
●
●●●●●

●

●

●
●
●●

●●

●

●

●

●
●●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●
●
●●

●

●

●●

●

●
●

●

●
●
●
●
●●

●

●

●

●

●

●

●
●

●
●
●●
●●

●

●

●

●
●

●●
●
●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●
●●

●

●
●

●

●

●

●

●

●
●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●

●●●●

●

●●●●●

●●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●●

●●●

●

●

●

●

●

●

●●●

●
●
●

●●

●
●

●

●

●

●

●●●●●

●

●

●●●●●●●

●

●●●●

●

●

●●●●●●●●●●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●●

●

●
●

●●

●●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●

●●

●●

●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●●●●

●

●

●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●●

●

●●●

●●●●●●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●
●

●●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●●

●●

●●●●●●

●

●●●●●●

●●

●●

●●

●●●●●●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●●●

●

●

●

●●

●●

●●

●●

●

●

●
●
●

●●●

●●●●●

●

●●

●●

●●●

●

●●

●

●

●

●●

●●●●

●

●

●

●●●

●●

●

●●

●●

●

●●

●●

●

●●●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●●●●

●

●●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●●

●

●

●

●●●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●●●●

●●

●●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●●●●●

●

●●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●●●●●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●
●

●●

●

●●

●

●●●●●●●

●

●

●●

●

●

●●●●●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●
●

●

●●●●●●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●●

●

●●●●

●●

●●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●●●

●●

●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●●

●●

●

●

●●

●

●●●

●

●●●

●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●
●

●●●●

●

●●

●

●●

●●

●
●

●●

●●

●

●●●●●●

●

●

●●●●●

●

●●●

●

●●

●

●
●
●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●

●●●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●
●

●

●●

●●

●

●●

●

●

●●●

●

●●●●

●

●

●
●

●

●●●

●

●●

●

●

●●●

●●

●●●●●●●

●

●●

●

●●●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●●●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

●●●

●●●●

●●●

●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●●

●

●

●

●●●

●

●●●●●●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●●

●●

●

●●●●●

●

●●●●●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●

●

●

●●●●●●●

●

●●●

●

●

●

●

●
●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●●●●●●

●●

●●●●●

●●

●●●

●

●●●●●

●

●●●●

●

●●

●●

●●●

●

●●

●

●●●●●●

●

●

●●

●●

●

●●●●●●●●●

●

●

●

●

●●●●●●●

●

●●

●●●

●

●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●
●

●

●

●

●

●●●●

●●

●

●

●●

●●●

●●

●

●

●●●●●●●

●●

●

●●

●

●

●

●●●

●●

●

●●

●●

●
●

●●●

●●●

●●●

●

●●●●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●●●●●●●

●

●

●●

●●

●

●●●●●●●●●●●

●●

●●●●●●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●●

●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●

●●

●
●

●●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●

●●

●

●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●

●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●

● ●●●●●●●●

●

●

●

●●

●

●●●●

●●●

●●

●●

●●

●

●

●

●

●●●

●

●●●●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●●●●

●●

●

●●

●

●●

●

●

●

●●●●●●

●
●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●

●●

●●●●●●●●●

●●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●●

●●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●

●●●●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●●●

●●

●●●●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●

●●

●●●●●●●●●

●

●●●●●

●

●●●●

●●

●●

●●●●●

●

●●●●●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●

●

●●

●

●●

●

●●

●

●

●●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●●

●●●

●

●

●
●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●●●

●●

●●●●●

●

●

●●

●

●●●

●●

●

●

●●

●●

●●●●●

●●

●●

●

●

●

●

●

●●

●●●

●

●

●●●●

●●●●

●●

●●

●●

●

●

●

●●

●●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●

●

●

●●●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●

●●

●●

●

●●

●

●●

●●

●●●

●

●

●

●●●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●

●●●

●●●●●●●

●

●

●

●●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●

●●

●●●

●

●●

●

●

●●

●

●●●●●●●●

●●

●

●●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●●●

●●●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●●●●●●●●●●

●

●●●●

●

●●●●

●●●

●●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●

●●●

●●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●●●

●

●●●●

●

●●●●

●●

●

●
●
●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●●●

●

●●

●●

●●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●●●

●

●

●

●

●●

●●

●●

●●●●●●●●

●

●

●

●●●●

●●●●

●

●

●

●

●●

●●●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●

●●●●

●

●
●

●

●●●●

●
●

●●●●●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●●●●

●●

●●●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●
●

●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●
●
●

●●●

●●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●●●

●●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●●●

●

●

●
●

●●●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●
●

●●

●

●

●

●

●●

●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●●

●

●●●

1 2 3 4 5 6 7 8

p
ro

c
e
s
s
in

g

s
c
ri

p
t

b
e
fo

re
_
in

s
ta

ll

b
e
fo

re
_
s
c
ri

p
t

in
s
ta

ll

re
p
o
rt

in
g

d
e
p
lo

y

o
th

e
r

a
ft
e
r_

s
u
c
c
e
s
s

c
re

a
ti
o
n

a
ft
e
r_

s
c
ri

p
t

b
e
fo

re
_
d
e
p
lo

y

a
ft
e
r_

d
e
p
lo

y

a
ft
e
r_

fa
ilu

re

0

1

10

100

L
in

e
 C

o
u

n
t

(a) The distribution for all projects.

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●
●●

●

●●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●
●
●●

●

●

●
●
●

●

●

●

●
●
●●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●●
●●

●

●

●

●
●
●●●

●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●●●●

●

●

●●
●

●
●

●●●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●
●●

●●●
●

●

●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●●

●

●

●

●
●

●
●

●

●●
●●●

●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●
●
●●
●
●●
●●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●●●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●
●●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●
●

●
●
●
●
●

●●

●

●

●
●

●
●

●
●
●

●●

●

●
●

●●

●

●●

●
●
●
●
●
●

1 2 3 4 5 6 7 8

p
ro

c
e
s
s
in

g
(n

=
8
8
5
2
)

s
c
ri

p
t

(n
=

7
1
2
2
)

b
e
fo

re
_
in

s
ta

ll
(n

=
3
5
5
1
)

b
e
fo

re
_
s
c
ri

p
t

(n
=

3
8
6
3
)

in
s
ta

ll
(n

=
3
5
1
9
)

re
p
o
rt

in
g

(n
=

2
9
1
4
)

d
e
p
lo

y
(n

=
3
4
3
)

o
th

e
r

(n
=

1
8
3
6
)

a
ft
e
r_

s
u
c
c
e
s
s

(n
=

1
2
4
3
)

c
re

a
ti
o
n

(n
=

1
4
4
1
)

a
ft
e
r_

s
c
ri

p
t

(n
=

6
2
6
)

b
e
fo

re
_
d
e
p
lo

y
(n

=
1
1
5
)

a
ft
e
r_

d
e
p
lo

y
(n

=
2
3
)

a
ft
e
r_

fa
ilu

re
(n

=
2
2
3
)

1

10

100

L
in

e
 C

o
u

n
t

(b) The distribution after removing zero-length sections.

Fig. 8: Line counts in each section of the .travis.yml file.

●

●

●

●

●

●

●●
● ●●●●●

●

●
●

●

●

●
●

●
●
●●●●

●

●

●

●●

●

●
●
●

●

●

●

●

●●
●

●

●
●

●

●

●●
●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●
●

●

●

●●●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●●
●

●

●

●
●●
●
●●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●
●

●●

●●
●

●●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●
●

●

●●
●●

●

●

●

●●

●
●●

●

●
●●

●

●

●●●

●

●
●

●

●

●

●●

●
●●●

●

●●

●

●

●
●
●
●

●
●

●
●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●

●●●
●

●

●

●
●
●

●

●
●
●

●●●●

●●
●●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●
●

●
●
●

●
●

●●
●
●●

●

●

●●

●

●

●

●

●●●

●

●●
●●
●

●

●●

●

●●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●

●

●
●

●

●●●●

●
●
●

●●

●

●●
●

●

●

●

●
●

●
●

●●

●
●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●
●

●

●●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●●
●
●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●●●
●

●

●
●●

●●

●

●
●

●
●

●

●
●●●
●●
●●

●
●●
●

●
●
●
●

●

●

●
●

●●
●
●

●
●●
●●
●

●

●
●
●●

●

●

●
●

●

●

●●
●
●

●●

●
●
●
●●

●

●

●

●●

●

●●

●●

●

●

●●

●●

●●
●●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●●
●
●●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●
●

●

●
●●

●
●
●
●

●

●

●

●
●

●●

●●
●

●

●●

●

●
●

●●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●
●
●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●●
●

●

●
●●
●
●
●●
●●
●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●
●
●
●
●

●
●●
●

●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●●●
●●

●

●

●

●
●●

●●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●
●

●●●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●●

●

●●

●

●

●

●●
●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●●
●

●●●●●●

●

●

●

●●

●●

●

●●

●
●
●

●

●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●
●
●

●●●

●

●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●

●
●
●

●●

●

●

●●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●●●●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●●●●●

●

●●●

●●

●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●●●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

1 2 3 4 5 6 7 8

p
ro

c
e
s
s
in

g

s
c
ri
p
t

b
e
fo

re
_
in

s
ta

ll

in
s
ta

ll

b
e
fo

re
_
s
c
ri
p
t

re
p
o
rt
in

g

a
ft
e
r_

s
u
c
c
e
s
s

c
re

a
ti
o
n

o
th

e
r

a
ft
e
r_

s
c
ri
p
t

d
e
p
lo

y

b
e
fo

re
_
d
e
p
lo

y

a
ft
e
r_

d
e
p
lo

y

a
ft
e
r_

fa
ilu

re

0

1

10

100

C
h
u
rn

(a) The distribution for all projects.

●

●

●●
●
●
●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●

●●
●

●

●

●●●

●
●

●
●●
●
●

●

●

●

●
●

●●

●
●

●

●
●

●●

●
●

●

●
●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●●●●

●

●
●
●●

●●●
●

●●

●

●

●

●

●
●

●
●
●
●●●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●●●●●
●

●

●

●

1 2 3 4 5 6 7 8

p
ro

c
e
s
s
in

g
(n

=
7
3
6
6
)

s
c
ri
p
t

(n
=
6
1
5
6
)

b
e
fo

re
_
in

s
ta

ll
(n

=
4
0
9
9
)

in
s
ta

ll
(n

=
3
6
4
4
)

b
e
fo

re
_
s
c
ri
p
t

(n
=
4
0
9
7
)

re
p
o
rt
in

g
(n

=
2
8
7
9
)

a
ft
e
r_

s
u
c
c
e
s
s

(n
=
1
4
7
8
)

c
re

a
ti
o
n

(n
=
1
8
4
6
)

o
th

e
r

(n
=
1
8
6
1
)

a
ft
e
r_

s
c
ri
p
t

(n
=
8
0
3
)

d
e
p
lo

y
(n

=
4
6
7
)

b
e
fo

re
_
d
e
p
lo

y
(n

=
1
6
5
)

a
ft
e
r_

d
e
p
lo

y
(n

=
3
9
)

a
ft
e
r_

fa
ilu

re
(n

=
3
1
8
)

1

10

100

C
h
u
rn

(b) The distribution after removing zero-length sections.

Fig. 9: The churn of each section in the .travis.yml file.

marks,17 a project that provides performance benchmarks for
web application frameworks, has 290 modifications to its
.travis.yml file, of which, 242 modify its job processing
node configuration. In this case, it is because the bench-
marks are contributed by the developer community and
the benchmarks for each framework requires job processing
nodes to be configured differently. This complements our
earlier observations that most of the effort in configuring CI
is spent on the processing node configuration.

Hilton et al. [15] studied the frequency of reasons for CI
changes and observed different rankings than those that we
observe. This discrepancy is likely due to differences in the
granularities of our analyses. For example, in our analysis,
we study distributions of project-specific rates of change,
while their analysis uses a single measurement of the overall
rates of change for each identified reason. Nonetheless,
there are similarities in our rankings. For example, their top
ranked reason for CI change is related to the build matrix,
which is a subset of our top ranked job processing section.

Observation 8: In the projects that are modified, all sections

17. https://github.com/TechEmpower/FrameworkBenchmarks

are likely to be modified an equal number of times. Since Figure 9a
shows that sections after the fourth rank are not modified in
most of the projects (i.e. the median churn of these sections
is 0.), we omit such projects in the next box plot shown in
Figure 9b. Here, we can observe that the median churn for
all of the sections is in the range of 1–10.

Summary: In 75% of the studied configurations, sections
of .travis.yml files are modified fewer than ten times.
Implications: Research and tooling for CI configuration
should focus on the creation of an initial specification
rather than supporting specification maintenance.

5 ANTI-PATTERNS IN CI SPECIFICATIONS

If improperly configured, TRAVIS CI build jobs may have
unintended behaviour, resulting in broken or incorrect
builds. Violating the semantics of CI specifications could
also introduce maintenance and comprehensibility prob-
lems. Furthermore, the TRAVIS CI runtime environment

https://github.com/TechEmpower/FrameworkBenchmarks

9

may be unable to optimize provisioning of CI job processing
nodes for specifications where semantics are violated.

To help TRAVIS CI users avoid common pitfalls, the
TRAVIS CI team provides TRAVISLINT,18 an online service
and an open source tool that scans .travis.yml files for
mistakes (e.g., YAML formatting issues, missing mandatory
fields). If the issues are fixed, TRAVISLINT can prevent
configuration errors from breaking project builds.

5.1 Research Questions

The .travis.yml files that are syntactically valid can still
violate the semantics of TRAVIS CI and introduce build
correctness, performance, and security problems.

To detect such semantic violations, we propose
HANSEL—a .travis.yml anti-pattern detector. Then, we
also propose GRETEL—a tool for removing anti-patterns
from .travis.yml files. We apply HANSEL and GRETEL

to the 9,312 .travis.yml files in our corpus in order to
address the following research questions:

• RQ4 How prevalent are anti-patterns in CI specifications?
In this research question, we aim to study what type
of CI anti-patterns are commonly occurring in software
projects “in the wild”.

• RQ5 Can anti-patterns in CI specifications be removed
automatically?
This research question explores whether the detected
anti-patterns can be fixed automatically and to what
degree are the transformed files still valid.

• RQ6 Are automatic removals of CI anti-patterns accepted by
developers?
This research question explores whether our anti-
pattern detection technique is useful for real developers
in practice. If developers accept our fixes and integrate
them into their projects, it would suggest that our
findings are useful to some degree.

6 CI MISUSE STUDY DESIGN

We implement HANSEL to detect anti-patterns and GRE-
TEL to remove them. In a nutshell, HANSEL parses a
.travis.yml file using YAML and BASHLEX parsers in
order to detect anti-patterns. Then, GRETEL applies the
RUAMEL.YAML serialization/deserialization framework19 to
remove the detected anti-patterns automatically.

We define CI specification anti-patterns as violations of
best practices in CI configuration files that could hinder
the correctness, performance, or security of the CI process
of a software system. Similar to the approach followed by
prior work [17], [29], we first read the rules implemented by
TRAVISLINT,18 formal TRAVIS CI documentation,20 informal
documentation from the TRAVIS CI user community (e.g.,
blogs, posts on Q&A sites such as STACKOVERFLOW) and
inspect a sample of artifacts (i.e., .travis.yml files) to
prepare a list of recommended best practices. Then, we
group related best practices and deduce corresponding anti-
patterns (i.e., cases where best practice are being violated).

18. https://docs.travis-ci.com/user/travis-lint
19. https://pypi.python.org/pypi/ruamel.yaml
20. https://docs.travis-ci.com/

Below, for each anti-pattern, we present our rationale
for labelling it as an anti-pattern, and the approach that (1)
HANSEL uses to detect it and (2) GRETEL uses to remove it.

Anti-pattern 1: Redirecting Scripts into Interpreters

Motivation. A common approach to software package in-
stallation is to download a script from a hardcoded URL and
pipe it into a shell interpreter. For example, the installation
instructions for the Sandstorm package,21 a self-hostable
web productivity suite, includes a shell command: curl
https://install.sandstorm.io|bash. While this in-
stallation procedure is convenient, it is known to be sus-
ceptible to security vulnerabilities.22 Moreover, if a network
failure occurs during the execution of the curl command,
the installation script may only be partially executed.

Detection. In order to detect this anti-pattern, we follow a
three-step approach. First, we parse the .travis.yml file
to identify commands that contain a pipe. Next, those com-
mands are split into the pre- and post-pipe sub-commands
using the bashlex library. We check the pre-pipe command
for known downloaders (i.e, wget, curl). We then check
the post-pipe command for known shell interpreters (i.e.,
sh, bash, node). If both of these conditions are met, we
identify the command as an instance of this anti-pattern.

Removal. CI specifications should verify the integrity of ex-
ternally hosted scripts before executing them. This could be
achieved by automatically verifying the script after down-
loading it but before execution. Alternatively, one could
download the installation scripts, verify their integrity, and
commit known-to-be secure versions to the VCS. Since
either solution requires changes that are beyond the scope
of the .travis.yml file, we have not implemented an
automatic removal for this anti-pattern in GRETEL yet.

Anti-pattern 2: Bypassing Security Checks

Motivation. During the CI process, if the TRAVIS CI job
processing node communicates with other servers via SSH
for transferring artifacts, it is important to have this connec-
tion be configured securely. A misconfigured connection can
make job processing node(s) vulnerable to network attacks.
For example, using the ssh_known_hosts property in
the addons section of the .travis.yml file exposes job
processing nodes to man-in-the-middle attacks.23,24

Detection. We parse .travis.yml files and check whether
they satisfies at least one of the following conditions:

• There exists an addons section, which contains an
ssh_known_hosts property.

• There exists a command containing the line
StrictHostKeyChecking=no.

• There exists a command containing the line
UserKnownHostsFile=/dev/null.

Removal. To remove this anti-pattern, three steps should
be followed. First, all of the vulnerability-inducing lines

21. https://sandstorm.io/install
22. https://www.idontplaydarts.com/2016/04/detecting-curl-pipe-

bash-server-side/
23. https://annevankesteren.nl/2017/01/secure-secure-shell
24. https://docs.travis-ci.com/user/ssh-known-hosts/#Security-

Implications

https://docs.travis-ci.com/user/travis-lint
https://pypi.python.org/pypi/ruamel.yaml
https://docs.travis-ci.com/
https://sandstorm.io/install
https://www.idontplaydarts.com/2016/04/detecting-curl-pipe-bash-server-side/
https://www.idontplaydarts.com/2016/04/detecting-curl-pipe-bash-server-side/
https://annevankesteren.nl/2017/01/secure-secure-shell
https://docs.travis-ci.com/user/ssh-known-hosts/#Security-Implications
https://docs.travis-ci.com/user/ssh-known-hosts/#Security-Implications

10

(ssh_known_hosts, StrictHostKeyChecking=no,
UserKnownHostsFile=/dev/null) should be removed
from the .travis.yml file. Second, a known_hosts

resource should be created in the repository and the
argument -o UserKnownHostsFile=known_hosts

should be provided whenever ssh is invoked.

Anti-pattern 3: Using Irrelevant Properties

Motivation. TRAVIS CI users may specify properties in
the .travis.yml file that are not used by TRAVIS CI at
runtime. These properties may be user mistakes (e.g., typos)
or features that TRAVIS CI has later deprecated and/or
retired. For example, the .travis.yml file may contain
an after install property; however, that property is not sup-
ported by TRAVIS CI. This likely occurs because both deploy
and script phases have post-execution clean-up phases (i.e.,
after deploy, after script), so TRAVIS CI users may assume
that the convention is followed by the install phase without
carefully checking the user documentation.

The dangerous consequence of specifying irrelevant
properties is that the TRAVIS CI environment ignores unsup-
ported properties. While the omission of the unsupported
property is logged as a warning, it is unlikely that develop-
ers will check these warning if build jobs are successful.

Detection. In Section 4, we have mapped valid properties
to sections in the .travis.yml file. We detect instances of
anti-pattern 3 by parsing the .travis.yml file and check-
ing whether each property appears in its mapped section.
Unrecognized properties are reported as anti-patterns.

Removal. There are several ways to fix this anti-pattern.
First, if the unrecognized property is after_install,
GRETEL removes the after_install phase in the configu-
ration and moves its commands to the end of the install
phase. If the install phase does not exist, it is created
and, to preserve the pre-existing behaviour, the default com-
mands are added (e.g., npm install for NODE.JS projects)
before appending the after_install content.

Second, if the unrecognized property is similar to a
recognized one (i.e., with a Levenshtein distance close to
zero), the unrecognized property is corrected. For example,
before srcipt will be corrected to before script.

In other cases, GRETEL warns the user that the unrecog-
nized properties will be ignored by the TRAVIS CI runtime.

Anti-pattern 4: Commands Unrelated to the Phase

Motivation. Violating the semantics of a phase by including
unrelated commands can introduce maintenance problems.
If the commonly-accepted phases are not used for the in-
tended purpose, new members of the project will find it
difficult to understand the behaviour of the CI process.
Moreover, the various runtime optimizations that TRAVIS

CI performs in order to speed up builds (e.g., caching) may
be suboptimal if phases are used in unintended ways.

Detection. We begin by identifying commands that we
suspect should appear in a given phase. For example, in
NODE.JS projects, we expect to find package installation
commands such as npm install in the install phase
(or one of its sub-phases) and testing framework commands
such as mocha in the script phase (or one of its sub-
phases).

Build tools vary based on programming language. For
example, NODE.JS projects typically use npm for managing
dependencies, whereas PYTHON projects typically use pip.

While we define this anti-pattern in language-agnostic
terms, due to the plethora of language-specific tools, we
must detect the anti-pattern in a language-aware manner.
Since, according to the results of RQ1, NODE.JS is the most
popular language among our subject systems, we prototype
the detection of this anti-pattern for NODE.JS projects.

We consider instances of well-bounded commands that
we find in other phases to be instances of this anti-pattern.
Table 5 shows the well-bounded commands that we de-
tect by analyzing the NODE.JS sample semi-automatically.
To detect instances of this anti-pattern, we parse the
.travis.yml file, associating commands with phases. If a
well-bounded command from Table 5 is found outside of the
phase to which it is bounded, we flag it as an anti-pattern.

Removal. To remove this anti-pattern automatically, we
select the projects that have install-related commands in
other phases (because we find that it is the most commonly
occurring variant of this anti-pattern). GRETEL removes
these commands from non-install phases and appends
them to the end of the install phase. If the project
does not have an install phase, it is created and the
default commands are added (to preserve the pre-existing
behaviour) before appending the other commands.

7 CI MISUSE STUDY RESULTS

In this section, we present the results of our CI misuse study
with respect to our three research questions.

(RQ4) How prevalent are anti-patterns in CI specifica-

tions?

Observation 9: 894 of the 9,312 subject systems (9.6%) have
at least one anti-pattern in their CI specifications. 862 of
those (96%) have one type of anti-pattern. 31 of the re-
maining 32 projects have two types of anti-patterns. The
AngularjsRUS/angular-doc project,25 which provides the Rus-
sian version of the AngularJS documentation, has three
types of anti-patterns (the only missing anti-pattern is #3).

Observation 10: In a sample of 100 projects, HANSEL

achieves a recall of 82.76%. To estimate the recall of HANSEL,
we manually identify anti-patterns in a randomly selected
sample of 100 .travis.yml files from our corpus. We
apply HANSEL to the same sample, and compute the

recall =
anti-patterns found by HANSEL

anti-patterns found manually
.

Our manual analysis uncovers 29 instances of the anti-
patterns in the sample. HANSEL can detect 24 of these
instances, achieving a recall of 82.76%. Three of the five false
negatives are instances of anti-pattern 1 (redirecting scripts
into interpreters), where the downloaded file is immediately
piped into an extractor rather than an interpreter (e.g., wget
-O - <URL>|tar -xvJ). These are borderline cases be-
cause the downloaded content is not being executed. How-
ever, content is still extracted without verifying its integrity.
If we relax the interpreter requirement of HANSEL’s detector
for anti-pattern 1, the recall improves to 93.10% (27 of 29).

25. https://github.com/AngularjsRUS/angular-doc

https://github.com/AngularjsRUS/angular-doc

11

TABLE 5: Well-bounded commands at each phase.

Phase Functionality Command
Install Install dependencies npm install, apt-get install, bower install, jspm, tsd

Script
Testing npm test, mocha, jasmine-node, karma, selenium

Run Interpreter/Framework node, meteor, jekyll, cordova, ionic

Static Analysis codeclimate, istanbul, codecov, coveralls, jscover, audit-package

Deploy Deploying by script sh .*deploy.*.sh

In the remaining two false negatives, HANSEL fails
to find anti-pattern 4 (commands unrelated to the phase)
where composer.phar, the dependency management tool
for PHP, is used in the before_script phase. Our ini-
tial mapping of commands to phases did not bind the
composer tool to the install phase (see Table 5). This
can easily be remedied by adding the missing binding.

Observation 11: The majority of instances of anti-
pattern 1 are installing the popular METEOR web frame-
work. We detect 206 instances where scripts are being
downloaded and piped into shell interpreters directly,
of which, 106 (51%) are in projects using NODE.JS. In
these 106 projects, we find that 94 of them (88%) are
using the above anti-pattern to install the METEOR web
framework.26 In fact, the METEOR documentation instructs
users to install the framework using this method (curl
https://install.meteor.com|/bin/sh).27

We reached out to the METEOR team to discuss the
potential security implications of this installation approach.
The METEOR team explained that the developer community
is divided about using script redirection to install software
packages. On the one hand, some have shown how script
redirection can be exploited by attackers22 or how network-
ing interruptions during the download command may lead
to partial execution of the installation script.28 On the other
hand, members of the SANDSTORM project defend script
redirection for cases where script downloads are served
strictly over HTTPS.29 The SANDSTORM team argues that
script redirection allows developers to iterate faster by
avoiding the hassle of maintaining a variety of package
formats for different platforms (e.g., .rpm and .deb for
RedHat-type and Debian-type Linux distributions, respec-
tively). Moreover, discussion threads on HACKERNEWS30

argue that other standard package distribution methods
(e.g., binary installers, package managers) are also sus-
ceptible to man-in-the-middle attacks unless the delivered
packages are signed cryptographically. The METEOR team
argue that they have not been able to identify a more secure
alternative for the script redirection installation method.

If a project advocates for the script redirection installa-
tion method, we propose the following guidelines:

• The installation script should be served over HTTPS.
• The installation script should be made resilient to net-

work interruptions by wrapping the core script be-
haviour in a function, which is invoked at the end of
the script. Doing so will prevent partial execution of the

26. https://www.meteor.com
27. https://www.meteor.com/install
28. https://www.seancassidy.me/dont-pipe-to-your-shell.html
29. https://sandstorm.io/news/2015-09-24-is-curl-bash-insecure-

pgp-verified-install
30. https://news.ycombinator.com/item?id=12766049

script, since the interpreter will only execute the script
instructions when the function is invoked at the end.

• Users should regularly audit the installation script.

However, when the project has identified the supported
platforms or has accumulated several external dependen-
cies, migration to a package manager may pay off.

Observation 12: Although rare, there are instances anti-
pattern 2 in TRAVIS CI specifications. HANSEL detects 63
instances of this anti-pattern in our corpus. In 37 (58.73%)
of these cases, the StrictHostKeyChecking=no com-
mand is being used. This command disables an interac-
tive prompt for permission to add the host server fin-
gerprint to the known_hosts file. Developers may dis-
able the prompt because it will impede cloning a reposi-
tory via SSH in a headless environment, such as TRAVIS

CI, which can lead to build breakage. However, setting
StrictHostKeyChecking=no exposes the host to man-
in-the-middle attacks by skipping security checks in ssh.

In 18 instances (28.57%), the ssh_known_hosts prop-
erty is set in the addons section to define host names or IP
addresses of the servers to which TRAVIS CI job processing
nodes need to connect during the CI process. This is inse-
cure because if the network is compromised (e.g., by DNS
spoofing), TRAVIS CI job processing nodes may connect and
share private data with an attacker’s machine.

In another eight instances of anti-pattern 2 (12.70%),
UserKnownHostsFile=/dev/null is being used. In this
case, host server fingerprints are written to and read from
an empty file, effectively disabling host key checking, and
exposing the host to man-in-the-middle attacks.

The secure way to prevent the interactive prompt
from interrupting scripted operations is to store the pri-
vate keys of the hosts that TRAVIS CI job processing
nodes connect to in a known_hosts file. The file may
be enabled within the .travis.yml file using the -o

UserKnownHostsFile=<file_name> property.

Observation 13: Irrelevant properties that are ignored by
TRAVIS CI runtime (anti-pattern 3) appear frequently. HANSEL

detects 242 instances of anti-pattern 3, which can present
imminent concerns or future risks (see Table 6).

Making spelling mistakes when defining properties and
placing properties in the incorrect location within the
.travis.yml are example causes of irrelevant properties
that raise imminent concerns. We find 74 instances of mis-
spelled properties in our corpus. These misspelled proper-
ties are an imminent concern because misspelled properties
and all of the commands that are associated with those
properties are ignored by the TRAVIS CI runtime. In the best
case, ignored properties will lead to build breakage, which
is frustrating and may slow development progress down.
In the worst case, the CI job will successfully build while

https://www.meteor.com
https://www.meteor.com/install
https://www.seancassidy.me/dont-pipe-to-your-shell.html
https://sandstorm.io/news/2015-09-24-is-curl-bash-insecure-pgp-verified-install
https://sandstorm.io/news/2015-09-24-is-curl-bash-insecure-pgp-verified-install
https://news.ycombinator.com/item?id=12766049

12

TABLE 6: Examples of irrelevant properties that we ob-
served in .travis.yml files.

Reason Examples
Imminent
Concerns

Misspelled properties notications,

notificactions,

notification,

deployg, before

install,

before_srcipt,

before-install,

before-script,

branch, phps

Misplaced properties only, webhooks,

on_failure,

on_success, irc,

email, exclude,

fast_finish

Future
Risks

Experimental Features group

Deprecated features source_key

TABLE 7: Commands that appear in unrelated phases.

Expected in

Observed in
Install Script Deploy

Install - 467 0

Script 0 - 0

Deploy 0 52 -

producing incorrect deliverables, which may allow failures
or unintended behaviour to leak into official releases.

We also find 148 instances of misplaced properties in
our corpus. For example, the webhooks property should be
defined as a sub-property of the notifications property;
however, it appears as a root-level property in four subject
systems. This is an imminent concern because misconfig-
ured properties are also ignored by the TRAVIS CI runtime.

We label the use of experimental or deprecated features
in the TRAVIS CI specification as a future risk. There are 15
instances of using experimental properties in the corpus.
For example, the undocumented group property allows
users to specify which set of build images are to be used by
the TRAVIS CI runtime. Since this feature is actively being
developed, the TRAVIS CI team does not recommend using
it yet. Projects that use the group property may encounter
future problems if the property name or behaviour changes.

Users may also use deprecated properties such as
source_key. We find five instances of use of deprecated
features in the corpus. They present a future risk because
TRAVIS CI may stop supporting these properties at any time.

Observation 14: The most common variant of anti-pattern
4 is using install phase commands in the script phase.
Table 7 shows that commands that we expect to appear
in the install phase appear 467 times in other phases.
We find that this often occurs because developers prepend
lines to install required packages to the body of the script
phase. By not using install phase for installing dependencies,
these projects are unable to leverage TRAVIS CI runtime
optimizations (e.g., caching), which speed up builds.

The commands that we expect in the deploy phase ap-
pear 52 times in the script phase. We find that developers
tend to run deployment-related commands in the script

phase immediately after compiling and testing.
The TRAVIS CI team states that compiling and testing

1 language: node_js

2 node_js:

3 - '0.10'

4 before_script:

5 - cd frontend

6 - npm install -g

bower grunt-cli

7 - npm install

8 - bower install

9 script:

10 - grunt test

1 language: node_js

2 node_js:

3 - '0.10'

4 install:

5 - cd frontend

6 - npm install -g bower

grunt-cli

7 - npm install

8 - bower install

9 script:

10 - grunt test

Fig. 10: An example where a state-altering command affects
the removal of an anti-pattern. The cd command should
also be migrated to the install phase along with the npm
install and bower install commands.

tasks should appear in the script phase. The deploy

phase is typically reserved for uploading deliverables to
cloud service providers (e.g., HEROKU, AWS, GOOGLE

APP ENGINE) or package repositories (e.g., NPM, PYPI,
RUBYGEMS). This separation of concerns allow the TRAVIS

CI runtime to optimize resources within its CI infrastruc-
ture. For example, during the script phase, the infrastruc-
ture can be tuned to perform more CPU- and I/O-heavy op-
erations, while during the deploy phase, the infrastructure
can allocate additional network bandwidth and less CPU
horsepower. If the separation of concerns is not respected,
the TRAVIS CI team cannot make such optimizations.

Observation 15: Developers often violate semantics by ap-
plying static analysis too late in the CI process. For detecting
semantics violations in sub-phases of the CI process, we
search for calls to popular code coverage and static analysis
tools (listed in the ‘static analysis’ row of Table 5) in the
after_script phase. We detect 40 of such instances.

One plausible explanation for the occurrence of this
anti-pattern is that developers may assume that the
after_script phase is executed immediately after the
script phase, similar to how the after_deploy phase
is executed immediately after the deploy phase. Yet, as
shown in Figure 2, the after script phase is executed
after deployment-related phases are executed. Indeed, we
find 40 cases where static analysis tools are being executed
at the end of the CI process, after deployment, when is likely
too late to act upon issues that are detected.

Summary: Developers misuse and misconfigure CI spec-
ifications. The anti-patterns that we define can expose a
system to security vulnerabilities, cause unintended CI
behaviour, or delay SQA activities until after deployment.
Implications: HANSEL, our anti-pattern detector, can
detect misuse and misconfiguration of CI specifications. If
HANSEL’s warnings are addressed, the consequences of
CI misuse and misconfiguration can be avoided.

(RQ5) Can anti-patterns in CI specifications be removed

automatically?

Approach. We aim to check whether HANSEL-detected anti-
patterns can be removed automatically. To do so, we ran-

13

domly select a subset of candidates for removal and manu-
ally classify them until we achieve saturation [24], i.e., when
new data do not add to the meaning of the categories. In our
case, saturation was achieved after analyzing 250 candidates
for removal, where no new categories were detected during
the analysis of the last 79 candidates.

Before transforming the candidates, we check whether
they are valid specifications by using the TRAVISLINT tool.18

We then apply GRETEL to the valid candidates in order
to remove the anti-pattern. We apply TRAVISLINT again to
the transformed files to make sure that they are still valid.
Finally, we manually inspect the instances of removed anti-
patterns to check whether the transformation has changed
the behaviour of the original specification.

Results. We find that 174 of the 250 randomly selected anti-
pattern instances (69.60%) can be removed automatically.
Moreover, 69 (27.60%) of the remaining cases can be fixed,
but require manual verification to ensure that the original
behaviour is preserved. We perform this manual verification
and provide three observations about these 69 cases.

Observation 16: There are 38 instances of anti-patterns
where the command under analysis is preceded by a state-altering
command. The state-altering commands include:

• File system operations (i.e., cp, cd, mv, mkdir).
• Package managers (i.e., npm update, npm cache

clean, gem update, apt-get update, bower

cache clean, git submodule update).
• Environment variable and database-related operations.

State-altering commands may also need to migrate along
with the anti-pattern commands to the more appropriate
section. Figure 10 shows an example where a state-altering
command impacts the removal of an anti-pattern, taken
from lamkeewei/battleships,31 a tool for building PYTHON

apps for the GOOGLE APP ENGINE. In this case, lines 6–8 are
implicated in the anti-pattern, but line 5 must be executed
before lines 6–8, and thus, must be included in the fix.

Observation 17: In 12 instances, there are compound com-
mands that are connected by a double ampersand. In this case,
the bash shell only invokes the command(s) that follow
after the ampersands if the command(s) that precede the
ampersands did not fail (i.e., returned an error code of zero).
Installation commands that appear before the ampersands
can be safely moved to the install phase while preserving
this behaviour, since if the install phase fails, the build
job terminates with an error status in TRAVIS CI.

Observation 18: In 29 instances, limitations in the ru-
amel.yaml framework19 lead to problems in the removal of anti-
patterns. The problems that we encountered are listed below:

• Version numbers may be parsed as floating point num-
bers, causing trailing zeros to be removed in the output.
For example, 0.10 is transformed into 0.1.

• Property-level comments are missing after removal.
• Duplicate properties are missing after removal.
• Line breaks in multi-line commands are replaced with
‘\n’ after removal.

We manually fix these minor issues before proceeding.

31. https://github.com/lamkeewei/battleships

Seven (2.80%) of the remaining projects use the YARN

package manager32 along with NPM to manage dependen-
cies. The removals that we propose are incompatible with
such projects. We plan to add support for YARN and other
package managers in the future.

Summary: The detected instances of the most frequent
CI anti-pattern can be removed automatically in 69.60%
of cases. This improves to 97.20% if a post hoc manual
inspection phase is included (semi-automatic removal).
Implications: HANSEL-detected anti-patterns can be
removed (semi-)automatically with GRETEL to avoid the
consequences of CI misuse and misconfiguration.

(RQ6) Are automatic removals of CI anti-patterns ac-

cepted by developers?

Approach. To better understand the utility of GRETEL, we
apply it to the 174 instances that could be removed automat-
ically to fix the anti-patterns and offer these improvements
to the studied projects as pull requests.

Results. Of the submitted pull requests, 49 received
responses from the projects’ developers (response rate:
28.16%).

Observation 19: 36 of the 49 pull requests that received re-
sponses (73.47%) have been accepted and integrated by the subject
systems. Of the 49 anti-pattern fixes to which developers
responded, 36 have already been accepted by the projects
at the time of this submission.

13 pull requests were rejected by project maintainers.
Two of the 13 were rejected because our pull request ap-
peared to introduce build breaks, which were introduced
by other commits. In another two pull requests, develop-
ers did not understand why our change had added new
commands. These commands were added to preserve the
implicit behaviour of phases that did not exist prior to
applying our removal. Two other rejected pull requests came
from projects that are no longer being maintained.

Only in one pull request were our changes rejected be-
cause the developer did not agree with our premise that this
change is beneficial. The developer pointed to TRAVIS CI
documentation, which has an example that uses install-
related commands in the before_script phase.33 We con-
tacted the TRAVIS CI team regarding this and they agreed
that the documentation needs to be fixed by moving the
install commands out of the before_script phase in
the example as it is violating the semantics.

The six other rejected pull requests were closed without
any explanation from the project maintainers.

Summary: Automated fixes for CI anti-patterns are often
accepted by developers and integrated into their projects
(73.47% of pull requests that received a response or
20.68% of all submitted pull requests).
Implications: HANSEL and GRETEL produce patches
that are of value to active development teams.

32. https://yarnpkg.com/en/
33. https://docs.travis-ci.com/user/languages/javascript-with-

nodejs/#Using-Gulp

https://github.com/lamkeewei/battleships
https://yarnpkg.com/en/
https://docs.travis-ci.com/user/languages/javascript-with-nodejs/#Using-Gulp
https://docs.travis-ci.com/user/languages/javascript-with-nodejs/#Using-Gulp

14

8 FURTHER INSIGHTS INTO CI MISUSE

In this section, we discuss the observed results further in
terms of misuse of CI.

8.1 Dependence on Default Behaviour

The TRAVIS CI design conforms to the principle of
“convention-over-configuration”. When no command is
specified for a phase (i.e., the phase is not configured), a set
of default commands (i.e., the convention) is automatically
executed. For example, in NODE.JS projects, the current
default behaviour for the install and script phases is
to invoke npm install and npm test, respectively.

The “convention-over-configuration” principle might in-
troduce problems if the conventions change. These changes
may break the builds of projects that depended upon the old
convention. Other tools that conform to the “convention-
over-configuration” principle (e.g., MAVEN, RAILS) address
the problem of changing conventions by maintaining ver-
sions of the schema of the configuration file. This makes the
convention that is associated with each version explicit.

Although we do not classify it as an anti-pattern, we
detect 5,913 projects in our corpus (63.5%) that depend upon
the TRAVIS CI convention. A future change to the conven-
tion could affect break the builds of these 5,913 projects.

The convention of TRAVIS CI must evolve to keep up
with changes in the build tool ecosystem; however, without
a versioning mechanism, configurations that depend upon
the prior convention may be susceptible to breakage. For
example, for OBJECTIVE-C builds, the current TRAVIS CI
convention is to invoke xctool.34 FACEBOOK, the organiza-
tion that maintains xctool, have deprecated it as of 2016.35

If the TRAVIS CI team switches the convention to an actively
supported tool, the builds of projects that depend upon the
existing xctool convention will be broken.

Furthermore, evolution of the TRAVIS CI lifecycle itself
may introduce build breakage. For example, a recent change
to the behaviour of the after_script phase36 ensures that
the phase is executed at the end of the CI process. Moreover,
its commands are executed regardless of the outcome of the
previous phases. Due to this change, projects that depended
upon failures in the after_script phase preventing the
build from proceeding to the deploy phase had to move
such commands to the script phase.

Conversely, when CIRCLECI, a competing CI service,
made substantial changes to the YAML DSL of their con-
figuration files, they introduced a new schema version,37

while still supporting the old version. The name of the
configuration file was also changed from circle.yml to
config.yml, making it difficult for users to mistakenly add
deprecated properties in the new configuration file.

8.2 Storage of Sensitive Data

We find that projects in our sample have stored sensitive
data, such as passwords, private keys, and other security-
related properties, in the .travis.yml file. For example,

34. https://github.com/facebook/xctool
35. https://github.com/facebook/xctool/blob/master/README.

md#features
36. https://blog.travis-ci.com/after script behaviour changes/
37. https://circleci.com/docs/2.0/migrating-from-1-2/

TABLE 8: Sensitive data in .travis.yml files.

Type Property Name # of Projects
Keys SAUCE_ACCESS_KEY,

GITHUB_OAUTH_KEY,

BROWSER_STACK_ACCESS_KEY,

TOKEN_CIPHER_KEY,

TESTSUITE_BROWSERSTACK_KEY,

RECAPTCHA_PRIVATE_KEY,

RAILS_SECRET_KEY,

IMGUR_API_KEY

124

Tokens ATOM_ACCESS_TOKEN,

CODECLIMATE_REPO_TOKEN,

COVERALLS_REPO_TOKEN,

APP_SECRET_TOKEN,

ADMIN_APP_TOKEN,

CODACY_PROJECT_TOKEN

56

Secrets GITHUB_CLIENT_SECRET,

JWT_SECRET, APP_SECRET,

OPBEAT_SECRET,

WEBHOOK_SECRET

9

the huginn/huginn project38 has APP_SECRET_TOKEN de-
fined as a public environment variable in the .travis.yml
file. Having these properties insecurely recorded in plain
text within the .travis.yml file can expose the project and
potentially, the TRAVIS CI infrastructure to exploits. Sensi-
tive data, such as API credentials, should be encrypted and
stored under the secure property in the .travis.yml file.

We perform an exploratory analysis to estimate the num-
ber of instances of sensitive data being stored in plain text
in our corpus. We search for the security-related suffixes
key, token, and secret in the names of environment
variables that appear outside of the secure property. To
prevent double counting, we remove occurrences where
the environment variable setting is the value of another
environment variable. If the other environment variable is
stored insecurely, we will have already reported it.

Table 8 shows that we detect 189 projects with instances
of sensitive data in our corpus (2.03%). This is a lower
bound, since our suffix matching approach does not detect
all environment variables that contain sensitive data.

8.3 Dependence on External Scripts

Another potential anti-pattern is placing a large amount of
CI logic in external scripts. For example, the aescobarr/natus-
fera project39 uses the before_install, before_script,
script, and after_script phases; however, each phase
just calls an external script. Since logic in external scripts is
hidden from the TRAVIS CI runtime (recall Observation 14),
optimizations will be suboptimal.

We again perform an exploratory analysis to study the
use of external scripts. We search for commands in our
corpus that invoke the sh or bash interpreters or have the
.sh extension. Applying this, we detect at least one shell
script has been used by 1,924 projects in our corpus (20.6%).

8.4 Applicability to Other CI Services

Other popular CI services, such as CIRCLECI, WERCKER,
and APPVEYOR also use YAML DSLs for specifying CI
configuration. Thus, the anti-patterns that we define in

38. https://github.com/huginn/huginn
39. https://github.com/aescobarr/natusfera

https://github.com/facebook/xctool
https://github.com/facebook/xctool/blob/master/README.md#features
https://github.com/facebook/xctool/blob/master/README.md#features
https://blog.travis-ci.com/after_script_behaviour_changes/
https://circleci.com/docs/2.0/migrating-from-1-2/
https://github.com/huginn/huginn
https://github.com/aescobarr/natusfera

15

this paper may also apply to these services. For example,
CIRCLECI uses a config.yml file40 to configure the CI pro-
cess. Since commands to be executed during build jobs are
specified in this file, anti-pattern 1 (i.e., redirecting scripts
into interpreters) may occur in CIRCLECI specifications.

CIRCLECI users are also susceptible to the anti-pattern 2
(i.e., bypassing security checks) because users can manually
set StrictHostKeyChecking=no in the config.yml

file, exposing the host to man-in-the-middle attacks, when
executing commands that require an SSH connection.41

CIRCLECI is robust to anti-pattern 3 (i.e., using irrelevant
properties) because build jobs terminate immediately if an
unsupported property is processed in the config.yml file.
This behaviour differs from TRAVIS CI, where unsupported
properties do not prevent build jobs from proceeding.

CIRCLECI users are susceptible to anti-pattern
4 (commands unrelated to the phase). Similar to
.travis.yml files, config.yml files have seven sections
that represent phases of the CI process (i.e., machine,
checkout, dependencies, database, compile, test,
and deployment). Each phase has three sub-phases (i.e.,
pre, override, and post). Similar to Table 5, we can map
commands to CIRCLECI phases where they should appear.

9 THREATS TO VALIDITY

This section describes the threats to the validity of our study.

9.1 Internal Validity

The list of anti-patterns that we present in the paper is not
exhaustive. However, to the best of our knowledge, this
paper is the first to define, detect, and remove anti-patterns
in CI specifications. Our set of anti-patterns is a starting
point for future studies to build upon. Future studies that
define anti-patterns using other data sources, e.g., developer
surveys [9], may prove fruitful.

HANSEL uses a lightweight approach to detect instances
of anti-patterns. A more rigorous analysis may uncover
additional instances of anti-patterns. Thus, our anti-pattern
frequency results should be interpreted as a lower bound.

Projects may use TRAVIS CI without a .travis.yml

file. In this case, the TRAVIS CI runtime assumes that the
project is using RUBY and would apply the conventional
RUBY CI process. Since we are unable to identify such
projects automatically, we only consider projects with a
.travis.yml file in the root directory of the project.

9.2 External Validity

In terms of the generalizability of our results to other
systems, we focus only on open source subject systems,
which are hosted on GITHUB and use TRAVIS CI as the CI
service provider. GITHUB is one of the most popular hosting
platforms for open source software projects and TRAVIS

CI is the most widely adopted CI service among open
source projects [15]. Therefore, our findings are applicable
to a large proportion of open source projects. Moreover,

40. https://circleci.com/docs/2.0/
41. https://discuss.circleci.com/t/add-known-hosts-on-startup-

via-config-yml-configuration/12022

given the similarities among the popular CI services (see
Section 8.4), our observations are likely applicable to some
degree. Nonetheless, replication studies using other CI ser-
vices may yield further insight.

9.3 Construct Validity

Our proposed CI anti-patterns are subject to our interpre-
tation. To mitigate this threat, we review TRAVIS CI doc-
umentation and consult with the TRAVIS CI support team
when inconsistencies are encountered. Furthermore, the rate
at which our pull requests are being accepted (73.47%) is
suggestive of the value of addressing these anti-patterns.

CI use and misuse statistics are computed using various
scripts that we have written. These scripts may themselves
contain defects, which would affect our results. To address
this threat, we test our tools and scripts on subsamples of
our datasets, and manually verify the results.

The filters that we apply to remove small, inactive, and
duplicated repositories from our corpus are based on thresh-
olds, i.e., project size in files, project activity in commits, and
rate of duplication in percentage of duplicated commits. The
specific threshold values that we selected may impact our
observations. With this in mind, we did not select threshold
values arbitrarily. First, we analyze threshold plots to un-
derstand the impact that various threshold values will have
on the number of retained systems. Second, we perform
sensitivity analyses (Figures 6 and 7), where the impact of
selecting different thresholds is shown to be minimal.

10 RELATED WORK

In this section, we situate our work with respect to the liter-
ature on continuous integration and configuration smells.

10.1 Continuous Integration

As a relatively new practice in software development, CI
has only just begun to attract the attention of software
engineering researchers [2].

Recent work has characterized CI practices and out-
comes along different dimensions. Meyer [23] discussed
features of the CI tools that were used by practitioners. He
emphasizes the importance of good tooling, fully automated
builds, fast test suites, feature-toggling, and monitoring
for CI. Ståhl and Bosch [30] also provided a systematic
overview of CI practices and their differences from a tech-
nical perspective. Vasilescu et al. [32] studied quality and
productivity outcomes of using CI. They find that teams
that are using CI are significantly more effective at merging
the pull requests of core members.

In addition to positive outcomes, challenges and limita-
tions of CI have been pointed out by researchers. For exam-
ple, Hilton et al. [15] analyzed open source projects from
GITHUB and surveyed developers to understand which
CI systems developers use, how developers use CI, and
reasons for using CI (or not). They conclude that the main
reason why open source projects choose not to use CI is
that the developers are not familiar enough with it. In a
recent qualitative study, Hilton et al. [14] also found that,
when adopting CI, developers face trade-offs between speed
and certainty, accessibility and security, and configurability

https://circleci.com/docs/2.0/
https://discuss.circleci.com/t/add-known-hosts-on-startup-via-config-yml-configuration/12022
https://discuss.circleci.com/t/add-known-hosts-on-startup-via-config-yml-configuration/12022

16

and ease of use. Laukkanen et al. [19] surveyed the recent
literature for the problems, causes, and solutions when
adopting continuous delivery. They point out large com-
mits, merge conflicts, broken builds, and slow integration
approval as problems that are related to integration. By
interviewing practitioners in 15 ICT companies, Leppänen
et al. [20] found that domain-imposed restrictions, resistance
to change, customer needs, and developers’ skill and confi-
dence are adoption obstacles for continuous deployment.

Other works focus on improving specific stages of the CI
process. Beller et al. [4] studied testing practices in CI, partic-
ularly focusing on JAVA and RUBY projects. They conclude
testing is an established and integral part in the CI process of
open source software. However, Beller et al. [4] also observe
a latency of more than 20 minutes between writing code
and receiving test feedback from CI when compared to the
fast-paced nature of testing in the local environments. They
suggest that low test failure rates from CI are a sign that
developers submit pre-tested contributions to CI. Similarly,
Elbaum et al. [12] propose algorithms based on test case
selection and prioritization techniques to make CI processes
more cost effective. Other work has studied how to improve
the effectiveness of automated testing in CI [6], [10] and
how CI can be extended to include additional performance
and robustness tests when standard testing frameworks are
insufficient for highly concurrent, real-time applications [7].

Our goal in this paper is to characterize the usage of
CI features by analyzing a large corpus of existing CI
specifications. Our work is complementary to prior studies,
contributing to a larger understanding of how CI tools and
techniques are being adopted in real-world projects.

10.2 Software Configuration Smells

To the best of our knowledge, this paper is the first to
define, detect, and remove anti-patterns in CI specifications;
however, prior work has explored anti-patterns in the con-
text of other configuration files. Brown et al. [5] published
a catalog of anti-patterns and patterns for software con-
figuration management. Shambaugh et al. [28] proposed
REHEARSAL, a verification tool for PUPPET configurations.
Sharma et al. [29] have also recently explored smells that are
related to the PUPPET configuration management language.
They presented a set of implementation and design con-
figuration smells that violate recommended best practices.
Bent et al. [9] surveyed developers and used the findings
to develop a PUPPET code quality analysis tool. Rahman
and Williams [26] applied text mining techniques to identify
defects in PUPPET scripts, identifying file system operations,
infrastructure provisioning, and user account management
properties as characteristics of defective PUPPET scripts.
Jha et al. [17] proposed a static analysis tool for detecting
errors in configuration files of ANDROID apps. In an ex-
ploratory empirical study, Cito et al. [8] assessed the quality
of DOCKER configuration files on GITHUB, observing that
they violate 3.1 linter rules on average.

Another related context is architectural or design smells.
Marinescu [21] has defined detection strategies for cap-
turing important flaws of object-oriented design that were
reported in the literature. Garcia et al. [13] have defined ar-
chitectural bad smells as architectural design decisions that

negatively impact the understandability, testability, extensi-
bility, and reusability of a software system. Moha et al. [25]
define smells as poor solutions to recurring implementation
and design problems. They also specify four well-known
design smells and define their detection algorithms.

The anti-patterns that we propose share similarities with
configuration smells defined in prior work. For example,
since externally-hosted scripts are not analyzed by the
TRAVIS CI runtime, anti-pattern 1 (redirecting scripts into
interpreters) can lead to non-deterministic errors and non-
idempotence problems that were identified by Shambaugh et
al. [28]. Alicherry and Keromytis [3] showed that trusting
SSH hosts keys (also known as trust-on-first-use) exposes
hosts to man-in-the-middle attacks. Our anti-pattern 2 also
detects instances where users bypass ssh security measures
by disabling SSH host key checking. Our anti-pattern 3
(using irrelevant properties) is similar to the Invalid Property
Value and Deprecated Statement Usage configuration smells
proposed by Sharma et al. [29] and the Silent Failure problem
proposed by Shambaugh et al. [28]. Finally, our anti-pattern
4 (commands unrelated to the phase) is similar to Sharma
et al.’s Misplaced Attribute and Multifaceted Abstraction con-
figuration smells [29]. Indeed, if dependency installation,
compilation, and testing commands are all included in
the Script phase, the tasks in that phase are not cohesive,
violating the single responsibility principle.

11 CONCLUSIONS

CI has become a widely used practice among many software
teams today. A CI service typically consists of nodes for
creating, processing, and reporting of build jobs. To mitigate
the overhead of maintaining and operating this infrastruc-
ture themselves, many organizations are moving to cloud-
based CI services. These services allow for customizing the
CI process using configuration files. Similar to programming
languages, the features in CI configuration files can be used
and misused by the developers.

Through our study of 9,312 open source systems that use
TRAVIS CI, we make the following observations about the
use and misuse of CI specifications:

• Despite being the default TRAVIS CI language, RUBY is
not the most popular language in our corpus of studied
systems. NODE.JS is the most popular language in our
corpus of studied systems (Observations 1 & 2).

• In terms of CI node configuration, sections that are re-
lated to job processing nodes appear in the most projects,
while for build process configuration, sections that are
related to the script phase appear in the most projects
(Observations 3 & 4).

• Job processing configuration and script phase config-
uration have statistically distinct and higher ranks in
projects compared to other sections (Observation 5).

• Although commands in the deploy phase appear only
in 343 projects (3.68%), the median number of com-
mands is comparable to other sections. (Observation 6)

• The CI code that configures job processing nodes ac-
counts for the most modifications. In the projects that
are modified, all sections are likely to be modified an
equal number of times (Observations 7 & 8).

17

• HANSEL detects anti-patterns in the TRAVIS CI specifi-
cations of 894 out of the 9,312 studied projects (9.60%).
Moreover, in a sample of 100 projects, HANSEL achieves
a recall of 82.76% (Observations 9–15).

• The instances of anti-pattern 4 can be removed auto-
matically in 69.60% of the subject systems. This per-
centage can be increased to 97.20% if a post hoc manual
inspection phase is included (Observations 16–18).

• Of the 49 pull requests for instances that are removed
automatically and to which developers responded, 36
(73.47%) have been accepted (Observation 19).

Our CI usage results suggest that the most natural di-
rection for future research and tooling in CI would target
the configuration of job processing nodes. Moreover, our
CI misuse study shows that anti-patterns that threaten the
correctness, performance, and security of build jobs are
impacting a considerable proportion of TRAVIS CI users
(9.60%). HANSEL and GRETEL can detect and remove these
anti-patterns accurately, allowing teams to mitigate or avoid
the consequences of misusing CI features.

REFERENCES

[1] B. Adams, K. de Schutter, H. Tromp, and W. de Meuter. The
evolution of the linux build system. Electronic Communications of
the ECEASST, 8, 2 2008.

[2] B. Adams and S. McIntosh. Modern release engineering in a
nutshell: Why researchers should care. In Proceedings of the Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 5, pages 78–90, 2016.

[3] M. Alicherry and A. D. Keromytis. DoubleCheck: Multi-path
verification against man-in-the-middle attacks. In Proceedings of
the IEEE Symposium on Computers and Communications (ISCC), jul
2009.

[4] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke
the build: An explorative analysis of travis CI with GitHub.
In Proceedings of the International Conference on Mining Software
Repositories (MSR), pages 356–367, 2017.

[5] W. J. Brown, H. W. McCormick III, and S. W. Thomas. AntiPatterns
and Patterns in Software Configuration Management. John Wiley &
Sons, Inc., 1999.

[6] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. Continuous test
generation: Enhancing continuous integration with automated
test generation. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 55–66, 2014.

[7] F. Cannizzo, R. Clutton, and R. Ramesh. Pushing the boundaries
of testing and continuous integration. In Proceedings of the Agile
2008 Conference, pages 501–505, 2008.

[8] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and
H. C. Gall. An empirical analysis of the Docker container ecosys-
tem on GitHub. In Proceedings of the International Conference on
Mining Software Repositories (MSR), pages 323–333, 2017.

[9] E. V. der Bent, J. Hage, J. Visser, and G. Gousios. How good is
your puppet? an empirically defined and validated quality model
for puppet. In Proceedings of the International Conference on Software
Analysis, Evolution and Reengineering (SANER), page To Appear,
2018.

[10] S. Dösinger, R. Mordinyi, and S. Biffl. Communicating continu-
ous integration servers for increasing effectiveness of automated
testing. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 374–377, 2012.

[11] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Pearson Education,
2007.

[12] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving
regression testing in continuous integration development environ-
ments. In Proceedings of the SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 235–245, 2014.

[13] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Toward
a catalogue of architectural bad smells. In Proceedings of the
International Conference on the Quality of Software Architectures:
Architectures for Adaptive Software Systems, pages 146–162, 2009.

[14] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. Trade-
offs in continuous integration: assurance, security, and flexibility.
In Proceedings of Joint Meeting of the European Software Engineering
Conference and the International Symposium on the Foundations of
Software Engineering, pages 197–207, 2017.

[15] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Us-
age, costs, and benefits of continuous integration in open-source
projects. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 426–437, 2016.

[16] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[17] A. K. Jha, S. Lee, and W. J. Lee. Developer mistakes in writing
Android manifests: An empirical study of configuration errors.
In Proceedings of the International Conference on Mining Software
Repositories (MSR), pages 25–36, 2017.

[18] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The promises and perils of mining GitHub.
In Proceedings of the International Working Conference on Mining
Software Repositories (MSR), pages 92–101, 2014.

[19] E. Laukkanen, J. Itkonen, and C. Lassenius. Problems, causes
and solutions when adopting continuous delivery—a systematic
literature review. Information and Software Technology, 82:55–79,
2017.

[20] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta, J. Itkonen,
M. V. Mäntylä, and T. Männistö. The highways and country roads
to continuous deployment. IEEE Software, 32(2):64–72, 2015.

[21] R. Marinescu. Detection strategies: Metrics-based rules for detect-
ing design flaws. In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 350–359, 2004.

[22] S. McIntosh, B. Adams, and A. E. Hassan. The evolution of
Java build systems. Empirical Software Engineering, 17(4-5):578–608,
2012.

[23] M. Meyer. Continuous integration and its tools. IEEE Software,
31(3):14–16, 2014.

[24] M. B. Miles, A. M. Huberman, and J. Saldaña. Qualitative data
analysis: A methods sourcebook. Sage, 2013.

[25] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. Decor:
A method for the specification and detection of code and design
smells. IEEE Transactions on Software Engineering (TSE), 36(1):20–
36, 2010.

[26] A. Rahman and L. Williams. Characterizing defective configu-
ration scripts used for continuous deployment. In Proceedings of
International Conference on Software Testing, Validations, and Verifica-
tion (ICST), page To Appear, 2018.

[27] A. J. Scott and M. Knott. A cluster analysis method for grouping
means in the analysis of variance. Biometrics, 30(3):507–512, 1974.

[28] R. Shambaugh, A. Weiss, and A. Guha. Rehearsal: A configuration
verification tool for puppet. In Proceedings of the International
Conference on Programming Language Design and Implementation
(PLDI), pages 416–430, 2016.

[29] T. Sharma, M. Fragkoulis, and D. Spinellis. Does your configu-
ration code smell? In Proceedings of the International Conference on
Mining Software Repositories (MSR), pages 189–200, 2016.

[30] D. Ståhl and J. Bosch. Modeling continuous integration practice
differences in industry software development. Journal of Systems
and Software, 87:48–59, 2014.

[31] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto. An empirical comparison of model validation techniques
for defect prediction models. IEEE Transactions on Software Engi-
neering (TSE), 43(1):1–18, 2017.

[32] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality
and productivity outcomes relating to continuous integration in
GitHub. In Proceedings of the Joint Meeting of the European Software
Engineering Conference and the International Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages 805–816, 2015.

18

Keheliya Gallaba is a PhD student at McGill
University, Canada. His PhD thesis aims to im-
prove the robustness and efficiency of con-
tinuous integration and continuous deployment
tools. He received his BSc degree in Com-
puter Science and Engineering from University
of Moratuwa, Sri Lanka and his MASc degree
in Electrical and Computer Engineering from
University of British Columbia, Canada. More
about Keheliya and his work is available online
at http://keheliya.github.io/.

Shane McIntosh is an assistant professor in
the Department of Electrical and Computer Engi-
neering at McGill University, where he leads the
Software Repository Excavation and Build En-
gineering Labs (Software REBELs). He received
his Bachelor’s degree in Applied Computing from
the University of Guelph and his Master’s and
PhD in Computer Science from Queen’s Uni-
versity, for which he was awarded the Governor
General of Canada’s Academic Gold Medal. In
his research, Shane uses empirical software en-

gineering techniques to study software build systems, release engineer-
ing, and software quality. More about Shane and his work is available
online at http://rebels.ece.mcgill.ca/.

http://keheliya.github.io/
http://rebels.ece.mcgill.ca/

	Introduction
	Modern CI Process
	Configuring Travis CI
	Node Configuration
	Build Process Configuration

	Research Questions

	CI Usage Study Design
	Corpus of Candidate Systems
	Data Filtering
	Domain of the Subject Systems

	Results of CI Usage Study
	Anti-patterns in CI Specifications
	Research Questions

	CI Misuse Study Design
	CI Misuse Study Results
	Further Insights into CI Misuse
	Dependence on Default Behaviour
	Storage of Sensitive Data
	Dependence on External Scripts
	Applicability to Other CI Services

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Continuous Integration
	Software Configuration Smells

	Conclusions
	References
	Biographies
	Keheliya Gallaba
	Shane McIntosh

