
Use Case-based Testing of Product Lines
Antonia Bertolino

ISTI-CNR
Area della Ricerca di Pisa

via Moruzzi, 1, 56124, Pisa, Italy
+39 050 3152914

antonia.bertolino@isti.cnr.it

Stefania Gnesi
ISTI-CNR

Area della Ricerca di Pisa
via Moruzzi, 1, 56124, Pisa, Italy

+39 050 3152918

stefania.gnesi@isti.cnr.it

ABSTRACT
This paper presents PLUTO, a simple and intuitive methodology
to manage the testing process of product lines, described as
Product Lines Use Cases (PLUCs). PLUCs are an extension of the
well-known Cockburn’s Use Cases, a notation based on natural
language descriptions of requirements. The proposed test
methodology is based on the Category Partition method, and can
be used to derive a generic Test Specification for the product line,
and a set of relevant test scenarios for a customer specific
application.

Categories and Subject Descriptors
D.2.1 [Software]: Requirements/Specifications. D.2.5
[Software]: Testing and Debugging - Testing tools (e.g., data
generators, coverage testing).

General Terms
Verification.

Keywords
Product Lines, Use Cases, Black box testing.

1. INTRODUCTION
World’s leading manufacturers of software-intensive systems,
such as Philips, Alcatel, Siemens, Nokia, just to name a few, have
timely recognized the need to introduce a rational policy of
product family production, to manage the proliferation of variants
and local customizations of mass marketed products.

Applications sharing similar functionality and user requirements
form what is called a product family or a product line (PL) [6],
[5]. The huge patrimony of processes, patterns, models, artifacts,
interfaces, etc., pertaining to a general production line of a
company, for instance a digital switching system, or a mobile cell
phone, constitute the assets of a family, and are organized into a
structured repository. To develop new products of the family,
components are selected from the repository and integrated.
Differently from conventional single product development, the

definition process of a customer specific application hence is
influenced not only by the customer requirements, but also by the
capabilities of the product line. Consequently, more sophisticated
requirement analysis and processing methods are needed.
Following the PL Process Reference Model defined in the CAFÉ
project [6], product line development is characterized by two
correlated processes: Domain engineering and Application
engineering. Domain engineering is the process aiming at
developing the general concept of a product line together with all
the assets that are common to the whole product line, whereas
Application engineering is the process aiming at designing a
specific product of the family and eventually produces a customer
specific application as in a traditional process.
The most evident and perhaps most urging question in this
process is how to handle and represent variability [4]. Behind the
many commonalities, product family instances in fact necessarily
yield variable features, because these constitute precisely what
allows for achieving different variants and customized
applications. This challenge is reflected in the large attention that
specification of product family requirements has drawn in the
literature, e.g., [1], [3].
Little attention has been devoted instead to a closely related
problem that is how to test product families. It is now well
recognized that testing takes a predominant amount of
development resources and schedule. Therefore, also reuse of test
assets is a crucial issue in production processes. In the same
manner that a product family specification and design must tackle
variability, this need applies for testing as well.

In this view, we propose a simple and quite intuitive methodology
to manage the testing process of product lines, based on the
requirements expressed in the well-known formalism of Use
Cases [2]. In the next section we introduce the notation adopted
for expressing PL requirements: we extend Use Cases to PLUCs.
In Section 3 we present our test approach called the PLUTO
methodology. Conclusions are drawn in Section 4.

2. USE CASES FOR PRODUCT FAMILIES
Use Cases are a powerful tool to capture functional requirements.
They provide a means to specify the interaction between a certain
software system and its environment and allow for structuring
requirements according to the user goals.
An effective and widely used technique for specifying Use Cases
was presented by Cockburn in [2]. The technique is based on
natural language specification for scenarios and their extensions,
which makes requirements documents easy to understand and
communicate, even to non-technical people.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

355

In [1] we have presented an extension of Cockburn’s Use Cases to
deal with specifications of PL requirements, called the PLUCs
(Product Line Use Cases). PLUCs allow variations to be
described, by explicitly enclosing into the sections of the Use
Cases some tags that indicate the variable parts of the PL
requirements.

More specifically, the tags can represent three kinds of variability:
Alternative, Parametric, and Optional.
1. Alternative tags: they express the possibility to
instantiate the requirement by selecting an instance among a
predefined set of possible choices. The selection is independent
from other variation points;
2. Parametric tags: their instantiation is connected to the
actual value of a parameter in the requirements for the specific
product, each of them depending on the occurrence of a condition;
3. Optional tags: their instantiation can be done by
selecting indifferently among a set of values, which are optional
features for a derived product.
We observe that in PL specifications, some functional
requirements bypass the modeling capabilities of the simple
formalism of PLUCs and can span across several Use Cases. We
could refer to them as cross-cutting features. When a scenario in a
PLUC interacts with a scenario in another PLUC, we introduce a
textual note like "see UC name" that allows elements of different
Use cases to be related with one another.
An example of a PLUC is presented in Figure 1. We propose the
description of the GamePlay Use Case applicable to different
mobile phones belonging to a same PL. We assume that the
products differ at least for the set of games made available to the
user and for the provision or not of WAP connectivity.
Curly brackets are introduced into the Use Case elements, and
tags (here [Vo], [V1], and [V2]) indicate the variation points within
the Use Case. Moreover, the possible instantiations of the variable
parts and the type of the variations are defined within the
Variations section of the PLUC.

3. TESTING OF PRODUCT FAMILIES
In this section we illustrate the methodology that we propose for
planning and managing the tests cases of a PL. We call it PLUTO,
which stands for Product Line Use Case Test Optimisation.
As identified in [4], the phase in which the majority of variation
points are introduced is the requirement specification phase.
Accordingly, we believe that planning ahead for testing within the
Application engineering process must start from the product
requirements: this is why we attack the problem of PL testing
based on the requirements specifications.
To develop the PLUTO approach we refer to the Category
Partition (CP) method, which is a well-known and quite intuitive
black-box test approach proposed in the late eighties [7]. CP was
originally conceived as a stepwise methodology to derive a suite
of functional tests from the specifications written in structured,
semiformal language. We find that the method lends itself quite
naturally to application for test derivation from the requirements
expressed as Use Cases, but of course it must be extended to
tackle PL variabilities.

The first step of the CP method is to analyse the functional
requirements to identify the “functional units” that can be
separately tested. In the original CP method, a functional unit can
be a high-level function or a procedure of the implemented
system. In our case, we separately consider each PLUC.

For each functional unit (here PLUC), the tester identifies the
environment conditions (the required system properties for a
certain functional unit) and the parameters (the explicit inputs for
the unit) that are relevant for testing purposes: these are called the
categories. For each category, the significant (from the tester’s
viewpoint) values that it can take are then selected, that in CP are
called the choices. A suite of test cases is obtained by taking all
the possible combinations of choices for all the categories.

PL USE CASE GamePlay

Goal: Play a game on a [Vo] Mobile Phone and record score

Scope: The [Vo] Mobile Phone
Level: Summary

Precondition: The [Vo] Mobile Phone is on

Trigger: Function GAMES has been selected from the main menu

Primary actor : The Mobile Phone user
Secondary actors: The {[V0] Mobile Phone} (the system)
 The Mobile Phone Company

Main success scenario

 1. The system displays the list of the {[V1] available}
games
2. The user selects a game
3. The user selects the difficulty level
4. The user starts the game and plays it until completion
5: The user records the score achieved {[V2] and sends the

 score to Club XXX via WAP}

Extensions
1a. No game is available:
 1a1. return to main menu
3a. The user starts the game and plays it until an incoming

 call arrives. See CallAnswer.

Variations
V0: Alternative:
 0. Model0
 1. Model1
 2. Model2
V1: Parametric
if V0=0 then display msg “No game available”

else if V0=1 then Snakell or Space Impact
else if V0=2 then Snakell or Space Impact or Bumper.

V2: Optional
when V0=2

Figure 1. Example of a Use Case in the PLUC notation
To prevent the construction of redundant, not meaningful or even
contradictory combinations of choices, the choices can be
annotated with constraints, which can be of two types: i) either
properties or ii) special conditions. In the first case, some
properties are set for certain choices, and selector expressions
related with them (in the form of simple IF conditions) are

356

associated with other choices: a choice marked with an IF selector
can then be combined only with those choices from other
categories that fulfill the related property.

The second type of constraints is useful to reduce the number of
test cases: some markings, namely “error” and “single”, are
coupled to some choices. The choices marked with “error” and
“single” refer to erroneous or special conditions, respectively, that
we intend to test, but that have not to be combined with all
possible choices.

The list of all the choices identified for each category, with the
possible addition of the constraints, is called the Test
Specification. It is not yet a list of test cases, but contains all the
necessary information for instantiating them by unfolding the
constraints.

In PLUCs, we use the variation tags similarly to the original
notion of CP property constraints, i.e., in the Test Specification
we associate the variability tags to the corresponding choices;
then, in the process of test derivation we instantiate the tag values
so to establish the combinations that are relevant with respect to a
customer specific application.

Another characteristic of test cases derived from Use Cases is the
presence of several scenarios, i.e., the main success scenario and
in addition the possible extensions. Of course all of them must be
exercised during testing. Therefore the Test Specification of
PLUCs will normally include a category “Scenarios”, in which the
main scenario and all the specified extensions are listed.

For illustration purposes, we now apply the Pluto approach to the
GamePlay PLUC in Figure 1. As a first step, from an analysis of it
we identify, for instance, the following Categories: “Mobile
Phone Model”, “Games”, “Difficulty Level”, “Scenarios”, “Club”.
Then we proceed with partitioning these categories into the
relevant choices, i.e., we single out for each of the categories the
values that are the relevant cases to be considered in specific tests.
The complete Test Specification is shown in Figure 2.
When applying the CP method to PLs, in general we will have
that some of the choices will be available for all the products of
the family. On the other hand, some of the categories are
specialized into choices that depend on the specific product
considered. For instance, the category “Club”, which relates to the
capability to exchange the achieved game score with other Club
affiliates, is relevant only for those models that support WAP
connection. Hence it cannot be tested for any potential
applications of the family, but only for those supporting this
feature. This is specified in the GamePlay PLUC by means of the
V2 optional tag. Hence, when the test cases are being derived, we
make use of this tag similarly to the “constraint” formalism of the
CP method. As shown in Figure 2, we derive the possible choices
pertaining to the “Club” category, but we annotate them with the
appropriate selector, which is a simple IF condition stating that
these choices are of interest only when property P2 is satisfied
(which happens for Model2).
If we now apply to this test specification a generator which takes
out all the possible combinations of choices, we would obtain a
list of test cases, which correspond to the whole PL. This list
would in fact include all the potential test cases for all the
products of the family relative to the PLUC under consideration.
However, what is more interesting in our opinion, is that we can

instead derive directly the list of tests for a specific product of
interest. This is obtained very easily by just instantiating the
relative tags. So, for instance, if we are interested to test the
Model2 product of this family, we set property P2 to true and
derive all and only the combinations that remain valid.

PLUC GAMEPLAY TEST SPECIFICATION
[V0]: Mobile Phone Model:
0. Model0 [Property P0]
1. Model1
2. Model2 [Property P2]

Games:
None [if P0]
Snakell [if NOT P0]
Space Impact [if NOT P0]
Bumper [if NOT P0] [if P2]

Difficulty Level: [if NOT P0]
easy
medium
expert

Scenarios:
Main [if NOT P0]
ext: no game available [if P0]
ext: a call arrives see CallAnswer [single]

[V2]: Club:
 WAP connection on [if P2]

WAP connection off [if P2]
Figure 2. Main Test Categories for the GamePlay PLUC
As an example, we list below in Figure 3, some of the test cases
that would be so obtained for different products, i.e., for different
tag assignments. We show these as abstract descriptions and leave
to the reader the obvious transformation of these into the
corresponding functional test scenarios.
In Figure 3, the test cases Ti, Tj1, Tj2 all refer to a simpler
situation in which the features in a PLUC do not depend on the
features of another PLUC. Test Tk instead needs further
consideration. It considers the choice “a call arrives” of the
Scenarios category, which has a specific “see CallAnswer”
annotation. This is an example of a cross-cutting feature, whose
notion we have introduced in Sect. 2. We now see how this can be
handled in the Pluto methodology.
When considering the repository of all Use Cases specified for a
PL, it will often be the case that some scenarios in a Use Case
depend on other scenarios in another Use Case, because of the
presence of cross-cutting features. Referring to the example used
so far, let us suppose that the Mobile Phone PL under
consideration provides for some applications the capability to
save the current status of a game being played in the case that an
incoming call arrives. The user may answer or refuse the call.
Then, after the communication is closed, the game can be resumed
from the status in which it was interrupted.
This case depicts a cross-cutting feature arising from a functional
dependency between the GamePlay PLUC and another Use Case
that describes the handling of incoming calls (the CallAnswer
PLUC, not showed here for size limitations and referred in Figure
1). Also for this Use Case a list of test scenarios could be derived,
similarly to what we have done for GamePlay.

357

Tag V0=0
Ti:
Mobile Phone Model: Model 0
Games: None
Scenarios: ext: no game available

……..

Tag V0=2

Tj1:
Mobile Phone Model: Model 2
Games: Snakell
Difficulty Level: easy
Scenarios: main
Club: WAP connection on

Tj2:
Mobile Phone Model: Model 2
Games: Bumper
Difficulty Level: expert
Scenarios: main
Club: WAP connection on

……..

Tk:
Mobile Phone Model: Model 1
Games: Space Impact
Difficulty Level: medium
Scenarios: ext: a call arrives - see CallAnswer

Figure 3. Some Test Scenarios
It is clear however that the two PLUCs GamePlay and CallAnswer
are related with respect to the possibility to interrupt and then
retrieve a game play because a call arrives. To identify that a
dependency exists, as said, when we elicited the Use Cases we
have annotated the related scenario in the GamePlay PLUC with
the note “See CallAnswer”.
Correspondingly, in the process of deriving the test cases from the
GamePlay Test Specification (see Figure 2) the case that a call
arrives is contemplated in all those tests in which for the
“Scenarios” category the choice “ext: a call arrives” is taken. In
Figure 3 the test case Tk for instance selects this choice.
This test is not yet complete: it must be further refined into several
related test cases, considering each of the possible combinations
of choices offered in its turn by the CallAnswer Test
Specification.
More in general, whenever a test specification includes a directive
“See another PLUC”, the derivation of test cases is made by
combining the relevant choices from the two related PLUCs. Note
that the annotation is made in the PLUC that triggers the test
cases, in our example the GamePlay PLUC.

4. CONCLUSIONS AND FUTURE WORK
The production process in product lines is usually organized with
the purpose of maximizing the commonalities of the product
family and minimizing the cost of variations. Much work has been
done in this direction for the requirement engineering phase of
product lines. On the contrary, how to deal with the testing phase
of a product line is still a neglected research topic.

In this paper, we have proposed the PLUTO methodology for PL
testing, that is inspired by the Category Partition method, but
expands it with the capability to handle PL variabilities and to
instantiate test cases for a specific customer product. As our
approach is based on structured, natural language requirements,
the test derivation has to be done partially manually. In particular,
the identification of relevant Categories and of the Choices to be
tested is left to the tester’s judgment, and this is natural. However,
lexical and syntactical analyzers for natural language requirements
could be used to extract useful information to identify the relevant
Categories.

With regard to the derivation of the test cases from the Test
Specification, instead, this task can be easily automated, and we
are currently working at a PLUTO tool implementation. We plan
also to investigate the integration of some of the available
lexical/syntactical analyzers in the PLUTO tool to further
automate the test generation process.

The work is clearly a first step towards a more comprehensive
testing strategy for PLs. On the other hand, the topic of PL testing
is complex and relatively new, and therefore this paper is also
intended as a contribution to trigger further research.

5. ACKNOWLEDGMENTS
This work was partially supported by the Eureka Σ!2023
Programme, ITEA (ip00004, Project CAFÉ).

6. REFERENCES
[1] Bertolino, A., Fantechi, A., Gnesi, S., Lami, G. and Maccari,,

A., Use Case Description of Requirements for Product Lines.
REPL’02, Essen, Germany, Avaya Labs Technical Report
ALR-2002-033, September 2002.

[2] Cockburn, A., Writing Effective Use Cases. Addison Wesley,
2001.

[3] Halmans, G., and Pohl, K., Communicating the Variability of
a Software-Product Family to Customers. Journal of
Software and Systems Modeling 2, 1 (2003), 15-36.

[4] Jaring, M., and Bosch, J., Representing Variability in
Software Product Lines: A Case Study. In Chastek G. J.
(Ed.): Proc. Software Product Lines, 2nd Int. Conf, SPLC 2,
San Diego, CA, USA, August 19-22, 2002, LNCS 2379, 15-
36.

[5] Jazayeri, M., Ran, A., and van der Linden, F., Software
Architecture for Product Families: Principles and Practice.
Publishers: Addison-Wesley, Reading, Mass. and London,
1998.

[6] van der Linden, F., Software Product Families in Europe:
The ESAPS & Café Projects. IEEE Software (July/August
2002), 41-49.

[7] Ostrand, T.J., and Balcer, M.J., The Category Partition
Method For Specifying and Generating Functional Tests.
ACM Comm. 31 (6), June 1988, 676-686.

358

