
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Use at Your Own Risk: The Java Unsafe API in the Wild

Luis Mastrangelo Luca Ponzanelli Andrea Mocci

Michele Lanza Matthias Hauswirth Nathaniel Nystrom

Faculty of Informatics, Università della Svizzera italiana (USI), Switzerland

{first.last}@usi.ch

Abstract

Java is a safe language. Its runtime environment provides

strong safety guarantees that any Java application can rely

on. Or so we think. We show that the runtime actually does

not provide these guarantees—for a large fraction of today’s

Java code. Unbeknownst to many application developers, the

Java runtime includes a “backdoor” that allows expert library

and framework developers to circumvent Java’s safety guar-

antees. This backdoor is there by design, and is well known

to experts, as it enables them to write high-performance

“systems-level” code in Java.

For much the same reasons that safe languages are pre-

ferred over unsafe languages, these powerful—but unsafe—

capabilities in Java should be restricted. They should be

made safe by changing the language, the runtime system, or

the libraries. At the very least, their use should be restricted.

This paper is a step in that direction.

We analyzed 74 GB of compiled Java code, spread over

86,479 Java archives, to determine how Java’s unsafe ca-

pabilities are used in real-world libraries and applications.

We found that 25% of Java bytecode archives depend on un-

safe third-party Java code, and thus Java’s safety guarantees

cannot be trusted. We identify 14 different usage patterns of

Java’s unsafe capabilities, and we provide supporting evi-

dence for why real-world code needs these capabilities. Our

long-term goal is to provide a foundation for the design of

new language features to regain safety in Java.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Patterns

General Terms Design, Languages, Measurement

Keywords unsafe, patterns, mining, Java, Maven Central,

Stack Overflow

1. Introduction

The Java Virtual Machine (JVM) executes Java bytecode

and provides other services for programs written in many

programming languages, including Java, Scala, and Clojure.

The JVM was designed to provide strong safety guarantees.

However, many widely used JVM implementations expose

an API that allows the developer to access low-level, unsafe

features of the JVM and underlying hardware, features that

are unavailable in safe Java bytecode. This API is provided

through an undocumented1 class, sun.misc.Unsafe, in the

Java reference implementation produced by Oracle.

Other virtual machines provide similar functionality. For

example, the C# language provides an unsafe construct on

the .NET platform2, and Racket provides unsafe operations3.

The operations sun.misc.Unsafe provides can be danger-

ous, as they allow developers to circumvent the safety guar-

antees provided by the Java language and the JVM. If mis-

used, the consequences can be resource leaks, deadlocks,

data corruption, and even JVM crashes.4 5 6 7 8

We believe that sun.misc.Unsafe was introduced to pro-

vide better performance and more capabilities to the writ-

ers of the Java runtime library. However, sun.misc.Unsafe

is increasingly being used in third-party frameworks and li-

braries. Application developers who rely on Java’s safety

guarantees have to trust the implementers of the language

runtime environment (including the core runtime libraries).

Thus the use of sun.misc.Unsafe in the runtime libraries is no

more risky than the use of an unsafe language to implement

the JVM. However, the fact that more and more “normal”

libraries are using sun.misc.Unsafe means that application

developers have to trust a growing community of third-party

1 http://www.oracle.com/technetwork/java/

faq-sun-packages-142232.html

2 https://msdn.microsoft.com/en-us/en-en/library/

chfa2zb8(v=vs.90).aspx

3 http://docs.racket-lang.org/reference/unsafe.html

4 https://groups.google.com/d/msg/elasticsearch/

Nh-kXI5J6Ek/WXIZKhhGVHkJ

5 https://github.com/EsotericSoftware/kryo/issues/219

6 https://github.com/dain/snappy/issues/24

7 https://netbeans.org/bugzilla/show_bug.cgi?id=229655

8 https://netbeans.org/bugzilla/show_bug.cgi?id=244914

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...

http://dx.doi.org/10.1145/2814270.2814313

695

Java library developers to not inadvertently tamper with the

fragile internal state of the JVM.

Given that the benefits of safe languages are well known,

and the risks of unsafe languages are obvious, why exactly

does one need unsafe features in third-party libraries? Are

those features used in real-world code? If yes, how are they

used, and what are they used for?

We studied a large repository of Java code, Maven Cen-

tral, to answer these questions. We analyzed 74 GB of com-

piled Java code, spread over 86,479 Java libraries, to deter-

mine the usage and impact of sun.misc.Unsafe. Our goal is

to provide a strong foundation for informed decisions in the

future evolution of the Java language and virtual machine.

The rest of this paper is organized as follows. Section 2

presents the concrete risks of using sun.misc.Unsafe. Sec-

tion 3 discusses our research questions and introduces our

study. Section 4 presents an overview of how Unsafe is used.

Section 5 describes our analysis of the Stack Overflow ques-

tion/answer database. Section 6 describes our methodology

for finding Unsafe usage patterns. Sections 7 and 8 introduce

and discuss the patterns we found. Section 9 presents related

work, and Section 10 concludes the paper.

2. The Risks of Compromising Safety

We outline the risks of Unsafe by illustrating how the im-

proper use of Unsafe violates Java’s safety guarantees.

In Java, the unsafe capabilities are provided as instance

methods of class sun.misc.Unsafe. Access to the class has

been made less than straightforward. Class sun.misc.Unsafe

is final, and its constructor is not public. Thus, creating an

instance requires some tricks. For example, one can invoke

the private constructor via reflection. This is not the only way

to get hold of an unsafe object, but it is the most portable.

1 Constructor <Unsafe> c = Unsafe.class.

getDeclaredConstructor();

2 c.setAccessible(true);

3 Unsafe unsafe = c.newInstance();

Listing 1. Instantiating an Unsafe object

Given the unsafe object, one can now simply invoke any

of its methods to directly perform unsafe operations.

2.1 Violating Type Safety

In Java, variables are strongly typed. For example, it is im-

possible to store an int value inside a variable of a reference

type. Unsafe can violate that guarantee: it can be used to

store a value of any type in a field or array element.

1 class C {

2 private Object f = new Object();

3 }

4 long fieldOffset = unsafe.objectFieldOffset(

5 C.class.getDeclaredField("f"));

6 C o = new C();

7 unsafe.putInt(o, fieldOffset , 1234567890);

// f now points to nirvana

Listing 2. sun.misc.Unsafe can violate type safety

2.2 Crashing the Virtual Machine

A quick way to crash the VM is to free memory that

is in a protected address range, for example by calling

freeMemory as follows.

1 unsafe.freeMemory(1);

Listing 3. sun.misc.Unsafe can crash the VM

In Java, the normal behavior of a method to deal with such

situations is to throw an exception. Being unsafe, instead

of throwing an exception, this invocation of freeMemory

crashes the VM.

2.3 Violating Method Contracts

In Java, a method that does not declare an exception cannot

throw any checked exceptions. Unsafe can violate that con-

tract: it can be used to throw a checked exception that the

surrounding method does not declare or catch.

1 void m() {

2 unsafe.throwException(new Exception());

3 }

Listing 4. sun.misc.Unsafe can violate a method contract

2.4 Uninitialized Objects

Java guarantees that an object allocation also initializes the

object by running its constructor. Unsafe can violate that

guarantee: it can be used to allocate an object without ever

running its constructor. This can lead to objects in states that

the objects’ classes would not seem to admit.

1 class C {

2 private int f;

3 public C() { f = 5; }

4 public int getF() { return f; }

5 }

6

7 C c = (C)unsafe.allocateInstance(C.class);

8 assert c.getF()==5; // violated

Listing 5. sun.misc.Unsafe can lead to uninitialized objects

2.5 Monitor Deadlock

Java provides synchronized methods and synchronized blocks.

These constructs guarantee that monitors entered at the be-

ginning of a section of code are exited at the end. Unsafe

can violate that contract: it can be used to asymmetrically

enter or exit a monitor, and that asymmetry might be not

immediately obvious.

1 void m() {

2 unsafe.monitorEnter(o);

3 if (c) return;

4 unsafe.monitorExit(o);

5 }

Listing 6. sun.misc.Unsafe can lead to monitor deadlocks

The above examples are just the most straightforward

violations of Java’s safety guarantees. The sun.misc.Unsafe

696

class provides a multitude of methods that can be used to

violate most guarantees Java provides.

To sum it up: Unsafe is dangerous. But should anybody

care? In the next sections we present a study to determine

whether and how Unsafe is used in real-world third-party

Java libraries, and to what degree real-world applications

directly and indirectly depend on it.

3. Overview of Our Study

We believe we should care about the dangers of Unsafe if

the third-party usage of Unsafe could impact common appli-

cation code. We want to answer the following questions:

Q1 : Does Unsafe impact common application code? We

want to understand to what extent third-party code actu-

ally uses Unsafe.

Q2 : Which features of Unsafe are used? As Unsafe pro-

vides many features, we want to understand which ones

are actually used, and which ones can be ignored.

Q3 : Why are Unsafe features used? We want to investi-

gate what functionality third-party libraries require from

Unsafe. This could point out ways in which the Java lan-

guage and/or the JVM need to be evolved to provide the

same functionality, but in a safer way.

Q4 : What problems do developers who use Unsafe en-

counter? If Unsafe is not just dangerous, but also con-

fusing or difficult to use, then its use by third-party de-

velopers is particularly problematic. If there are specific

Unsafe features or usage patterns that developers worry

about, it would make sense to evolve Java or the JVM to

provide safer alternatives in that direction.

To answer the above questions, we need to determine

whether and how Unsafe is actually used in real-world third-

party Java libraries, and to what degree real-world applica-

tions directly and indirectly depend on such unsafe libraries.

To achieve our goal, several elements are needed.

Code Repository. As a code base representative of the

“real world”, we have chosen the Maven Central9 software

repository. The rationale behind this decision is that a large

number of well-known Java projects deploy to Maven Cen-

tral using Apache Maven10. Besides code written in Java,

projects written in Scala are also deployed to Maven Central

using the Scala Build Tool (sbt)11. Moreover, Maven Central

is the largest Java repository12, and it contains projects from

the most popular source code management repositories, like

GitHub13 and SourceForge14.

9 http://central.sonatype.org/

10 http://maven.apache.org/

11 http://www.scala-sbt.org/

12 http://www.modulecounts.com/

13 https://github.com/

14 http://sourceforge.net/

Artifacts. In Maven terminology, an artifact is the output

of the build procedure of a project. An artifact can be any

type of file, ranging from a .pdf to a .zip file. However,

artifacts are usually .jar files, which archive compiled Java

bytecode stored in .class files.

Bytecode Analysis. We examine these kinds of artifacts

to analyze how they use sun.misc.Unsafe. We use a bytecode

analysis library to search for method call sites and field

accesses of the sun.misc.Unsafe class.

Dependency Analysis. We define the impact of an arti-

fact as how many artifacts depend on it, either directly or

indirectly. This helps us to define the impact of artifacts that

use sun.misc.Unsafe, and thus the impact sun.misc.Unsafe

has on real-world code overall.

Usage Pattern Detection. After all call sites and field ac-

cesses are found, we analyze this information to discover us-

age patterns. It is common that an artifact exhibits more than

one pattern. Our list of patterns is not exhaustive. We have

manually investigated the source code of the 100 highest-

impact artifacts using sun.misc.Unsafe to understand why

and how they are using it.

Stack Overflow Analysis. We studied problems encoun-

tered using sun.misc.Unsafe by analyzing the Stack Over-

flow question/answer database. After discovering usage pat-

terns in the Maven archive, we use Stack Overflow to corre-

late them to discussions. Our goal is to understand the diffi-

culties in implementing certain Unsafe usage patterns.

4. Is Unsafe Used?

In this section we answer our first two research questions:

whether Unsafe impacts common application code, and

which features of Unsafe are actually used.

We do this by mining Maven Central. The complete

scripts and results used for this study are available online15.

In the Maven Central repository it is possible to find

language implementations, such as org.scala-lang:scala-

library, org.jruby:jruby-core, org.codehaus.groovy:groovy-

all, org.python:jython, and com.oracle:truffle. We treat them

separately because they are not common application code,

they are language implementations. The users of these lan-

guages trust these libraries as a Java user trust Java’s imple-

mentation.

4.1 Gathering Artifacts

The complete Maven Central repository contains 959,300

artifacts, 106,574 unique artifacts—artifacts are versioned—

and consists of ca. 1.7 TB of data16. For our analysis we

only look at the last version of each artifact to search for

sun.misc.Unsafe uses. Moreover we are only interested in a

subset of this data: artifacts that archive compiled bytecode

(.class files) e.g., .jar, .war, .ear, and .ejb files.

15 https://bitbucket.org/acuarica/java-unsafe-analysis

16 http://search.maven.org/#stats

697

We downloaded all artifacts subject to analysis from dif-

ferents mirrors of Maven Central, including the ibiblio Digi-

tal Archive17. We downloaded the archive between May 29th

and June 3rd, 2015. The downloaded repository consists of

about 74 GB of data from 86,479 unique artifacts.

4.2 Determining Usage

To search for sun.misc.Unsafe static use, we mined byte-

code using the following facts about the sun.misc.Unsafe

class: a) it is declared as final; b) it inherits directly

from java.lang.Object; c) its public methods (except for

getUnsafe) are instance methods; and d) its public fields

are declared as static final.

We implement our analysis on top of ASM [14]. Our

analysis finds all virtual method invocation sites where the

call target is of type sun.misc.Unsafe, and all static reads of

fields of class sun.misc.Unsafe.

Sometimes sun.misc.Unsafe is used through reflection to

avoid compilation dependencies (given that sun.misc.Unsafe

is not part of the public API). Our study is restricted to static

uses of sun.misc.Unsafe, which is a limitation of our work.

Our analysis found 48,490 uses of sun.misc.Unsafe—

48,139 call sites and 351 field accesses—distributed over

817 different artifacts. This initial result shows that Unsafe

is indeed used in third-party code.

4.3 Determining Impact

Unsafe does not only impact the artifacts that use it, but it

transitively impacts all artifacts depending on those artifacts.

We thus need to determine the transitive closure of unsafety.

Maven projects are described using POM files, which

may contain dependency information. 47,127 of the artifacts

we downloaded include such dependency information.

In Maven, dependencies have a scope. For example, a

library artifact may depend on a testing framework artifact

only for the purpose of testing. It will not depend on the

testing framework for production runs.

We use the dependency information to determine the im-

pact of the artifacts that use sun.misc.Unsafe. We rank all

artifacts according to their impact (the number of artifacts

that directly or indirectly depend on them). High-impact ar-

tifacts are important; a safety violation in them can affect any

artifact that directly or indirectly depends on them. We find

that while overall about 1% of artifacts directly use Unsafe,

for the top-ranked 1000 artifacts, 3% directly use Unsafe.

Thus, Unsafe usage is particularly prevalent in high-impact

artifacts, artifacts that can affect many other artifacts.

Moreover, we found that 21,297 artifacts (47% of the

47,127 artifacts with dependency information, or 25% of

the 86,479 artifacts we downloaded) directly or indirectly

depend on sun.misc.Unsafe. Excluding language artifacts,

numbers do not change much: Instead of 21,297 artifacts,

we found 19,173 artifacts. 41% of the artifacts with depen-

17 http://mirrors.ibiblio.org/maven2/

dency information, or 22% of artifacts downloaded. Thus,

sun.misc.Unsafe usage in third-party code indeed impacts a

large fraction of projects.

One limitation of our work is we only use the information

stored in POM files to determine dependencies. Notice that

this is an overapproximation because a POM file might be

outdated, and the artifact itself could not use the dependency.

Or it might happen that the dependency is used only on some

program paths or under certain configurations. To precisely

determine the artifact’s dependencies, a more powerful and

costly static or dymamic analysis would be needed.

4.4 Which Features of Unsafe Are Actually Used?

Figures 1 and 2 show all instance methods and static fields of

sun.misc.Unsafe. For each member we show how many call

sites or field accesses we found across the artifacts. The class

provides 120 public instance methods and 20 public fields

(version 1.8 update 40). The figure only shows 93 methods

because the 18 methods in the Heap Get and Heap Put

groups, and staticFieldBase are overloaded, and we combine

overloaded methods into one bar.

We show two columns, Application and Language. The

Language column corresponds to language implementation

artifacts while the Application column corresponds to the

rest of the artifacts.

We categorized the members into groups, based on the

functionality they provide:

• The Alloc group contains only the allocateInstance

method, which allows the developer to allocate a Java

object without executing a constructor. This method is

used 181 times: 180 in Application and 1 in Language.

• The Array group contains methods and fields for comput-

ing relative addresses of array elements. The fields were

added as a simpler and potentially faster alternative in a

more recent version of Unsafe. The value of all fields in

this group are constants initialized with the result of a call

to either arrayBaseOffset or arrayIndexScale in the Array

group. The figures show that the majority of sites still in-

voke the methods instead of accessing the corresponding

constant fields.

• The CAS group contains methods to atomically compare-

and-swap a Java variable. These operations are imple-

mented using processor-specific atomic instructions. For

instance, on x86 architectures, compareAndSwapInt is

implemented using the CMPXCHG machine instruction.

Figure 1 shows that these methods represent the most

heavily used feature of Unsafe.

• Methods of the Class group are used to dynamically

load and check Java classes. They are rarely used, with

defineClass being used the most.

• The methods of the Fence group provide memory fences

to ensure loads and stores are visible to other threads.

These methods are implemented using processor-specific

698

180 (1)

1578 (17)
1037 (12)

5032 (166)
3275 (88)

2857 (80)

0 (0)

30 (0)
9 (0)

0 (0)

7 (1)
10 (1)
10 (1)

4 (0)
5 (0)
4 (0)
4 (0)
1 (0)

883 (2)
9 (0)

171 (3)
811 (3)
764 (2)

199 (3)
197 (3)

1725 (6)
1734 (8)

957 (39)
837 (3)

228 (3)
1174 (3)

1820 (2)
245 (3)
258 (3)

3692 (4)
1015 (3)
1162 (43)

1866 (3)

0 (0)

73 (0)
92 (0)
0 (0)

62 (1)
95 (1)
109 (2)
79 (1)
11 (0)
25 (0)
14 (0)
9 (0)
79 (1)

549 (2)
42 (0)
103 (1)
85 (1)
207 (3)
236 (3)
122 (2)

344 (2)
38 (0)
87 (1)
79 (1)
171 (3)
194 (3)
116 (2)

0 (0)

5265 (80)
24 (0)
29 (0)

366 (8)
144 (1)

503 (17)

163 (7)
506 (27)

119 (2)

5 (0)
24 (0)
15 (0)
15 (0)
15 (0)
173 (1)
225 (1)

1054 (33)
20 (0)

6 (0)
25 (0)
16 (0)
16 (0)
16 (0)
92 (1)
89 (1)

412 (10)
21 (0)

allocateInstance

arrayBaseOffset
arrayIndexScale

compareAndSwapInt
compareAndSwapLong

compareAndSwapObject

defineClass
ensureClassInitialized

defineAnonymousClass
shouldBeInitialized

fullFence
loadFence

storeFence

getAndAddInt
getAndAddLong

getAndSetInt
getAndSetLong

getAndSetObject

copyMemory (Heap)
setMemory (Heap)

getBoolean
getByte (Heap)
getChar (Heap)

getDouble (Heap)
getFloat (Heap)

getInt (Heap)
getLong (Heap)

getObject
getShort (Heap)

putBoolean
putByte (Heap)
putChar (Heap)

putDouble (Heap)
putFloat (Heap)

putInt (Heap)
putLong (Heap)

putObject
putShort (Heap)

getLoadAverage

monitorEnter
monitorExit

tryMonitorEnter

addressSize
allocateMemory

copyMemory (Off−Heap)
freeMemory
getAddress

pageSize
putAddress

reallocateMemory
setMemory (Off−Heap)

getByte (Off−Heap)
getChar (Off−Heap)

getDouble (Off−Heap)
getFloat (Off−Heap)

getInt (Off−Heap)
getLong (Off−Heap)
getShort (Off−Heap)

putByte (Off−Heap)
putChar (Off−Heap)

putDouble (Off−Heap)
putFloat (Off−Heap)

putInt (Off−Heap)
putLong (Off−Heap)
putShort (Off−Heap)

objectFieldOffset
staticFieldBase

staticFieldOffset
fieldOffset

putOrderedInt
putOrderedLong

putOrderedObject

park
unpark

throwException

getBooleanVolatile
getByteVolatile
getCharVolatile

getDoubleVolatile
getFloatVolatile

getIntVolatile
getLongVolatile

getObjectVolatile
getShortVolatile

putBooleanVolatile
putByteVolatile
putCharVolatile

putDoubleVolatile
putFloatVolatile

putIntVolatile
putLongVolatile

putObjectVolatile
putShortVolatile

Alloc

Array

CAS

Class

Fence

Fetch & Add

Heap

Heap Get

Heap Put

Misc

Monitor

Off−Heap

Off−Heap Get

Off−Heap Put

Offset

Ordered Put

Park

Throw

Volatile Get

Volatile Put

0 2000 4000 6000
Call Sites

s
u

n
.m

is
c
.U

n
s
a

fe
 m

e
th

o
d

s

Application (Language)

Figure 1. sun.misc.Unsafe method usage on Maven Central

10 (0)

13 (0)

67 (0)

13 (0)

13 (0)

7 (0)

12 (0)

17 (0)

12 (0)

13 (0)

14 (0)

19 (1)

14 (0)

15 (0)

9 (2)

26 (3)

12 (0)

13 (0)

17 (0)

0 (0)

ARRAY_BOOLEAN_BASE_OFFSET

ARRAY_BOOLEAN_INDEX_SCALE

ARRAY_BYTE_BASE_OFFSET

ARRAY_BYTE_INDEX_SCALE

ARRAY_CHAR_BASE_OFFSET

ARRAY_CHAR_INDEX_SCALE

ARRAY_DOUBLE_BASE_OFFSET

ARRAY_DOUBLE_INDEX_SCALE

ARRAY_FLOAT_BASE_OFFSET

ARRAY_FLOAT_INDEX_SCALE

ARRAY_INT_BASE_OFFSET

ARRAY_INT_INDEX_SCALE

ARRAY_LONG_BASE_OFFSET

ARRAY_LONG_INDEX_SCALE

ARRAY_OBJECT_BASE_OFFSET

ARRAY_OBJECT_INDEX_SCALE

ARRAY_SHORT_BASE_OFFSET

ARRAY_SHORT_INDEX_SCALE

ADDRESS_SIZE

INVALID_FIELD_OFFSET

Array

Off−Heap

Offset

0 20 40 60 80
Reads

s
u

n
.m

is
c
.U

n
s
a

fe
 f
ie

ld
s

Application (Language)

Figure 2. sun.misc.Unsafe field usage on Maven Central

instructions. These methods were introduced only re-

cently in Java 8, which explains their limited use in our

data set. We expect that their use will increase over time

and that other operations, such as those in the Ordered

Put, or Volatile Put groups will decrease as programmers

use the lower-level fence operations.

• The Fetch & Add group, like the CAS group, allows the

programmer to atomically update a Java variable. This

group of methods was also added recently in Java 8.

We expect their use to increase as programmers replace

some calls to methods in the CAS group with the new

functionality.

• The Heap group methods are used to directly access

memory in the Java heap. The Heap Get and Heap Put

groups allow the developer to load and store a Java vari-

able. These groups are among the most frequently used

ones in Unsafe.

• The Misc group contains the method getLoadAverage, to

get the load average in the operating system run queue

assigned to the available processors. It is not used.

• The Monitor group contains methods to explicitly man-

age Java monitors. The tryMonitorEnter method is never

used.

• The Off-Heap group provides access to unmanaged

memory, enabling explicit memory management. Sim-

ilarly to the Heap Get and Heap Put groups, the Off-

Heap Get and Off-Heap Put groups allow the developer

to load and store values in Off-Heap memory. The us-

age of these methods is non-negligible, with getByte

and putByte dominating the rest. The value of the AD-

699

DRESS SIZE field is the result of the method address-

Size().

• Methods of the Offset group are used to compute the lo-

cation of fields within Java objects. The offsets are used

in calls to many other sun.misc.Unsafe methods, for in-

stance those in the Heap Get, Heap Put, and the CAS

groups. The method objectFieldOffset is the most called

method in sun.misc.Unsafe due to its result being used

by many other sun.misc.Unsafe methods. The fieldOff-

set method is deprecated, and indeed, we found no uses.

The INVALID FIELD OFFSET field indicates an invalid

field offset; it is never used because code using object-

FieldOffset is not written in a defensive style.

• The Ordered Put group has methods to store to a Java

variable without emitting any memory barrier but guar-

anteeing no reordering across the store.

• The park and unpark methods are contained in the Park

group. With them, it is possible to block and unblock a

thread’s execution.

• The throwException method is contained in the Throw

group, and allows one to throw checked exceptions with-

out declaring them in the throws clause.

• Finally, the Volatile Get and Volatile Put groups allow

the developer to store a value in a Java variable with

volatile semantics.

It is interesting to note that despite our large corpus of

code, there are several Unsafe methods that are never actu-

ally called. If Unsafe is to be used in third-party code, then

it might make sense to extract those methods into a separate

class to be only used from within the runtime library.

5. Question/Answer Database Analysis

To complement the analysis of sun.misc.Unsafe usage in

practice, and to answer the questions relative to which fea-

tures are commonly used (Q2), why they are used (Q3), and

if they generate issues or problems (Q4), we search for dis-

cussions concerning the usage of sun.misc.Unsafe in Stack

Overflow. We cannot rely only on Stack Overflow discus-

sion tags: The topic is rarely discussed, and the tag un-

safe is too general. A more precise analysis of the discus-

sion contents is required to understand if it actually involves

sun.misc.Unsafe. We rely on parsing island grammars [17]

of structured fragments in natural language artifacts [2, 20]

to discover discussions that involve sun.misc.Unsafe from

the Stack Overflow data dump of March 201518.

5.1 (Island) Parsing Stack Overflow Discussions

Our island grammar parsing approach can be used to dis-

cover and analyze specific constructs that reveal the usage

of sun.misc.Unsafe. For example, a discussion could report

18 https://archive.org/details/stackexchange

a code sample using sun.misc.Unsafe, or a user could men-

tion the class (or one of its fields/methods) in an answer to

a question concerning some specific problem that the us-

age of sun.misc.Unsafe can tackle. The island grammar al-

lows us to identify constructs like stack traces and Java code

fragments, including (potentially incomplete) method invo-

cations or mentions inside natural language text. We do not

perform simple identification and extraction, but we rather

model the contents with a Heterogeneous Abstract Syntax

Tree (H-AST) [20].

Identifying Relevant Discussions: We identify Stack

Overflow discussions concerning the sun.misc.Unsafe class

by analyzing all the discussions tagged with one of java,

scala, android, or jvm. To understand if a discussion con-

cerns sun.misc.Unsafe, we search for (i) uses of fields or

methods exposed by Unsafe or (ii) mentions of the class it-

self. We extract discussions where the HAST contains either

(i) a qualified identifier matching Unsafe, unsafe, UNSAFE,

or sun.misc.Unsafe; (ii) an invocation of a method declared

in sun.misc.Unsafe; or (iii) Java identifiers, beginning with

a lowercase letter and containing a case change (e.g., “field-

Offset”), that respect method naming conventions and match

one of the methods declared in Unsafe.

Refining Parsing Results: The park method appears at

the top of stack traces for idle threads. Since these occur-

rences do not represent an interesting usage of Unsafe, we

therefore removed all discussions where the only usage of

Unsafe is the park method occurring in a stack trace.

In total we collected 20,915 discussions, out of which 560

report the type, 20,426 mention a method matching the ones

of Unsafe, and 5 mention an Unsafe field. However, if the

presence of the type Unsafe guarantees that the discussion

is likely about sun.misc.Unsafe, the lone presence of the

method name does not guarantee that (e.g., methods like

getInt can be found in classes like java.nio.ByteBuffer19).

Only 49 discussions contain a method mention and the string

“unsafe”, which result (after manual inspection) in only 18

effective discussions concerning Unsafe. In the end, our

dataset contains 578 discussions.

5.2 Findings on Stack Overflow Discussions

Figure 3 presents an overview of sun.misc.Unsafe method

mentions in Stack Overflow. The mentions are presented by

distinguishing whether they appear only in the question, only

in the answer, or in both. The list of methods does not dis-

tinguish between overloaded variants. In fact, people often

mention method names without formal or actual parameters.

Thus, in many cases, to understand which is the overloaded

alternative one would have to do a manual inspection.

Discussions Archetypes. We manually inspected the

resulting discussions to understand how sun.misc.Unsafe is

discussed, devising a set of discussion archetypes:

19 http://docs.oracle.com/javase/7/docs/api/java/nio/

ByteBuffer.html

700

allocateInstance

ARRAY_OBJECT_BASE_OFFSET

ARRAY_OBJECT_INDEX_SCALE

arrayBaseOffset

arrayIndexScale

compareAndSwapInt

compareAndSwapLong

compareAndSwapObject

defineAnonymousClass

defineClass

ensureClassInitialized

getByte

getChar

getDouble

getFloat

getInt

getLong

getObject

getShort

copyMemory

setMemory

getUnsafe

monitorEnter

monitorExit

ADDRESS_SIZE

addressSize

allocateMemory

copyMemory

freeMemory

getAddress

pageSize

putAddress

reallocateMemory

setMemory

objectFieldOffset

staticFieldOffset

park

putByte

putChar

putDouble

putFloat

putInt

putLong

putObject

putShort

putOrderedInt

putOrderedLong

putOrderedObject

throwException

getIntVolatile

getObjectVolatile

putByteVolatile

putIntVolatile

putLongVolatile

putObjectVolatile

Alloc

Array

CAS

Class

Get

Heap

Misc

Monitor

Off−Heap

Offset

Park

Put

Put Ordered

Throw

Volatile Get

Volatile Put

0 10 20
matches

s
u

n
.m

is
c
.U

n
s
a

fe
 m

e
m

b
e

rs

Only in Questions Only in Answers Both

Figure 3. sun.misc.Unsafe members mentions on Stack

Overflow

• Lack of documentation: Unsafe is an undocumented

API, and a primary archetype concerns developers asking

the crowd to obtain clarification on usage. A relatively

popular question, entitled “Using sun.misc.Unsafe in real

world”, asks for typical use cases.20

• Performance: Users coming from unmanaged languages

like C and C++ discuss how to avoid the cost of Java’s

safety checks. For instance, a user asked for an equivalent

method call for memcpy.21

• Misdirected uses: Developers may propose Unsafe for

inappropriate purposes. For example, a post discusses the

use of the address to free an object on the Java heap.22

Overall, the availability of Unsafe to developers who do

not have a deep understanding of the JVM comes with

the risk of misdirected uses. This risk is not unlike the

risk of inappropriately using eval [23] in JavaScript.

6. Finding sun.misc.Unsafe Usage Patterns

We examined the artifacts in the Maven Central software

repository to identify usage patterns for Unsafe. This section

describes our methodology for identifying these patterns.

A
rr

a
y

C
A

S

H
e

a
p

 G
e

t

O
ff

s
e

t

P
u

t
O

rd
e

re
d

V
o

la
ti
le

 G
e

t

V
o

la
ti
le

 P
u

t

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

com/lmax/disruptor/MultiProducerSequencer

com/lmax/disruptor/RingBufferFields

com/lmax/disruptor/Sequence

a
rr

a
yB

a
se

O
ff
se

t
a
rr

a
yI

n
d
e
xS

ca
le

co
m

p
a
re

A
n
d
S

w
a
p
L
o
n
g

g
e
tO

b
je

ct
o
b
je

ct
F

ie
ld

O
ff
se

t
p
u
tO

rd
e
re

d
In

t
p
u
tO

rd
e
re

d
L
o
n
g

g
e
tI
n
tV

o
la

til
e

p
u
tL

o
n
g
V

o
la

til
e

Methods

#
 c

a
ll

s
it
e
s

com.lmax:disruptor

Figure 4. com.lmax:disruptor call sites

Our first step is to visualize how an artifact uses Unsafe.

To this end, we count the Unsafe call sites and field usages

per class in each artifact. Figures 4 and 5 show two examples

20 http://stackoverflow.com/questions/5574241

21 http://stackoverflow.com/questions/6060163

22 http://stackoverflow.com/questions/24429777

701

A
rr

a
y

C
A

S

H
e

a
p

 G
e

t
H

e
a

p
 P

u
t

O
ff

s
e

t

P
a

rk

P
u

t
O

rd
e

re
d

V
o

la
ti
le

 G
e

t
V

o
la

ti
le

 P
u

t
0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

scala/concurrent/forkjoin/CountedCompleter

scala/concurrent/forkjoin/ForkJoinPool

scala/concurrent/forkjoin/ForkJoinPool$WorkQueue

scala/concurrent/forkjoin/ForkJoinTask

scala/concurrent/forkjoin/LinkedTransferQueue

scala/concurrent/forkjoin/LinkedTransferQueue$Node

a
rr

a
yB

a
se

O
ff
se

t
a
rr

a
yI

n
d
e
xS

ca
le

co
m

p
a
re

A
n
d
S

w
a
p
In

t

co
m

p
a
re

A
n
d
S

w
a
p
L
o
n
g

co
m

p
a
re

A
n
d
S

w
a
p
O

b
je

ct
g
e
tO

b
je

ct
p
u
tO

b
je

ct
o
b
je

ct
F

ie
ld

O
ff
se

t
p
a
rk

u
n
p
a
rk

p
u
tO

rd
e
re

d
O

b
je

ct
g
e
tO

b
je

ct
V

o
la

til
e

p
u
tO

b
je

ct
V

o
la

til
e

Methods

#
 c

a
ll

s
it
e
s

org.scala−lang:scala−library

Figure 5. org.scala-lang:scala-library call sites

of call sites usages for com.lmax:disruptor and org.scala-

lang:scala-library respectively. Each row shows a fully qual-

ified class name and their usage of sun.misc.Unsafe.

After determining the call sites and field usage per arti-

fact, we tried to find a way to group artifacts by how they

use sun.misc.Unsafe. The first issue is to determine which

method calls work together to achieve a goal. These calls

might all be located within a single class, be spread across

different classes within a package, or be spread across differ-

ent packages within the whole artifact. After trying different

combinations, we decided to group together calls occurring

within a single class and its inner classes.

We cluster classes and their inner classes by Unsafe

method usage using a dendrogram. Because a dendrogram

can result in different clusters depending on at which height

the dendrogram is cut, we experimented with various clus-

terings until settling on 31 clusters. An example of a cluster

and its dendrogram is shown in Figure 6. In the figure we

can see classes using methods of the Off-Heap, Off-Heap

Get, and Off-Heap Put groups to implement large arrays.

Once we had a clustering of the artifacts by method us-

age, we manually inspected a sample of artifacts in each

cluster to identify patterns. Some artifacts contained more

than one pattern. For instance the cluster in Figure 6 contains

classes that use Unsafe to implement large off-heap arrays,

but also contains calls to methods of the Put Volatile group

used to implement strongly shared consistent variables. We

0
2

4
6

H
a

s
h

L
o

o
k
u

p
*

C
o

m
p

ile
d

R
e

p
lic

a
te

d
M

a
p

Q
u

e
ry

C
o

n
te

x
t*

C
o

m
p

ile
d

R
e

p
lic

a
te

d
M

a
p

It
e

ra
ti
o

n
C

o
n

te
x
t*

C
o

m
p

ile
d

M
a

p
It

e
ra

ti
o

n
C

o
n

te
x
t*

C
o

m
p

ile
d

M
a

p
Q

u
e

ry
C

o
n

te
x
t*

O
ff

H
e

a
p

M
e

m
o

ry
*

N
u

lls
C

o
lu

m
n

*

L
L

o
n

g
A

rr
a
y
*

M
a

p
p

e
d

F
ile

Im
p

l*

K
V

In
d

e
x
*

L
o

n
g

L
a

rg
e

A
rr

a
y
*

O
ff
−

H
e
a
p

O
ff
−

H
e
a
p
 G

e
t

O
ff
−

H
e
a
p
 P

u
t

V
o
la

ti
le

 P
u
t

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

HashLookup*

CompiledReplicatedMapQueryContext*

CompiledReplicatedMapIterationContext*

CompiledMapIterationContext*

CompiledMapQueryContext*

OffHeapMemory*

NullsColumn*

LLongArray*

MappedFileImpl*

KVIndex*

LongLargeArray*

al
lo

ca
te

M
em

or
y

co
py

M
em

or
y

(O
ff−

H
ea

p)
fr
ee

M
em

or
y

se
tM

em
or

y
(O

ff−
H

ea
p)

ge
tL

on
g

(O
ff−

H
ea

p)

pu
tL

on
g

(O
ff−

H
ea

p)
pu

tL
on

gV
ol

at
ile

sun.misc.Unsafe members

#
 c

a
ll

s
it
e
s

Figure 6. Classes using off-heap large arrays

702

tagged each artifact manually inspected with the set of pat-

terns that it exhibits.

7. Usage Patterns of sun.misc.Unsafe

This section presents the patterns we have found during our

study. We present them sorted by how many artifacts depend

on them, as computed from the Maven dependency graph

described in Section 4.

A summary of the patterns is shown in Table 1. The

Pattern column indicates the name of the pattern. Found

in indicates the number of artifacts in Maven Central that

contain the pattern. Used by indicates the number of artifacts

that transitively depend on the artifacts with the pattern.

Most used artifacts presents the three most used artifacts

containing the pattern, that is, the artifact with the most other

artifacts that transitively depend upon it. Artifacts are shown

using their Maven identifier, i.e., 〈groupId〉:〈artifactId〉.
We present each pattern using the following template.

Description. What is the purpose of the pattern? What does

it do?

Rationale. What problem is the pattern trying to solve? In

what contexts is it used?

Implementation. How is the pattern implemented using

sun.misc.Unsafe?

Issues. Issues to consider when using the pattern and prob-

lems discussed in the Stack Overflow database.

7.1 Allocate an Object without Invoking a Constructor

Description. With this pattern an object can be allocated on

the heap without executing its constructor.

Rationale. This pattern is useful for creating mock objects

for testing and in deserializing serialized objects.

Implementation. The allocateInstance method takes as pa-

rameter a java.lang.Class object, and returns a new instance

of that class. Unlike allocating an object directly, or through

the reflection API, the object’s constructor is not invoked.

Issues. If the constructor is not invoked, the object might

be left uninitialized and its invariants might not hold. Users

of allocateInstance must take care to properly initialize the

object before it is used by other code. This is often done in

conjunction with other methods of Unsafe, for instance those

in the Heap Put group, or by using the Java reflection API.

7.2 Process Byte Arrays in Block

Description. When processing the elements of a byte array,

better performance can be achieved by processing the ele-

ments 8 bytes at a time, treating it as a long array, rather

than one byte at a time.

Rationale. The pattern is used for fast byte array processing,

for instance, when comparing two byte arrays lexicographi-

cally.

Implementation. The arrayBaseOffset method is invoked to

get the base offset of the byte array. Then getLong is used to

fetch and process 8 bytes of the array at a time.

Issues. The pattern assumes that bytes in an array are stored

contiguously. This may not be true for some VMs, e.g.,

those implementing large arrays using discontinuous arrays

or arraylets [3, 30]. Users of the pattern should be aware

of the endianness of the underlying hardware. In one Stack

Overflow discussion, this pattern is discouraged since it is

non-portable and, on many JVMs, results in slower code23.

7.3 Atomic Operations

Description. To implement non-blocking concurrent data

structures and synchronization primitives, hardware-specific

atomic operations provided by sun.misc.Unsafe are used.

Rationale. Non-blocking algorithms often scale better than

algorithms that use locking.

Implementation. To get the offset of a Java variable ei-

ther objectFieldOffset or arrayBaseOffset/arrayIndexScale

can be used. With this offset, the methods from the CAS or

Fetch & Add groups are used to perform atomic operations

on the variable. Other methods of Unsafe are often used in

the implementation of concurrent data structures, including

Volatile Get/Put, Ordered Put, and Fence methods.

Issues. Non-blocking algorithms can be difficult to im-

plement correctly. Programmers must understand the Java

memory model and how the Unsafe methods interact with

the memory model.

7.4 Strongly Consistent Shared Variables

Description. Because of Java’s weak memory model, when

implementing concurrent code, it is often necessary to en-

sure that writes to a shared variable by one thread become

visible to other threads, or to prevent reordering of loads

and stores. Volatile variables can be used for this purpose,

but sun.misc.Unsafe can be used instead with better perfor-

mance. Additionally, because Java does not allow array el-

ements to be declared volatile, there is no possibility other

than to use Unsafe to ensure visibility of array stores. The

methods of the Ordered Put groups and the Volatile Get/Put

groups can be used for these purposes. In addition, the Fence

methods were introduced in Java 8 expressly to provide

greater flexibility for this use case.

Rationale. This pattern is useful for implementing concur-

rent algorithms or shared variables in concurrent settings.

For instance, JRuby uses a fullFence to ensure visibility of

writes to object fields.

Implementation. To ensure a write is visible to another

thread, Volatile Put methods or Ordered Put methods can

be used, even on non-volatile variables. Alternatively, a

storeFence or fullFence can be used. Volatile Get methods

ensure other loads and stores are not reordered across the

load. A loadFence could also be used before a read of a

shared variable.

Issues. Fences can replace volatile variables in some situa-

tions, offering better performance. Most of the uses of the

23 http://stackoverflow.com/questions/12226123

703

Table 1. Patterns and their occurrences in the Maven Central repository.

Pattern Found In Used by Most used artifacts

1 Allocate an Object without Invoking a

Constructor

88 14794 org.springframework :spring-core ,

org.objenesis:objenesis,

org.mockito:mockito-all

2 Process Byte Arrays in Block 44 12274 com.google.guava:guava ,

com.google.gwt :gwt-dev,

net.jpountz.lz4 :lz4

3 Atomic Operations 84 10259 org.scala-lang:scala-library,

org.apache.hadoop:hadoop-hdfs ,

org.glassfish.grizzly:grizzly-framework

4 Strongly Consistent Shared Variables 198 9795 org.scala-lang:scala-library,

org.jruby:jruby-core,

com.hazelcast :hazelcast-all

5 Park/Unpark Threads 62 7330 org.scala-lang:scala-library,

org.codehaus.jsr166-mirror:jsr166y ,

com.netflix.servo:servo-internal

6 Update Final Fields 11 7281 org.codehaus.groovy:groovy-all ,

org.jodd :jodd-core,

com.lmax:disruptor

7 Non-Lexically-Scoped Monitors 14 7015 org.jboss.modules:jboss-modules ,

org.apache.cassandra:cassandra-all ,

org.gridgain:gridgain-core

8 Serialization/Deserialization 32 5689 com.hazelcast :hazelcast-all ,

com.esotericsoftware.kryo:kryo ,

com.thoughtworks.xstream:xstream

9 Foreign Data Access and Object Mar-

shaling

8 3690 eu.stratosphere:stratosphere-core ,

com.github.jnr:jffi,

org.python:jython

10 Throw Checked Exceptions without

Being Declared

59 3566 io.netty:netty-all ,

net.openhft :lang,

ai.h2o:h2o-core

11 Get the Size of an Object or an Array 4 3003 net.sf.ehcache:ehcache ,

com.github.jbellis:jamm,

org.openjdk.jol :jol-core

12 Large Arrays and Off-Heap Data

Structures

12 487 org.neo4j :neo4j-primitive-collections ,

com.orientechnologies:orientdb-core ,

org.mapdb :mapdb

13 Get Memory Page Size 11 359 org.apache.hadoop:hadoop-common ,

net.openhft :lang,

org.xerial.larray:larray-mmap

14 Load Class without Security Checks 21 294 org.elasticsearch :elasticsearch ,

org.apache.geronimo.ext.openejb :openejb-core ,

net.openhft :lang

pattern use the Ordered Put and Volatile Put methods. Since

they were added to Java only recently, there are currently

few instances of the pattern that use the Fence methods.

7.5 Park/Unpark Threads

Description. The park and unpark methods are used to block

and unblock threads and are useful for implementing locks

and other blocking synchronization constructs.

Rationale. The alternative to parking a thread is to busy-

wait, which uses CPU resources and does not allow other

threads to proceed.

Implementation. The park method blocks the current thread

while unpark unblocks a thread given as an argument.

Issues. Users of park must be careful to avoid deadlock.

7.6 Update Final Fields

Description. This pattern is used to update a final field.

704

Rationale. Although it is possible to use reflection to imple-

ment the same behavior, updating a final field is easier and

more efficient using sun.misc.Unsafe. Some applications up-

date final fields when cloning objects or when deserializing

objects.

Implementation. The objectFieldOffset methods and one of

the Put methods work in conjunction to directly modify the

memory where a final field resides.

Issues. There are numerous security and safety issues with

modifying final fields. The update should be done only on

newly created objects (perhaps also using allocateInstance

to avoid invoking the constructor) before the object becomes

visible to other threads. The Java Language Specification

(Section 17.5.3) [10] recommends that final fields not be

read until all updates are complete. In addition, the language

permits compiler optimizations with final fields that can

prevent updates to the field from being observed. Since final

fields can be cached by other threads, one instance of the

pattern uses putObjectVolatile to update the field rather than

simply putObject. Using this method ensures that any cached

copy in other threads is invalidated.

7.7 Non-Lexically-Scoped Monitors

Description. In this pattern, monitors are explicitly acquired

and released without using synchronized blocks.

Rationale. The pattern is used in some situations to avoid

deadlock, releasing a monitor temporarily, then reacquiring

it.

Implementation. One usage of the pattern is to temporarily

release monitor locks acquired in client code (e.g., through a

synchronized block or method) and then to reenter the mon-

itor before returning to the client. The monitorExit method

is used to exit the synchronized block. Because monitors

are reentrant, the pattern uses the method Thread.holdsLock

to implement a loop that repeatedly exits the monitor un-

til the lock is no longer held. When reentering the monitor,

monitorEnter is called the same number of times as monitor-

Exit was called to release the lock.

Issues. Care must be taken to balance calls to monitorEnter

and monitorExit, or else the lock might not be released or an

IllegalMonitorStateException might be thrown.

7.8 Serialization/Deserialization

Description. In this pattern, sun.misc.Unsafe is used to per-

sist and subsequently load objects to and from secondary

memory dynamically. Serialization in Java is so important

that it has a Serializable interface to automatically serialize

objects that implement it. Although this kind of serialization

is easy to use, it does not offer good performance and is in-

flexible. It is possible to implement serialization using the re-

flection API. This is also expensive in terms of performance.

Therefore, fast serialization frameworks often use Unsafe to

get and set fields of objects. Some of these projects use re-

flection to check if sun.misc.Unsafe is available, falling back

on a slower implementation if not.

Rationale. De/serialization requires reading and writing

fields to save and restore objects. Some of these fields may

be final or private.

Implementation. Methods of Heap Get and Heap Put are

used to read and write fields and array elements. Deserial-

ization may use allocateInstance to create objects without

invoking the constructor.

Issues. Using Unsafe for serialization and deserialization

has many of the same issues as using Unsafe for updating

final fields (Section 7.6) and for creating objects without in-

voking a constructor (Section 7.1). Objects must not escape

before being completely deserialized. Type safety can be vi-

olated by using methods of the Heap Put group. In addition,

care must be taken when deserializing some data structures.

For instance, data structures that use System.identityHash-

Code or Object.hashCode may need to rehash objects on

deserialization because the deserialized object might have a

different hash code than the original serialized object.

7.9 Foreign Data Access and Object Marshaling

Description. In this pattern sun.misc.Unsafe is used to share

data between Java code and code written in another lan-

guage, usually C or C++.

Rationale. This pattern is needed to efficiently pass data,

especially structures and arrays, back and forth between Java

and native code. Using this pattern can be more efficient than

using native methods and JNI.

Implementation. The methods of the Off-Heap group are

used to access memory off the Java heap. Often a buffer is

allocated using allocateMemory, which is then passed to the

other language using JNI. Alternatively, the native code can

allocate a buffer in a JNI method. The Off-Heap Get and

Off-Heap Put methods are used to access the buffer.

Issues. Use of Unsafe here is inherently not type-safe. Care

must be taken especially with native pointers, which are

represented as long values in Java code.

7.10 Throw Checked Exceptions without Being

Declared

Description. This pattern allows the programmer to throw

checked exceptions without being declared in the method’s

throws clause.

Rationale. In testing and mocking frameworks, the pattern

is used to circumvent declaring the exception to be thrown,

which is often unknown. It is used in the Java Fork/Join

framework to save the generic exception of a thread to be

rethrown later.

Implementation. The pattern is implemented using the

throwException method.

Issues. This method can violate Java’s subtyping relation,

because it is not expected for a method that does not declare

an exception to actually throw it. At run time, this can man-

ifest as an uncaught exception.

705

7.11 Get the Size of an Object or an Array

Description. This pattern uses sun.misc.Unsafe to estimate

the size of an object or an array in memory.

Rationale. The object size can be useful for making manual

memory management decisions. For instance, when imple-

menting a cache, object sizes can be used to implement code

to limit the cache size.

Implementation. To compute the size of an array, add array-

BaseOffset and arrayIndexScale (for the given array base

type) times the array length. For objects, use objectField-

Offset to compute the offset of the last instance field. In both

cases, a VM-dependent fudge factor is added to account for

the object header and for object alignment and padding.

Issues. Object size is very implementation dependent. Ac-

counting for the object header and alignment requires adding

VM-dependent constants for these parameters.

7.12 Large Arrays and Off-Heap Data Structures

Description. This pattern uses off-heap memory to create

large arrays or data structures with manual memory man-

agement.

Rationale. Java’s arrays are indexed by int and are thus

limited to 231 elements. Using Unsafe, larger buffers can be

allocated outside the heap.

Implementation. A block of memory is allocated with

allocateMemory and then accessed using Off-Heap Get and

Off-Heap Put methods. The block is freed with freeMemory.

Issues. This pattern has all the issues of manual memory

management: memory leaks, dangling pointers, double free,

etc. One issue, mentioned on Stack Overflow, is that the

memory returned by allocateMemory is uninitialized and

may contain garbage.24 Therefore, care must be taken to

initialize allocated memory before use. The Unsafe method

setMemory can be used for this purpose.

7.13 Get Memory Page Size

Description. sun.misc.Unsafe is used to determine the size

of a page in memory.

Rationale. The page size is needed to allocate buffers or ac-

cess memory by page. A common use case is to round up

a buffer size, typically a java.nio.ByteBuffer, to the near-

est page size. Hadoop uses the page size to track mem-

ory usage of cache files mapped directly into memory us-

ing java.nio.MappedByteBuffer. Another use is to process a

buffer page-by-page. Some native libraries require or recom-

mend allocating buffers on page-size boundaries.25

Implementation. Call pageSize.

Issues. Some platforms on which the JVM runs do not have

virtual memory, so requesting the page size is non-portable.

24 http://stackoverflow.com/questions/16723244

25 http://stackoverflow.com/questions/19047584

7.14 Load Class without Security Checks

Description. sun.misc.Unsafe is used to load a class from an

array containing its bytecode. Unlike with the ClassLoader

API, security checks are not performed.

Rationale. This pattern is useful for implementing lambdas,

dynamic class generation, and dynamic class rewriting. It is

also useful in application frameworks that do not interact

well with user-defined class loaders.

Implementation. The pattern is implemented using the

defineClass method, which takes a byte array containing

the bytecode of the class to load.

Issues. The pattern violates the Java security model. Un-

trusted code could be introduced into the same protection

domain as trusted code.

8. Discussion

Many of the patterns we found indicate that Unsafe is used to

achieve better performance or to implement functionality not

otherwise available in the Java language or standard library.

However, many of the patterns described can be imple-

mented using APIs already provided in the Java standard li-

brary. In addition, there are several existing proposals to im-

prove the situation with Unsafe already under development

within the Java community. Oracle software engineer Paul

Sandoz [28] performed a survey on the OpenJDK mailing

list to study how Unsafe is used26 and describes several of

these proposals.

A summary of the patterns with existing and proposed al-

ternatives to Unsafe is shown in Table 2. The table consists

of the following columns: The Pattern column indicates the

name of the pattern. The next three columns indicate whether

the pattern could be implemented either as a language fea-

ture (Lang), virtual machine extension (VM), or library ex-

tension (Lib). The Ref column indicates that the pattern can

be implemented using reflection. A bullet (•) indicates that

an alternative exists in the Java language or API. A check

mark (✓) indicates that there is a proposed alternative for

Java.

Many Java APIs already exist that provide functionality

similar to Unsafe. Indeed, these APIs are often implemented

using Unsafe under the hood, but they are designed to be

used safely. They maintain invariants or perform runtime

checks to ensure that their use of Unsafe is safe. Because

of this overhead, using Unsafe directly should in principle

provide better performance at the cost of safety.

For example, the java.util.concurrent package provides

classes for safely performing atomic operations on fields

and array elements, as well as several synchronizer classes.

These classes can be used instead of Unsafe to implement

atomic operations (Section 7.3) or strongly consistent shared

variables (Section 7.4). The standard library class java.-

util.concurrent.locks.LockSupport provides park and unpark

26 http://www.infoq.com/news/2014/02/Unsafe-Survey

706

Table 2. Patterns and their alternatives. A bullet (•) indi-

cates that an alternative exists in the Java language or API.

A check mark (✓) indicates that there is a proposed alterna-

tive for Java.
Pattern Lang VM Lib Ref

1 Allocate an Object

without Invoking a

Constructor

✓

2 Process Byte Arrays in

Block

✓

3 Atomic Operations •
4 Strongly Consistent

Shared Variables

✓

5 Park/Unpark Threads •
6 Update Final Fields •
7 Non-Lexically-Scoped

Monitors

✓

8 Serialization/Deserialization✓ • •
9 Foreign Data Access

and Object Marshaling

✓ •

10 Throw Checked Ex-

ceptions without Being

Declared

✓

11 Get the Size of an Ob-

ject or an Array

✓ ✓

12 Large Arrays and Off-

Heap Data Structures

✓ ✓

13 Get Memory Page Size ✓ ✓

14 Load Class without Se-

curity Checks

✓ ✓

methods to be used for implementing locks. These methods

are just thin wrappers around the sun.misc.Unsafe methods

of the same name and could be used to implement the park

pattern (Section 7.5). Java already supports serialization of

objects (Section 7.8) using the java.lang.Serializable and

java.io.ObjectOutputStream API. The now-deleted JEP 187

Serialization 2.0 proposal27 28 addresses some of the issues

with Java serialization.

Because volatile variable accesses compile to code that

issues memory fences, strongly consistent variables (Sec-

tion 7.4) can be implemented by accessing volatile variables.

However, the fences generated for volatile variables may be

stronger (and therefore less performant) than are needed for

a given application. Indeed, the Unsafe Put Ordered and

Fence methods were likely introduced to improve perfor-

mance versus volatile variables. There is currently a proposal

for enhanced volatile support in the JVM (JEP 193 Enhanced

Volatiles [15]). This proposal introduces variable handles,

which allow atomic operations on fields and array elements.

27 http://mail.openjdk.java.net/pipermail/core-libs-dev/

2014-January/024589.html

28 http://web.archive.org/web/20140702193924/http:

//openjdk.java.net/jeps/187

Many of the patterns can be implemented using the re-

flection API, albeit with lower performance than with Un-

safe [13]. For example, reflection can be used for accessing

object fields to implement serialization (Section 7.8). Simi-

larly, reflection can be used in combination with java.nio.Byte-

Buffer and related classes for data marshaling (Section 7.9).

The reflection API can also be used to write to final fields

(Section 7.6). However, this feature of the reflection API

makes sense only during deserialization or during object

construction and may have unpredictable behavior in other

cases.29 Writing a final field through reflection may not en-

sure the write becomes visible to other threads that might

have cached the final field, and it may not work correctly

at all if the VM performs compiler optimizations such as

constant propagation on final fields.

Many patterns use Unsafe to use memory more effi-

ciently. Using structs or packed objects can reduce memory

overhead by eliminating object headers and other per-object

overhead. Java has no native support for structs, but they can

be implemented with byte buffers or with JNI.30

The Arrays 2.0 proposal [26] and the value types pro-

posal [25] address the large arrays pattern (Section 7.12).

Project Sumatra [19] proposes features for accessing GPUs

and other accelerators, one of the use cases for foreign

data access (Section 7.9). Related proposals include JEP

191 [18], which proposes a new foreign function interface

for Java, and Project Panama [27], which supports native

data access from the JVM.

A sizeof feature could be introduced into the language

or into the standard library (Section 7.11). A use case for

this feature includes cache management implementations. A

higher level alternative might be to provide an API for mem-

ory usage tracking in the JVM. A page size (Section 7.13)

method could be added to the standard library, perhaps in

the java.nio package, which already includes MappedByte-

Buffer to access memory-mapped storage.

Other patterns may require Java language changes. For

instance, the language could be changed to not require meth-

ods to declare the exceptions they throw, obviating the need

for Unsafe (Section 7.10) in this case. Indeed, there is a long-

running debate31 about the software-engineering benefits of

checked exceptions. C#, for instance, does not require that

exceptions be declared in method signatures at all. One alter-

native not requiring a language change, proposed in a Stack

Overflow discussion, is to use Java generics instead.32 Be-

cause of type erasure, a checked exception can be coerced

unsafely into an unchecked exception and thrown.

29 http://docs.oracle.com/javase/8/docs/api/java/lang/

reflect/Field.html#set(java.lang.Object,\%20java.lang.

Object)

30 http://www.oracle.com/technetwork/java/

jvmls2013sciam-2013525.pdf

31 http://www.ibm.com/developerworks/library/j-jtp05254/

32 http://stackoverflow.com/questions/11410042

707

Changing the language to support allocation without con-

structors (Section 7.1) or non-lexically-scoped monitors

(Section 7.7) is feasible. However, implemention of these

features must be done carefully to ensure object invariants

are properly maintained. In particular, supporting arbitrary

unconstructed objects can require type system changes to

prevent usage of the object before initialization [22]. Limit-

ing the scope of this feature to support deserialization only

may be a good compromise and has been suggested in the

JEP 187 Serialization 2.0 proposal.

Since Unsafe is often used simply for performance rea-

sons, virtual machine optimizations can reduce the need for

Unsafe. For example, the JVM’s runtime compiler can be

extended with optimizations for vectorizing byte array ac-

cesses, eliminating the motivation to use Unsafe to process

byte arrays (Section 7.2). Many patterns use Unsafe to use

memory more efficiently. This could be ameliorated with

lower GC overhead. There are proposals for this, for instance

JEP 189 Shenandoah: Low Pause GC [5].

9. Related Work

Oracle software engineer Paul Sandoz performed some in-

formal analysis of Maven artifacts and usages in Grep-

code [29] and conducted a survey to study how Unsafe is

used [28]. The survey consists of 7 questions33 that help to

understand what pieces of sun.misc.Unsafe should be main-

streamed. We go beyond Sandoz’ work by performing a

comprehensive study of the Maven Central software reposi-

tory to analyze how and why sun.misc.Unsafe is being used.

In the remainder of this section we first describe the re-

lated work about mining software repositories to understand

a specific language feature. Then, we show where Unsafe fits

in the broader spectrum, i.e., how to do low-level coding in

a high level language.

9.1 Mining Repositories to Assess Language Features

Several researchers have mined software repositories with

the goal of analyzing and understanding if, how and when

certain programming language features are being used.

Dyer et. al. [6] studied the adoption of Java language

features over time. Richards et. al. [23] present an in-depth

study on the eval function in JavaScript. Mayer et. al. [16]

studied the impact of type systems on software development.

Callaú et. al. [4] performed an empirical study to assess how

much the dynamic and reflective features of Smalltalk are

actually used in practice. Holkner and Harland [12] did a

similar study on production-stage open source Python pro-

grams. Richards et. al. [24] also did a study on the dynamic

behavior but applied to JavaScript programs. Gorla et. al. [9]

mined a large set of Android applications, clustering appli-

cations by their description topics and identifying outliers

in each cluster with respect to their API usage. Grechanik et.

33 http://www.infoq.com/news/2014/02/Unsafe-Survey

al. [11] also mined large scale software repositories to obtain

several statistics on how source code is actually written.

9.2 High-Level Language Semantics for Low-Level

Coding

Oracle provides the sun.misc.Unsafe class for low-level pro-

gramming, e.g, synchronization primitives, direct memory

access methods, array manipulation and memory usage.

Although the sun.misc.Unsafe class is not officially docu-

mented, there is literature based on it.

Korland et. al. [13] presented a Java STM framework,

intended as a development platform for scalable concur-

rent applications and as a research tool for designing STM

algorithms. They chose to use sun.misc.Unsafe to imple-

ment fast reflection, as it proved to be vastly more efficient

than the standard Java reflection mechanisms. Pukall et.

al. [21] introduced a runtime update approach based on Java

that offers flexible dynamic software updates with minimal

performance overhead. They used the allocateInstance

method, because it eases the creation of instances even if the

class has no default constructor. Gligoric et. al. [8] proposed

a new approach to serialization/deserialization via code gen-

eration, using sun.misc.Unsafe to allocate instances and to

set the fields. The Jikes RVM [1] is a Java Virtual Machine

targeting researchers in runtime systems. It is a Java-in-Java

virtual machine because is itself built in Java, a style of

implementation termed meta-circular. The Jikes RVM pro-

vides an implementation of sun.misc.Unsafe with the magic

framework. Frampton et. al. [7] proposed org.vmmagic to

provide an escape hatch to low-level alternatives needed to

build virtual machines; however, they require compiler sup-

port.

10. Conclusions

sun.misc.Unsafe is an API that was designed for limited

use in system-level runtime library code. The Unsafe API is

powerful, but dangerous. The improper use of Unsafe under-

mines Java’s safety guarantees. We studied to what degree

Unsafe usage has spread into third-party libraries, to what

degree such third-party usage of Unsafe can impact exist-

ing Java code, and which Unsafe API features such third-

party libraries actually use. We studied the questions and

discussions developers have about Unsafe, and we identi-

fied common usage patterns. We thereby provided a basis for

evolving the Unsafe API, the Java language, and the JVM by

eliminating unused or abused unsafe features, and by provid-

ing safer alternatives for features that are used in meaningful

ways. We hope this will help to make Unsafe safer.

Acknowledgments

We thank the reviewers for their careful comments. Paul

Sandoz gave us many useful and encouraging comments.

Mastrangelo was supported by Swiss National Science

Foundation grant CRSII2 136225. Ponzanelli and Lanza

708

were supported by Swiss National Science Foundation

Project ESSENTIALS, No. 153129.

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,

P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-

ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The

Jikes Research Virtual Machine Project: Building an Open-

source Research Community. IBM Syst. J., 44(2):399–417,

January 2005.

[2] Alberto Bacchelli, Anthony Cleve, Michele Lanza, and An-

drea Mocci. Extracting structured data from natural lan-

guage documents with island parsing. In Proceedings of ASE

2011 (26th IEEE/ACM International Conference On Auto-

mated Software Engineering), pages 476–479, 2011.

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time

garbage collector with low overhead and consistent utiliza-

tion. In Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL

’03, pages 285–298, New York, NY, USA, 2003. ACM.

[4] Oscar Callaú, Romain Robbes, Éric Tanter, and David

Röthlisberger. How developers use the dynamic features of

programming languages: The case of Smalltalk. In Pro-

ceedings of the 8th Working Conference on Mining Software

Repositories, MSR ’11, pages 23–32, New York, NY, USA,

2011. ACM.

[5] Roman Kennke Christine H. Flood. JEP 189: Shenan-

doah: An Ultra-Low-Pause-Time Garbage Collector. http:

//openjdk.java.net/jeps/189, 2014.

[6] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N.

Nguyen. Mining billions of AST nodes to study actual and

potential usage of Java language features. In 36th Interna-

tional Conference on Software Engineering, ICSE’14, pages

779–790, June 2014.

[7] Daniel Frampton, Stephen M. Blackburn, Perry Cheng,

Robin J. Garner, David Grove, J. Eliot B. Moss, and

Sergey I. Salishev. Demystifying Magic: High-level Low-

level Programming. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execu-

tion Environments, VEE ’09, pages 81–90, New York, NY,

USA, 2009. ACM.

[8] Milos Gligoric, Darko Marinov, and Sam Kamin. CoDeSe:

Fast Deserialization via Code Generation. In Proceedings of

the 2011 International Symposium on Software Testing and

Analysis, ISSTA ’11, pages 298–308, New York, NY, USA,

2011. ACM.

[9] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and An-

dreas Zeller. Checking app behavior against app descriptions.

In Proceedings of the 36th International Conference on Soft-

ware Engineering, ICSE 2014, pages 1025–1035, New York,

NY, USA, 2014. ACM.

[10] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and

Alex Buckley. The Java Language Specification, Java SE 7

Edition. Addison-Wesley Professional, 2013.

[11] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco

Comi, Stefano Crespi, Denys Poshyvanyk, Chen Fu, Qing

Xie, and Carlo Ghezzi. An empirical investigation into a large-

scale Java open source code repository. In Proceedings of

the 2010 ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, ESEM ’10, pages

11:1–11:10, New York, NY, USA, 2010. ACM.

[12] Alex Holkner and James Harland. Evaluating the dynamic be-

haviour of Python applications. In Proceedings of the Thirty-

Second Australasian Conference on Computer Science - Vol-

ume 91, ACSC ’09, pages 19–28, Darlinghurst, Australia,

Australia, 2009. Australian Computer Society, Inc.

[13] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive

Concurrency with Java STM. In Communications of the ACM,

Invited Review Paper, page 19 pages, 2010.

[14] Eugene Kuleshov. Using the ASM framework to implement

common Java bytecode transformation patterns. In Confer-

ence on Aspect Oriented Software Development (AOSD): In-

dustry Track, 2007.

[15] Doug Lea. JEP 193: Enhanced Volatiles. http://openjdk.

java.net/jeps/193, 2014.

[16] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric

Tanter, and Andreas Stefik. An empirical study of the influ-

ence of static type systems on the usability of undocumented

software. In Proceedings of the ACM International Confer-

ence on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’12, pages 683–702, New York,

NY, USA, 2012. ACM.

[17] Leon Moonen. Generating robust parsers using island gram-

mars. In Proceedings of WCRE 2001 (8th Working Conference

on Reverse Engineering), pages 13–22. IEEE CS, 2001.

[18] Charles Oliver Nutter. JEP 191: Foreign Function Interface.

http://openjdk.java.net/jeps/191, 2014.

[19] OpenJDK. Project Sumatra. http://openjdk.java.net/

projects/sumatra/, 2013.

[20] Luca Ponzanelli, Andrea Mocci, and Michele Lanza.

StORMeD: Stack Overflow ready made data. In Proceedings

of MSR 2015 (12th Working Conference on Mining Software

Repositories), page to be published. ACM Press, 2015.

[21] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian

Götz, Alexander Grebhahn, Reimar Schröter, and Gunter

Saake. JavAdaptor-Flexible runtime updates of Java appli-

cations. Software: Practice and Experience, 43(2):153–185,

2013.

[22] Xin Qi and Andrew C. Myers. Masked types for sound ob-

ject initialization. In Proceedings of the 36th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’09, pages 53–65, New York, NY,

USA, 2009. ACM.

[23] Gregor Richards, Christian Hammer, Brian Burg, and Jan

Vitek. The eval that men do: A large-scale study of the

use of eval in JavaScript applications. In Proceedings of the

25th European Conference on Object-oriented Programming,

ECOOP’11, pages 52–78, Berlin, Heidelberg, 2011. Springer-

Verlag.

[24] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan

Vitek. An analysis of the dynamic behavior of JavaScript pro-

grams. In Proceedings of the 2010 ACM SIGPLAN Confer-

709

ence on Programming Language Design and Implementation,

PLDI ’10, pages 1–12, New York, NY, USA, 2010. ACM.

[25] John Rose, Brian Goetz, and Guy Steele. State of the Val-

ues. http://cr.openjdk.java.net/˜jrose/values/

values-0.html, 2014.

[26] John R. Rose. Arrays 2.0. http://cr.openjdk.java.net/

˜jrose/pres/201207-Arrays-2.pdf, 2012.

[27] John R. Rose. The isthmus in the VM. https://blogs.

oracle.com/jrose/entry/the_isthmus_in_the_vm,

2014.

[28] Paul Sandoz. Safety not guaranteed:

sun.misc.Unsafe and the quest for safe alterna-

tives. http://cr.openjdk.java.net/˜psandoz/

dv14-uk-paul-sandoz-unsafe-the-situation.pdf,

2014. Oracle Inc. [Online; accessed 29-January-2015].

[29] Paul Sandoz. Personal communication, 2015.

[30] Fridtjof Siebert. Eliminating external fragmentation in a non-

moving garbage collector for Java. In Proceedings of the

2000 International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems, CASES ’00, pages 9–

17, New York, NY, USA, 2000. ACM.

710

