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Metabolomics is a widely used technology in academic research, yet its application to reg-

ulatory science has been limited. The most commonly cited barrier to its translation is lack of

performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology

(MERIT) project brings together international experts from multiple sectors to address this

need. Here, we identify the most relevant applications for metabolomics in regulatory

toxicology and develop best practice guidelines, performance and reporting standards for

acquiring and analysing untargeted metabolomics and targeted metabolite data. We

recommend that these guidelines are evaluated and implemented for several regulatory

use cases.

D
uring the last two decades metabolomics (also referred to as metabonomics, metabolic
phenotyping and metabolic profiling) has become a mature technology in academic
research, particularly within the biomedical and plant sciences, resulting in many

thousands of research publications. While this approach has increased our understanding of the
mode(s) and mechanism(s) of action of toxicity in human and environmental health1, its
application to regulatory toxicology has been limited to date2,3. Although many scientists believe
that this underutilisation is due to a lack of interest by the regulators working in chemical safety,
this is in fact not the case. Indeed, considerable interest has been shown by regulatory scientists
from the industrial chemical and food safety sectors4–6 who acknowledge the primary strengths
of metabolomics: first, as a tool to help discover toxicological pathways and molecular key events
(KEs), which could then be applied to a range of regulatory needs in predictive toxicology such
as chemical grouping and read-across7, including the potential to discover these effects in early
life-stage (e.g. fish embryos) as a non-animal alternative testing strategy; and, secondly, to
provide a direct and functional measure of a cell’s or organism’s phenotype at the molecular
level, which could be causally associated with an adverse outcome in the adverse outcome
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pathway (AOP) framework8. A third application for metabo-
lomics in regulatory toxicology is its relatively unexplored use in
toxicokinetics, to measure the levels of an exposure chemical and
to discover any metabolic biotransformation products9,10.

Given these strengths—the first of which is shared by the
complementary approaches of transcriptomics and proteomics,
while the latter two are unique to metabolomics—why hasn’t
metabolomics advanced into regulatory toxicology? Some of the
reasons include a sparsity of robust case studies, a relative lack of
training opportunities, and limited accessibility to the analytical
and computational tools required. However, the most commonly
cited roadblock to the translation of metabolomics into regulatory
toxicology is the lack of best practice guidelines, including both
performance standards and minimal reporting standards. For
example, at the European Chemical Agency’s New Approach
Methodologies (NAM) workshop in 2016, it was concluded that
“There are a number of R&D needs, including a database to
support metabolomics, standardisation, validation and reporting
formats”4. While not anticipated to revolutionise the uptake of
this technology into the regulatory sciences, the development of
best practice guidelines that build on earlier standardisation
efforts11 is expected to accelerate the use of metabolomics to
improve the safety assessment of chemicals.

AIM
This publication aims to describe the most relevant best prac-
tice guidelines, method performance standards, and minimal
reporting standards for the acquisition, processing and statis-
tical analysis of metabolomics data within the context of reg-
ulatory toxicology. This document has been developed as part
of the MEtabolomics standaRds Initiative in Toxicology
(MERIT) project. Specifically, we aim to provide regulators and
other stakeholders with the first practical guidelines for inter-
preting the quality of metabolomics data. To facilitate this, we
have considered the most immediate potential applications for
metabolomics in regulatory toxicology and used these as a
foundation for the development of the standards. We recognise
that technologies evolve, as do regulatory needs, hence we
regard this publication as a living document that will require
version-controlled refinements in the future. Furthermore, the
document provides a basis for the development of an interna-
tional OECD guidance document and reporting template: the
OECD Metabolomics Reporting Framework (MRF), initiated
in 2018.

Related standards initiatives
The guidance presented here draws considerably upon a range of
best practice and minimal reporting standards that the metabo-
lomics community has been developing for over a decade. Those
significant contributions are acknowledged here, primarily the
efforts in 2007 by the international Metabolomics Standards
Initiative (MSI) that published ten papers introducing and
describing the MSI and reporting requirements for a wide range
of biological, biomedical and environmental studies, including for
chemical analysis, data analysis and ontologies11–20. More
recently, the need to continuously update these standards and for
the metabolomics community to more rigorously adopt the
guidelines has been highlighted21. The need for quality assurance
in the application of metabolomics to toxicology was the topic of
a workshop jointly organised by the Johns Hopkins Center for
Alternatives to Animal Testing (CAAT) and the NIH Human
Toxome project in 201322. Regarding current activities, the
MERIT project is coordinating with the recently formed meta-
bolomics Quality Assurance and quality Control Consortium
(mQACC https://epi.grants.cancer.gov/Consortia/mQACC23) in

the writing of this document; mQACC was recently formed,
following an NIH sponsored meeting in 2017 to address QA/QC
issues in metabolomics. While that group’s focus is pre-
dominantly biomedical, the underlying requirements for QA/QC
are similar to those required in regulatory toxicology. Through
the significant momentum achieved through standards develop-
ment in the related fields of transcriptomics24–27, RNA sequen-
cing28 and proteomics (e.g. Proteomics Standards Initiative29), as
well as by the MERIT project, the OECD Extended Advisory
Group on Molecular Screening and Toxicogenomics (EAGMST)
has recently launched a project to develop Omics Reporting
Frameworks specifically for the purposes of regulatory toxicology.
The metabolomics guidelines in MERIT are being developed in
coordination with the OECD expert groups developing both the
OECD Transcriptomics Reporting Framework30 and Metabo-
lomics Reporting Framework.

SCOPE
The MERIT project and this guideline publication focus on reg-
ulatory toxicology, hence on the application of the most mature,
stable and proven metabolomics technologies only. Research
studies in metabolomics, typically in academia, utilise a much
broader array of analytical technologies and bioinformatic
approaches to answer diverse questions; we are not explicitly
proposing these guidelines for metabolomics research projects
(although many aspects of the guidelines are in fact applicable
and their application would surely benefit the quality of meta-
bolomics research). While future applications of metabolomics
can be envisioned across a wide range of regulatory practice, here
we outline metabolomics case studies in substance safety for
industrial chemicals and biocides, with relevant legislation
including the European Union’s Registration, Evaluation,
Authorisation & restriction of CHemicals (REACH) and Biocidal
Products Regulation (BPR), and the United States’ Toxic Sub-
stances Control Act (TSCA). Parts of the MERIT best practice,
performance standards and reporting standards will also be
applicable to drug toxicology, which is currently being discussed
by mQACC. As a further consideration of the scope of MERIT,
we have focused on the development of the guidelines and not yet
on their actual implementation; i.e., we have not created and
implemented a database schema for the minimal reporting
standards. This is an important future task and one that can be
addressed by developing an OECD Harmonised Reporting
Template (OHT; https://www.oecd.org/ehs/templates) for meta-
bolomics, building on the new OECD Metabolomics Reporting
Framework project.

Considering the scope of this guideline, we have focused
specifically on the applications of untargeted metabolomics and
targeted metabolite analysis in regulatory toxicology, not on the
development of methods (Fig. 1 and Table 1). While untargeted
metabolomics aims to achieve broad metabolite profiling of a
given sample, targeted metabolomics aims to quantify a small
number of pre-selected metabolites, e.g. the study of fatty acid
biosynthesis. We also include the application of semi-targeted
metabolomics to regulatory toxicology, a hybrid approach that
combines untargeted and targeted analyses (Table 1). As
recognised within the metabolomics research community,
untargeted and targeted approaches can be strongly related,
with discovery driven (or hypothesis generating) untargeted
metabolomics naturally translating into targeted (or hypothesis
testing) metabolite assays for downstream utilisation. However,
this translation requires extensive analytical development and
validation as well as biological validation of the targeted bio-
markers, which is outside of the scope of the MERIT project
(Fig. 1).
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Apply untargeted metabolomics

• Predominantly discovery science, e.g. applied to

discover MoA/metabolic key events in AOPs

• Extensive bioinformatics

• Regulatory standards do not currently exist

Develop targeted metabolite analysis

• Driven by findings from untargeted datasets

• Requires analytical validation of method

• Requires biological validations of metabolic key

events

Apply targeted metabolite analysis

• Defined context of use

• Defined analytical method and data analysis

•

MERIT

Regulatory standards exist in related fields, e.g. drug

analyses, providing starting point for MERIT

x

Included in MERIT
guidelines

Beyond scope of
MERIT guidelines

Included in MERIT
guidelines

Fig. 1 Types of metabolite analyses in regulatory toxicology and scope of the MERIT project. Dotted arrow indicates potential translation of knowledge from

untargeted to targeted assays, although targeted assays can be developed and applied without an initial metabolomics study

Table 1 Definitions of key terms used in the best practice guidelines and reporting standards

Term MERIT definition

Metabolomics Systematic study of endogenous metabolites and the biochemical processes that they are involved in, within

a cell, tissue, or organism.

Endogenous metabolite Precursor, intermediate, or a product of metabolic biochemical reaction, produced by the host cell or

organism.

Untargeted toxicokinetics Measurement of the absorption, distribution, metabolic biotransformation, and/or excretion of a chemical

specifically as part of an untargeted metabolomics toxicity study.

Untargeted Analytical assay in which the analytes are not predefined and are typically unidentified during initial data

acquisition. The approach attempts to measure the broadest range of endogenous metabolites possible. The

assay is semi-quantitative.

Targeted Analytical assay in which the analytes are predefined and identified to MSI level 1 (see supplementary note

11). The assay can be quantitative or semi-quantitative.

Semi-targeted An assay which combines both targeted and untargeted approaches. Some analytes will comprise a targeted

panel (identified to MSI level 1), but the remaining data is acquired and treated as untargeted. The approach

attempts to measure the broadest range of endogenous metabolites possible. The assay is at least semi-

quantitative.

Semi-quantitative An assay in which only relative amounts of each analyte can be compared—e.g. a given analyte may be

twice the concentration in one sample than another, though the absolute concentrations are not known.

Quantitative An assay resulting in absolute concentration information for each analyte (e.g. in M or μg/L).

Quality assurance A set of procedures that are done in advance of analysis and that are used to improve the quality of data.

Quality control (QC) A set of activities that a laboratory does during or immediately after analysis that are meant to demonstrate

the quality of project data.

System suitability QC QC sample type used to demonstrate the analytical system is fit for purpose and working within

specification.

Intrastudy QC (previously termed

pooled QC)

QC sample type used within one study with multiple purposes, primarily to assess (and potentially correct

for) intrastudy reproducibility.

Intralab QC QC sample type used within one laboratory to assess (and potentially correct for) any differences between

separate studies.

Interlab QC QC sample type used across multiple laboratories to assess (and potentially correct for) any differences

between laboratories.

Process blank QC sample type used to measure any interfering signals (i.e. contaminants) that may arise from the

‘process’, e.g. extraction, such that these contaminant signals can be removed from a dataset.
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Participants
The MERIT project brought together a team of international
experts from industry, government agencies, regulators and aca-
demia from across Europe and the United States, including the US
Environmental Protection Agency, US Food and Drug Adminis-
tration, UK Health and Safety Executive, BASF, Imperial College
London, University of Birmingham, VU University Amsterdam,
The Francis Crick Institute, and the Metabolomics Society Data
Standards Task Group. Following the development of a draft
guidance document by the core team, it was opened to interna-
tional consultation (again including a wide range of stakeholders).

Scenarios for regulatory application of metabolomics
As introduced above, while many scientists and regulators have
recognised the considerable potential value of metabolomics in
regulatory toxicology, there are still relatively few (publicly
available) examples of metabolomics addressing specific reg-
ulatory questions. Over the last decade, industry has taken a lead
in demonstrating the value of metabolomics31–35, particularly to
extend the concept of chemical grouping from one based on the
similarity of chemical structures to being based on the similarity
of metabolic signatures from mass spectrometry-based metabo-
lomics studies. While these advances are promising, as was
highlighted at the European Chemical Agency NAM workshop in
20164, the sparsity of detailed metabolomics case studies in reg-
ulatory toxicology led the MERIT project to two conclusions:
first, that this publication should review the most immediate
applications for metabolomics in regulatory toxicology, and sec-
ond that it should define best practice guidelines and perfor-
mance standards that can cover a range of immediate and future
case studies. Below we introduce four of the most likely regulatory
scenarios for metabolomics in toxicology, providing an anchor for
the standards development (Fig. 2).

Scenario 1: Deriving points of departure via benchmark dos-
ing. To ensure public safety and environmental quality,

regulatory agencies are required by law to undertake safety
assessments of potential hazards36. The identification of a refer-
ence point (RP), also known as a point of departure (POD), is
common to all risk assessments of chemicals with threshold
effects. A RP/POD is defined as the point on a toxicological
dose–response curve established from experimental data that
corresponds to an estimated no effect or low effect level, which
ultimately is used to derive a toxicological reference dose. The
benchmark dose (BMD) approach fits a dose–response model(s)
to the complete dose–response dataset to derive a RP/POD for
risk assessment37–39. This response could be adverse or not,
depending on its association with an apical endpoint. Although
not yet applied to metabolomics data, BMD has successfully been
applied to rodent transcriptomics data allowing a comprehensive
survey of the transcriptional changes associated with chemical
exposure as well as estimating reference doses at which some
cellular processes are altered40,41. The derivation of a POD by
applying the BMD approach to metabolomics dose–response data
has the potential to be adopted in chemical risk assessment,
because of the generic utility of RP/PODs in current regulatory
practice5 and the close association of metabolic phenotypes with
regulatory apical endpoints42,43. This latter point is particularly
noteworthy and offers a benefit to metabolomics that is not
shared, for example by transcriptomics, although care would be
needed to interpret a metabolic POD as adverse or not. Mea-
surement of a metabolic POD could also be used for prioritisa-
tion, i.e., to determine the chemical(s) that induces a statistically
significant metabolic effect at the lowest exposure concentration,
and then prioritise that chemical for more extensive testing.

Best practice and performance standards for a metabolomics
BMD investigation would need to cover all aspects of the
workflow, from experimental design, QA/QC procedures, sam-
pling, metabolite extraction, measurement of metabolites, data
processing, post-processing and statistical analysis. This scenario
requires the use of both a sufficiently high number of dose groups
and an adequate sample size per dose group, in order to model
the response of each metabolite as a function of external dose.

Scenario 1 - Deriving points of departure via
benchmark dosing

Scenario 2 - Discovery of chemical mode(s)
of action and molecular key events

Scenario 3 - Chemical grouping for read-across

Scenario 4 - Cross-species extrapolation of
toxicity pathways

X

X
X

X

X

X

• Benchmark dosing (BMD) approach has been

demonstrated for transcriptomics to determine the level of

chemical exposure that activates gene expression.

• Similarly, metabolic points of departure (PODs) will be

derived from metabolomics datasets.

• Discovery approach to help identify molecular key events

(KEs) and accelerate construction of adverse outcome

pathways (AOPs). 

• Time-series metabolomics measurements will provide

mechanistic data linked to an adverse (apical) outcome.

• Metabolomics data used to assess the similarities of the

biological responses to chemicals, thereby forming

chemical groups.

• Read-across of an adverse (apical) outcome from one

chemical to the next will be based on similarity of the

metabolic responses. CI Br

Molecular
initiating

event (MIE) 

Adverse
outcome

(AO)

• Environmental chemical risk assessment currently

focused on only three test species (algae, Daphnia, fish).

• Metabolomics and multi-omics data will enable an

understanding of cross species toxicity through

knowledge of molecular pathways.

Molecular
key events

(KEs)

Fig. 2 Four scenarios for the application of metabolomics to regulatory toxicology
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Typically, 6–8 doses over a relatively wide range are necessary,
from just below the no observed effect level of an apical endpoint
(due to the higher sensitivity of the metabolomics measure-
ments44) to a maximum tolerable dose or cytotoxic dose,
dependent upon the test system. One of the important steps in
this type of analysis is to attempt to identify the subset of
metabolites that demonstrate dose–response behaviour and that
ultimately may be used to estimate the benchmark dose at which
the abundance of the metabolite significantly deviates from
normal levels. While identified metabolites could provide a more
robust biomarker, applying the BMD approach to unannotated
peaks in a mass spectrum or NMR spectrum could in principle
meet regulatory standards if the peak can be consistently
measured across laboratories. Reporting the level of confidence
in metabolite annotation or identification is critical. Greater
confidence in the derived POD value would be obtained if several
metabolites within the same metabolic pathway showed a similar
response, equivalent to gene expression data being mapped to the
same gene ontology category. Case studies demonstrating the
application of metabolomics to derive PODs using the BMD
approach are eagerly awaited.

Scenario 2: Discovery of mode(s) of action and molecular key
events. Adverse outcome pathways (AOP) were first developed by
the US EPA in 2010 as a knowledge management tool for
describing pathways associated with toxicity and have since
gained widespread international momentum, including as part of
the OECD’s chemical safety programme45,46. An AOP is a
knowledge framework that represents the causal relationships
between the first interaction of a chemical with a biological sys-
tem, known as the molecular initiating event (MIE), and a series
of higher order events (at the molecular, cellular, tissue levels, etc.
—termed key events; KEs), which ultimately lead to an adverse
outcome (AO) at the level of an individual or population (where
adverse outcome is synonymous with a regulatory apical end-
point)47–49. While an increasing number of draft AOPs are under
construction, only six have been fully endorsed to date by the
OECD’s Task Force for Hazard Assessment and Working Group
of National Coordinators of the Test Guidelines programme.
Since omics technologies are designed to measure the responses
of tens of thousands of genes and many of their downstream
products (i.e. metabolites) in a hypothesis free manner, they are
ideally positioned to accelerate the discovery of molecular toxicity
pathways (and molecular KEs, which can also be referred to as
biomarkers) and therefore to accelerate the construction of
AOPs50.

While the application of metabolomics to molecular KE
discovery within a regulatory scenario requires consideration of
QA and QC standards along with data management for the whole
workflow, from experimental design through to statistical
analysis, it is again the experimental design that requires
particularly careful consideration. For this scenario we propose
that both time-series and dose–response measurements are
essential, for discovering chemical mode(s) of action51. First,
the response of a cell to chemical exposure is a time dependent
process, and so to characterise the series of KEs, it is necessary to
measure the system at several time points, capturing the evolution
of the molecular changes, i.e. the toxicodynamics52. Second, to
understand the essentiality of a series of molecular KEs,
knowledge of the sequence of those molecular changes is
necessary. Such an approach can also help to infer causality
between KEs, including whether a particular molecular KE is
predictive of an adverse outcome, providing a deeper under-
standing of the mechanism. Third, classification analysis of
metabolic responses (to group chemicals) that incorporates

time-series data should in principle have greater predictive
capability than classification models that ignore time, as it has
been reported for classifying disease outcomes in biomedical
research53; this is particularly relevant to the following scenario.
A further important point about molecular KEs is that these may
be more informative (and less variable) when defined at the
molecular pathway level, and not as individual genes or
metabolites. The former representation should be less susceptible
to the variability in individual measurements and would also
provide an opportunity to integrate gene expression and
metabolism within a pathway. Currently this remains an active
research topic. What is clear is that only through appropriate
reporting of metabolomics studies for biomarker and molecular
KE discovery will AOP reviewers and regulators be able to assess
the reliability of the conclusions.

While scenario 2 focuses on the mode(s) of action (or
toxicodynamics) of a chemical, the experimental design proposed
here—i.e. to measure the biological system at several time points
to capture the evolution of the molecular changes—can in
principle reveal equally interesting insights into the toxicoki-
netics, that is, the absorption, distribution, metabolism and/or
excretion of the exposure chemical. Indeed, relationships between
the toxicokinetics and toxicodynamics of a chemical could be
extracted from the same untargeted metabolomics dataset.
Metabolite prediction software such as BioTransformer54 or
SyGMa55 can aid in the identification of biotransformation
products of chemicals or drugs. Here we refer to the study of a
parent chemical and/or its metabolic biotransformation products
within a metabolomics experiment as untargeted toxicokinetics
(Table 1).

Scenario 3: Chemical grouping for read-across. Traditional
read-across approaches in regulatory toxicology utilise the simi-
larity of molecular structure between two or more chemicals to
infer the endpoint toxicity of target substance(s) based on the
existing knowledge of the endpoint toxicity of an analogous (or
source) chemical56. While this approach is currently the most
often used alternative to animal testing within Europe, it often
leads to rejection of the risk assessment dossiers by the European
Chemicals Agency (ECHA)57. Consequently, it is recognised that
the quality of read-across needs to improve, i.e., more scientific
evidence is required to support the read-across argument58–60.
BASF have demonstrated a promising extension of this read-
across approach in which they utilised rodent metabolomics data
to assess the similarities of the responses of chemicals, and read-
across the endpoint toxicity based on the similarity of the
metabolic effects3. As mentioned above, the introduction of a
time course experimental design may further enhance our ability
to assess the similarities of the responses to a series of chemicals,
thereby grouping those chemicals more accurately according to
their molecular responses (and KEs).

For this scenario, several publications and workshop reports
provide a basis for developing best practice and associated
performance and reporting standards31,57,61. For example,
scientists applying metabolomics to read-across concluded that
significant efforts to extensively investigate and then attempt to
control metabolic variability, whether that be of biological or
technical origin, is essential3. Furthermore, they highlighted the
importance of reference substances that serve as toxicological
positive controls, i.e. chemicals that can be relied upon to induce
a strong, consistent metabolic effect. Such control experiments
should be regularly performed, and the variability of the
responses can serve as an indicator of reproducibility of the
entire workflow, from exposure to metabolomics measurements
and data analysis. One further recommendation is that
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procedures should be documented in standard operating
procedures and followed meticulously62,63, with any exceptional
deviation from an SOP recorded and justified. The best practice,
performance standards and reporting standards described below
attempt to meet these recommendations. Even for this grouping
and read-across scenario, for which a case study with phenoxy
herbicides has been published3, there is further scope for
developing the metabolomics workflow and potentially improv-
ing the best practice. For example, alternative strategies could be
evaluated to derive quantitative measures of similarity between
the metabolic responses to a source chemical and set of target
chemicals in the read-across study (i.e. whole metabolic
signatures or metabolic pathways, through to a series of metabolic
KEs or biomarkers). A further development would be the use of
untargeted metabolomics to inform on basic toxicokinetic
parameters (Table 1), for example which metabolic biotransfor-
mation products are formed (and their relative toxicities versus
the parent substance) and potentially measuring the clearance
rate of the parent substance, to further support a read-across
case56.

Scenario 4: Cross-species extrapolation of toxicity pathways.
While all the above scenarios are applicable to environmental risk
assessment, most omics studies on BMD, AOPs and KE dis-
covery, and read-across have been focused more towards human
chemical safety using rodent and in vitro models. Within Europe,
chemicals that are manufactured or imported in sufficiently high
volume must also undergo environmental risk assessment, yet
this is done using a very simplified model of the environment.
The toxicity response of a selected number of species (typically
three, spanning three trophic levels in the aqueous environment)
is used to assess the hazard of individual substances. This typi-
cally includes algal toxicity tests (primary producers), Daphnia
tests (primary consumers) and fish tests (secondary consumers).
One of the most important questions in environmental risk
assessment is to what extent are toxicity assessments in one
species applicable to other species?64,65 Applying omics

technologies to study how genes, proteins and metabolites
interact and respond to chemical exposures in a selected group of
model organisms could reveal the phylogenetic origins of the
toxicological pathways that are predictive of adverse outcomes.
Such comparative approaches are already showing promise for
characterising interspecies differences in MoAs, which intrigu-
ingly is applicable to both environmental and human health risk
assessment66–68. However, translating these exciting develop-
ments towards regulatory applications in the risk assessment of
chemicals requires that the omics investigations are conducted
rigorously. Again, for metabolomics, all aspects of the workflow
from experimental design, QA/QC, sampling, metabolite extrac-
tion and measurement, data processing and statistical analysis,
should all meet the performance standards and reporting stan-
dards described here.

Best practice, performance and reporting standards
The best practice, performance and reporting standards have
been developed in 12 sections that consider all aspects of a
metabolomics study in regulatory toxicology, summarised in
Fig. 3, starting with the regulatory question or use case. The first
section (Supplementary Note 1) describes those aspects of the
experimental design of a regulatory toxicology study that are
most critical for metabolomics. This includes detailing the test
species, the importance of defining what is metabolically normal
for the untreated test species, the chemical exposures and the use
of positive biological controls, sample size, the design and number
of sampling times, and randomisation and batching of samples.
Supplementary Note 2 defines quality assurance and quality
control requirements with an introduction to five types of QC
samples (system suitability QC, intrastudy QC, intralab QC,
interlab QC and process blank). The purposes, performance
standards, compositions and sources of these QC samples are
described, along with their practical utilisation. Next, in Supple-
mentary Note 3, the sampling and metabolite extraction for the
sample types most likely to be encountered in a regulatory tox-
icology study are presented, including washing, quenching,
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Fig. 3 Overall workflows for untargeted metabolomics and targeted metabolite analyses. A further approach called semi-targeted analysis represents a

hybrid of targeted and untargeted assays. Numbers refer to the Supplementary Notes that describe each section of the workflows
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metabolic extraction, and sample reconstitution in solvent for
analysis. Supplementary Notes 4–7 describe technique-specific
sample preparation, QC usage, data acquisition and processing
for the four most widely applied analytical methods in untargeted
metabolomics, comprising NMR spectroscopy, LC-MS, GC-MS
and DIMS, respectively. The widespread use of these four
methods was documented via international surveys69,70. Figure 4
highlights the differing capabilities of the analytical methods
which are sometimes applied in parallel to the same study sam-
ples. Data acquisition and processing for targeted mass spectro-
metry assays, including reference standards for identification and
quantification, and LC-MS/MS and GC-MS/MS, is presented in
Supplementary Note 8. This topic has been included due to the
anticipated future importance of targeted metabolite analysis in
regulatory toxicology.

The next steps in the untargeted metabolomics and targeted
metabolite analysis workflow are largely instrument independent,
including data post-processing (Supplementary Note 9) and sta-
tistical analysis (Supplementary Note 10). Best practice and
reporting standards for data post-processing cover the topics of
signal intensity drift correction and batch correction, imputing
missing values, normalisation, and strategies for filtering variables
(i.e. m/z features) to ensure high quality datasets. The particularly
important topics of intrastudy QC analysis and biological sample
outlier detection and removal are described in Supplementary
Note 10, followed by scaling/transformations and the application
of uni- and multivariate statistical analyses, the latter covering
validation methods and feature selection. To facilitate inter-
pretation of the statistical results in terms of the regulatory
question (Fig. 3), this section also introduces the statistical ana-
lyses specific to the regulatory questions summarised in Fig. 2.
Supplementary Note 11 describes the current minimal reporting
standards for levels of confidence in metabolite annotation and
identification, which are critical for robustly appraising the
validity of any biochemical interpretation within a metabolomics
study. Finally, since no best practice yet exists for the manage-
ment of metadata and experimental data from metabolomics

studies within regulatory toxicology, in Supplementary Note 12
we propose a new strategy and architecture for integrated data
management, sharing and exploitation. This framework, sum-
marised in Fig. 5, includes controlled vocabularies, file formats
and databases for metabolomics raw data and metadata.

Conclusions and future directions
From an academic scientist’s perspective the field of metabo-
lomics (under its various synonyms) is most definitely mature,
and some would argue in excess of 20 years old (though con-
tinuing to develop in tools, applications and impact). From a
regulator’s perspective it has only just become a NAM—a New
Approach Methodology4. The time has now come to close this
gap and to evaluate the potential benefits of metabolomics spe-
cifically in the context of regulatory toxicology. The first steps on
that journey have begun, and the relevant communities are now
talking regularly. It is our intention that this guidance document
prompts further discussions in these and related communities,
and actions are taken to address the remaining challenges.
Arguably the most urgent challenge is to develop exemplar case
studies for the application, interpretation and reporting of
metabolomics data as part of larger toxicity studies, co-developed
by regulatory scientists, and including other NAMs alongside
traditional assays and measurements. We are not proposing that
metabolomics data should routinely stand alone, but instead
contribute to a weight of evidence approach, i.e. as a component
of Integrated Approaches to Testing and Assessment (IATA)71,72.
In this document we have proposed four such case studies or
scenarios that we recommend are worked up as examples for
demonstrating the value of metabolomics. Furthermore we have
identified the need for, and recommend the development of, more
detailed guidelines for the interpretation of the metabolomics
data from each of these case studies, thereby providing more
substance to the blue Interpretation box in Fig. 3.

What is clear is that the metabolomics community knows how
to conduct and report high-quality scientific studies—using both
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untargeted metabolomics and targeted metabolite analysis. Much
of the content of this guidance document reflects that knowledge.
For example, see Supplementary Table 4, which summarises some
of the minimum criteria for best practice and reporting for the
application of these two related approaches. What requires fur-
ther development is precisely how this best practice is imple-
mented into specific regulatory scenarios, such as those we
introduced in this paper, including MoA/KE discovery, deriving
points of departure for helping to derive health-based guidance
values, etc. We strongly encourage the academic, industry and
regulatory communities to work together to develop exemplar
case studies for these specific regulatory applications. This should
include how regulatory decision-making could be achieved based
on the types of statistical analyses presented in supplementary
note 10, in a transparent, simple yet robust manner.

A further challenge that these communities need to address is
determining optimal strategies for managing ‘omics data and
metadata derived from regulatory toxicology studies. Some would
argue that the benefits of open data formats, that are now widely
accepted and adopted in research communities, should be applied
in regulatory toxicology. Ensuring that data are FAIR (findable,
accessible, interoperable and reusable73) would increase the
transparency of chemical safety regulation. Yet REACH places the
responsibility of ensuring substance safety on those synthesizing

and using chemicals in Europe, hence the metabolomics data
would be owned by industry who may be unwilling to share such
data publicly. Perhaps industrial innovators will want to make
their metabolomics data FAIR? Perhaps future innovative legis-
lation will require that ‘omics data derived from chemical safety
testing must be made public.

We believe the most productive route forward is to create
exemplar projects and case studies that seek to unite the expertise,
needs and solutions across the metabolomics research, industrial
and regulatory toxicology communities. Indeed, the ECETOC-
supported MERIT project, although focused on the production of
a set of best practice guidelines, has additionally provided a forum
for scientists from these communities to unite around a common
purpose. Networks have expanded, much has been learnt by all
parties, and tangible best practice, performance and reporting
standards have been proposed. We look forward to engaging with
the wider community to work towards acceptance of these
guidelines, developing them further as part of the new OECD
Metabolomics Reporting Framework project, and ultimately to a
time when metabolomics data are accepted routinely as part of
regulatory toxicology studies.
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