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Special Issue: CCDSC 2018

Use cases of lossy compression
for floating-point data in scientific
data sets

Franck Cappello1,2 , Sheng Di1, Sihuan Li3, Xin Liang3,

Ali Murat Gok4, Dingwen Tao5, Chun Hong Yoon6,

Xin-Chuan Wu7, Yuri Alexeev1 and Frederic T Chong7

Abstract

Architectural and technological trends of systems used for scientific computing call for a significant reduction of scientific

data sets that are composed mainly of floating-point data. This article surveys and presents experimental results of

currently identified use cases of generic lossy compression to address the different limitations of scientific computing

systems. The article shows from a collection of experiments run on parallel systems of a leadership facility that lossy data

compression not only can reduce the footprint of scientific data sets on storage but also can reduce I/O and checkpoint/

restart times, accelerate computation, and even allow significantly larger problems to be run than without lossy com-
pression. These results suggest that lossy compression will become an important technology in many aspects of high

performance scientific computing. Because the constraints for each use case are different and often conflicting, this

collection of results also indicates the need for more specialization of the compression pipelines.

Keywords
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1. Introduction

Lossy compression for scientific data and floating-point

numbers is becoming more popular as the limitations in

terms of storage/memory size (MS) and transfer bandwidth

of scientific equipment, such as instruments and supercom-

puters used for numerical simulation and analysis, are

becoming more severe. In the past, the main use case for

lossy compression of scientific data (comprising floating-

point numbers) was visualization. Currently, one of the

main drivers for new use cases of lossy compression is the

slow increase in the storage bandwidth (SB) in supercom-

puters across recent generations compared with the

increase in the MS and computing performance. Table 1

shows the main characteristics of three classes of systems:

early petascale, petascale, and pre-exascale systems.

From Table 1, we can observe that the ratio of MS on

nodes to total SB is increasing except in the case of CORI

with burst buffers. The MS/SB ratios actually reflect the

time it will take in an ideal situation to store the full mem-

ory content on the file system. In practice, the time is even

higher as a result of different congestion factors in the I/O

system (Gainaru et al., 2015). Since executions are larger

(more cores, more memory) in newer systems, the

consequence of this trend is that it takes more time to save

execution results and states (checkpoints) than before. To

avoid severe performance degradation, applications need to

reduce the size of the data (results or states) saved on file

systems. We can also observe an important increase in the

ratio of petaflops to SB, which represents the number of

floating-point operations needed for each byte transferred
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to the file system in order to keep the processor busy. This

ratio is one order of magnitude higher in 2018 than it was in

2008. The table is consistent with the figure presented in

Foster et al. (2017). The impact of this trend is that appli-

cations should be optimized to reduce significantly their I/

O traffic during execution.

In addition to the slow progress of the SB in supercom-

puters, other trends motivate the use of lossy compression

for scientific data. First, the average selling price of dynamic

random access memory (DRAM) doubled between 2012

and 2017 (and tripled since 2007). Since the DRAM repre-

sents a significant portion of the cost of a supercomputer, for

a given system cost (e.g. $200million), the size of the system

DRAMbetween 2007 and 2017 could not grow as fast as the

DRAM density grew, and the ratio of the DRAM bytes per

flop decreased during that period: from 0.2 (Jaguar) in 2008

to 0.05 in 2017–2018 (CORI and Summit). Consequently,

the applications need to be adapted to use relatively less

memory than before. Similarly, the total performance per

socket has increased sharply (þ50% to þ60%/year) in the

past decade, thanks to the multi-many-core design, but the

bandwidth between the processor socket and the memory

has not increased at the same pace (þ23%/year) (McCalpin,

2016). This situation results in a widening gap between the

processor and the memory system performance that the

cache hierarchy can compensate for only partially and not

for all applications. Thus, applications should be improved

to require less memory bandwidth.

Data reduction has been an important technique for recent

large-scale instruments such as the Large Hadron Collider.

However, the development of new scientific instruments is

facing even more severe constraints with respect to data

reduction because the storage and communication systems

are improving at a much lower speed than the measure-

ment resolution and accuracy of these instruments are.

This is particularly true for upgrade projects such as the

Advanced Photon Source APS-U (Fornek, 2017) and the

Linac Coherent Light Source II (Marcus et al., 2015) and

also for other flagship projects such as the Square Kilo-

metre Array (Domingos Barbosa, 2016) that will produce

gigantic amounts of data. In the case of instruments, the

data need to be reduced online while it is produced, thus

representing another level of difficulty.

This evolution of supercomputer and instrument character-

istics has motivated new research and development of lossy

compression software for scientific data. In the following sec-

tion,wedescribe the progressmade in thepast 5 years andhow

this progress has enabled new use cases of lossy compression.

The article is organized as follow. The next section

reviews the progress in lossy compression technologies for

scientific data sets and compares state-of-the-art lossy com-

pressors with wavelet-based compressors and decimation.

The following section presents seven use cases of lossy

compression for scientific data: visualization, reduction

of data stream intensity, reduction of the storage footprint,

reduction of I/O time, accelerating checkpoint/restart,

reduction of memory footprint and accelerating execution.

From the observations made through the different use

cases, the next section suggests to design and implement

specialized compression pipelines to serve the different use

cases effectively. The final section concludes this article.

2. Progress in lossy compression

technologies

The past 5 years have seen exceptional progress in the

consideration of lossy compression for scientific data sets.

This is due mainly to the significant evolution of the design

of lossy compressors for scientific data. In the past, lossy

compressors for scientific data focused almost exclusively

on data reduction for visualization. The lossy compressors

used techniques directly inherited from lossy compression

of images such as variations of wavelet transforms, coeffi-

cient prioritization, and vector quantization (Goldschnei-

der, 1997; Li et al., 2018b). Lossy compressors for image

processing are designed and optimized considering human

perception. While such compressors may be adequate for

scientific visualization, they do not provide enough com-

pression error control to address the supercomputer limita-

tions discussed in the Section 1. For example, most lossy

compressors for visualization do not provide a global upper

bound on the compression error (the maximum compres-

sion error, or L 1 norm of the compression error). Our

experience and discussions with application developers and

users indicate that a strict user-set pointwise error control is

needed for the data analysis with lossy data sets (after

simulation or in situ) and for the execution restarting from

lossy states and calculation from lossy data in memory.

This is precisely what the new generation of lossy com-

pressors for scientific data (SZ (Di and Cappello, 2016;

Table 1. Three classes of supercomputers showing their performance, MS, and SB.

Supercomputers Year Class PF MS SB Ratio MS/SB Ratio PF/SB

Cray Jaguar 2008 1 Pflops 1.75 Pflops 360 TB 240 GB/s 1.5k 7.3k
CRAY Blue Waters 2012 10 Pflops 13.3 Pflops 1.5 PB 1.1 TB/s 1.3k 13k
CRAY CORI 2017 10 Pflops 30 Pflops 1.4 PB 1.7 TB/sa 0.8k 17k
IBM Summit 2018 100 Pflops 200 Pflops >10 PBb 2.5 TB/s >4k 80k

PF: peak flops; MS: memory size; SB: storage bandwidth.
aWhen using burst buffer.
bCounting only DDR4.
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Liang et al., 2018; Tao et al., 2017c), ZFP (Lindstrom,

2014), and MGARD (Ainsworth et al., 2018)1) has intro-

duced in the past 5 years, opening multiple new research

directions. The use cases presented later in this article are

the currently identified usages of lossy compression for

scientific data.

2.1. General architecture of lossy compressors strictly

respecting error bounds

Only a few lossy compressors are currently known and

have been tested to respect strictly user-set error bounds.

In the following paragraphs, we describe the SZ and ZFP

compressors, which have been extensively tested and, in

some cases, have been pushed to their limits in order to

understand the nature of their compression error.

SZ and ZFP follow the classic structure of lossy com-

pressors: they are multistage compressors featuring decorr-

elation, quantization, and encoding stages. In ZFP, the

quantization and encoding stages are combined and form

an embedded coding stage. SZ and ZFP use different dec-

orrelation, quantization, and encoding techniques to com-

press scientific data sets and respect user-set error bounds.

Both compressors compress data sets block by block. ZFP

has been implemented initially for 3-D blocks; SZ can

compress 1-D, 2-D, and 3-D blocks. The 3-D block size

is different for SZ and ZFP; the size has been established

after an optimization process related to their specific com-

pression approach. Both ZFP and SZ allow random access

decompression: each block can be decompressed individu-

ally. SZ and ZFP support absolute user-set error bounds. SZ

also supports directly relative user-set error bounds,

whereas users need to use ZFP in its fixed-rate mode to

control relative error bounds.

SZ relies on prediction for the decorrelation stage. Cur-

rently, three types of predictors are selectable in this

stage: Lorenzo, regression, and pattern. All prediction

schemes produce predicted values that are compared with

the actual values. For each value, the difference between

the predicted and the actual value is quantized by using a

linear scale (linear quantization). Each bin of the scale has

a size equal to twice the user-set error bound. SZ strictly

respects the user-set error bound (absolute or relative)

because of (i) the prediction scheme that uses previously

predicted values instead of actual ones and (ii) the quan-

tization scheme that measures the prediction error as a

multiple of the user-set error bound. ZFP combines a

transform-based decorrelation scheme with an embedded

coding scheme. The decorrelation stage operates on fixed

3-D blocks. Before applying the transforms, all the values

within each block are aligned to the same exponent.2 This

allows the transform to work on integer values. The trans-

form by itself uses custom coefficients established from

extensive experiments and comparisons on many different

data sets. The embedded coding scheme performs the

quantization and coding simultaneously. Removing low-

energy coefficients is a solution adopted by many

transform-based lossy compressors, JPEG for example.

But with this solution, the compressor cannot respect

user-set error bounds. ZFP’s solution is to truncate the

precision of the coefficients based on the error bound.

This leads to using a higher number of bits for high-

energy coefficients and a lower number of bits for low-

energy coefficients. ZFP guarantees the respect of the

user-set error bound, introducing in each coefficient an

error that is much lower (typically 1 order of magnitude)

than the user-set error bound.

2.2. Comparison with wavelet-based compressor and

decimation

Until few years ago, lossy compressors for scientific data

were only mostly used for visualization. It is only because

of the recent progress in lossy compressor performance and

the pressing needs to reduce data sets that other use cases

have appeared. To illustrate the performance progress

made by recent lossy compressors for scientific data

(floating-point values), we compare SZ and ZFP with

VAPOR (Clyne et al., 2007) (a wavelet-based compressor

without user-set error control, published in 2007) and dec-

imation in space (a technique often used in visualization

that does not provide user-set error control). Specifically,

the decimation-in-space scheme performs downsampling

of the data set for compression and reconstructs the missing

data by tricubic interpolation. We use two types of data sets

representative of large classes of applications. The first data

set is CESM-ATM. It is a 2.5-D data set (pseudo-3D) gen-

erated from a climate simulation code that uses a variation

of computational fluid dynamics. The second data set is

from the NYX cosmology application. NYX performs par-

ticle simulation using a combination of adaptive mesh

hydrodynamics and an N-body cosmological simulation

code. The data set produced by NYC simulation is 3-D.

Figure 1 presents the rate–distortion graphs for these four

lossy compression techniques. Rate–distortion graphs show

peak signal-to-noise ratios (PSNRs) in decibels (DB) for

different bit rates (how many bits in the compressed format

represent, on average, each value in the uncompressed data).

The PSNR reflects an average compression error. It is
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Figure 1. Comparison of rate–distortion based on different lossy
compression strategies on (a) CESM-ATM and (b) NYX data sets.
CESM: Community Earth System Model. The results about SZ,
ZFP and VAPOR are extracted from (Liang et al., 2018).
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computed from the root mean square error. Note that since

PSNR is in DB, the y-axis in the graph is in log scale: linear

differences are much larger than the ones shown in the

graphs.

From Figure 1, we can observe that recent error-

bounded generic compressors exhibit a lower distortion

(higher PSNR) than do previous compression techniques.

Since the rate–distortion graphs indicate the average com-

pression error, they do not tell us the maximum compres-

sion error. We know that SZ and ZFP respect user-set

error bounds. Since VAPOR and decimation do not pro-

vide user-set error control, there is a risk that they exhibit

a much higher max compression error than do SZ and

ZFP. To confirm this issue, we compare the max error

of the four compression techniques for a single field (velo-

city_x) of the NYX data set and a single compression ratio

(CR), 32. For similar CRs (20 for VAPOR, 27 for decima-

tion), the maximum relative errors (maximum error over

value range) of VAPOR and decimation are 0.015 and

0.25, respectively, while those of SZ and ZFP are 7e�4

and 3.5e�3. Experiments on other fields of NYX and

other data sets lead to the same conclusion: not only does

the new compression software achieve better rate–distor-

tions, but the software also has lower max errors for sim-

ilar CRs.

Comparison of recent lossy compressors with time-based

decimation reaches the same conclusion (Li et al., 2018a).

These accuracy progresses in lossy compression tech-

nologies were indispensable for the adoption by scientific

users of lossy compression beyond visualization.

3. Lossy compression use cases

In this section, we describe the seven identified use cases of

lossy compression for floating-point data in scientific data

sets. For the classic visualization use case, we show the

progress provided by recent lossy compressors. For other

user cases, we show how lossy compression can respond to

the limitations in supercomputers and instruments men-

tioned in the Section 1.

For each use case, we describe the motivations for

using lossy compression, the specific constraints in terms

of compression rate, ratios, error control, and experimen-

tal results. Our objective is not to compare the perfor-

mance of recent compressors (specifically SZ and ZFP).

Rather, it is to show their applicability and suitability to

the different use cases.

Most of the experiments presented in the following sec-

tion were performed on the Argonne National Laboratory

Bebop cluster that features 8192 cores (i.e. 256 nodes; each

node has two Intel Xeon E5-2695 v4 processors and 128

GB of memory, and each processor has 16 cores). The

Bebop storage system adopts General Parallel File System

(GPFS), which is located on a raid array and served by

multiple I/O nodes. The I/O and storage systems are typical

high-end supercomputer facilities.

3.1. Visualization

Visualization is an important topic in the scientific simula-

tion community. It usually serves as the first and foremost

step in the post-analysis of the simulation results by

researchers. On the other hand, since human cognitive sys-

tems can tolerate visual distortion to some extent, the result

for visualization does not need to be exact. However, there

are no general constraints on the acceptable distortion level

since they are really application dependent. For instance,

the minimal allowable structural similarity index (SSIM)

for medical image compression ranges from 0.95 to 0.99 to

achieve “diagnostically lossless” compression (Baker et al.,

2017), while the just-noticeable distortion (JND) profile

indicates that a PSNR around 30 is unnoticeable for general

image/video processing (Wei and Ngan, 2009). Also, since

scientific visualization is often applied with the post-

processing where I/O is the bottleneck (Li et al., 2018b),

the time constraints of visualization are similar to those on

reducing I/O time, which is introduced later.

In this case, lossy compression can be applied to reduce

the data size and transfer time while maintaining accep-

table visual quality, similar to what JPEG (Wallace, 1992)

does for 2-D images. Error-bounded lossy compression, in

addition, provides users with means to control the error

(which affects the final distortion); hence, it is able to

offer user-guided compression given a desired reduction

size or visual quality. Moreover, many researchers

(Ballester-Ripoll et al., 2018; Liang et al., 2018; Lind-

strom, 2014; Tao et al., 2017c) assess the compression

quality in terms of visualization-related metrics such as

PSNR. More detailed discussions of the lossy compres-

sion techniques regarding the visual quality can be found

in Li et al.’s (2018b) survey.

In what follows, we present the visualization quality of

four lossy compressors (VAPOR (Clyne et al., 2007),

TTHRESH (Ballester-Ripoll et al., 2018), ZFP (Lind-

strom, 2014), and SZ (Di and Cappello, 2016; Liang

et al., 2018; Tao et al., 2017c)) under different reduction

sizes to illustrate the effectiveness of lossy compression in

terms of visualization. This comparison also illustrates the

progress of the recent generation of lossy compressors

Figure 2. Visualization of original raw data. (a) CESM-ATM
(CLDHGH) and (b) NYX (dark matter dens). CESM: Community
Earth System Model.
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(SZ, ZFP, TTHRESH) compared with an older compres-

sor (VAPOR).

We first show the CLDHGH field in the CESM-ATM

data set as an example of 2-D cases (CESM-ATM is a 2.5-

D data set; here we use only one vertical slice). The visua-

lization of the original 1800 � 3600 data is displayed in

Figure 2(a) with enlarged details in a local 50� 50 region.

Since TTHRESH does not support 2-D data sets and ZFP

is better optimized for 3-D data sets, only VAPOR and SZ

are evaluated given similar reduction size (CRs of 9, 37,

and 138). The visualization results are shown in Figure 3,

with two popular visualization metrics, PSNR and SSIM,

listed below each subfigure (SSIM is the structural simi-

larity index that compute a value from three components:

luminance, contrast, and structure). According to Figure

2, both compressors lead to almost no difference for visua-

lization under the value range of the whole data set even

when the CR goes up to 138. However, a significant dif-

ference can be seen when we zoom in on the local region.

Figure 3(a) to (c) and Figure 3(d) to (f) indicate that the

details in the local region disappear for both compressors

as the CR increases. When the CR is around 9 (Figure 3(a)

and (d)), the visualization looks similar to the raw data,

even for the data in the local region. For the last compres-

sion CR (Figure 3(c) and (f)), the block artifacts manifest

in the visualization are due to the blockwise design in the

compression algorithm (128 � 128 block for VAPOR and

16 � 16 block for SZ). Nevertheless, these cases are still

useful if only the visualization of the whole data set is

needed. Also, users who desire more accurate results can

switch the desired ratio (VAPOR) or the error bound (SZ)

to lower CRs for better quality, thus showing the flexibil-

ity of lossy compression.

We then show the dark_matter_density field in the NYX

data set as an example for 3-D data. We visualize the 256th

slice of the original 512� 512� 512 data for demonstration

purposes. Similar to the 2-D example, the visualization of

the original data is displayed in Figure 2(b), and those visua-

lizations of the decompressed data from different lossy com-

pressors are shown in Figure 4 with PSNR and SSIM. We

note that PSNR is computed over the entire data set whereas

SSIM is calculated only for the current slice in this case. We

also fixed the CRs of different lossy compressors to a similar

level, namely, 8, 32, and 128. They correspond to the three

rows in the figure, respectively. From a top-down view, we

can observe a similar pattern in that the visualization quality

drops as the CRs increase. Of interest is how the visualiza-

tion quality changes as the CR differs across compressors,

due to the difference in the compression algorithms. For

example, the visualization results of VAPOR (Figure 4(a),

(e), and (i)) become more and more blurry because of more

discarded wavelet coefficients, but it is able to keep a rough

shape because the coefficients with the highest priority are

kept. On the other hand, ZFP has a block mosaic effect when

the CR is high (Figure 4(k)) because of the exponent align-

ment in each 4 � 4 � 4 block.

In summary, general-purpose visualization of whole

data sets does not require high accuracy for acceptable

Figure 3. Visualization of the decompressed data on CLDHGH field in CESM-ATM. (a) VAPOR, CR ¼ 9, PSNR ¼ 52, SSIM ¼ 0.9987.
(b) VAPOR, CR ¼ 37, PSNR ¼ 46, SSIM ¼ 0.995. (c) VAPOR, CR ¼ 138, PSNR ¼ 38, SSIM ¼ 0.9845. (d) SZ, CR ¼ 9, PSNR ¼
75.3, SSIM ¼ 1. (e) SZ, CR ¼ 38, PSNR ¼ 49, SSIM ¼ 0.997. (f) SZ, CR ¼ 137, PSNR ¼ 43.2, SSIM ¼ 0.9911. CESM: Community
Earth System Model.
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results meeting the JND, which in turn leads to high CRs.

However, for some special cases, such as medical images

or scenarios where zoom-in is needed, higher accuracy is

preferred. Error-bounded lossy compressors could fit in

both cases because of its error-bounded nature, requiring

less storage or transfer time while maintaining acceptable

accuracy.

3.2. Reducing data stream intensity

Reducing data stream intensity is a typical need of large-

scale instruments such as accelerators and telescopes, and

several lossy compression techniques have been proposed

or tested specifically for these instruments (Nicolaucig

et al., 2003; Offringa, 2016; Patauner, 2011; Peters and

Kitaeff, 2014; Röhrich and Vestø, 2006; Vohl et al.,

2015, 2017). In this section, we focus on light source facil-

ities such as the Advanced Photon Source (APS) (Fornek,

2017) (a synchrotron-radiation light source research

facility at Argonne) and the Linear Coherent Light Source

(LCLS) (Marcus et al., 2015) (a free-electron laser facility

located at SLAC). Using the high-brilliance X-ray beams

generated from the light source facilities, scientists can

conduct basic and applied research in many fields including

biological science, materials science, chemistry, physics,

geophysics, environmental science, and planetary science.

The light source facilities generate extremely large

volumes of data. Usually, the raw data cannot be stored

because of the limited I/O bandwidth and storage space.

Therefore, in order to transfer and store the data, significant

data reduction is needed. Whereas for other scientific

instruments generating extreme volumes of data, such as

the Large Hadron Collider, the data reduction is performed

by ad hoc techniques and infrastructures specific to the

nature of the instrument and experiments, researchers

involved in the design of the LCLS-II data reduction infra-

structure are investigating the potential use of available,

generic lossy compressors.

Figure 4. Visualization of the decompressed data (slice 256) of the dark_matter_density field in NYX. (a) VAPOR, CR¼ 9.65, PSNR¼
26.8, SSIM¼ 0.469. (b) TTHRESH, CR¼ 8.2, PSNR¼ 39.7, SSIM¼ 0.9051. (c) ZFP, CR¼ 7.6, PSNR¼ 44.3, SSIM¼ 0.9736. (d) SZ, CR
¼ 7.9, PSNR¼ 49.2, SSIM¼ 0.9896. (e) VAPOR, CR¼ 38.6, PSNR¼ 22.6, SSIM¼ 0.2552. (f) TTHRESH, CR¼ 30, PSNR¼ 25.3, SSIM
¼ 0.4841. (g) ZFP, CR ¼ 34.3, PSNR ¼ 24.8, SSIM ¼ 0.4483. (h) SZ, CR ¼ 31.4, PSNR ¼ 32.8, SSIM ¼ 0.6784. (i) VAPOR, CR ¼ 154,
PSNR¼ 20.6, SSIM¼ 0.1384. (j) TTHRESH, CR¼ 130, PSNR¼ 21.5, SSIM¼ 0.2767. (k) ZFP, CR¼ 110, PSNR¼ 19.5, SSIM¼ 0.1655.
(l) SZ, CR ¼ 127, PSNR ¼ 20.6, SSIM ¼ 0.3937.
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Figure 5 presents the data system for the LCLS-II. The

raw data acquisition rate is 250 GB/s. Storing the raw data

without reduction would require thousands of discs to sus-

tain the data production rate. The designers of the LCLS-II

data system have fixed a data reduction objective of 10 to

reduce the required SB to 25 GB/s. The requirement in

terms of compression error is 30 analogue-to-digital units

(ADUs), which corresponds to 30 in integer (16-bit)

representation.

For such applications, the lossy compressors should

have both medium CRs (10) and very high compression

speed (> 250 GB/s), such that the overall data compression

rate is higher than the data production rate. The require-

ment relative to the absolute error can be translated to a

medium-accuracy requirement of 10�3 relative to the value

range. This set of constraints is challenging for available

lossy compressor software even if the software is used in a

cluster of nodes equipped with GPUs.

In what follows, we present some early experimental

results based on LCLS-II crystallography analysis data

using two state-of-the-art lossy compressors, SZ and ZFP.

They exhibit better compression results on this data set than

do other lossy compressors such as FPZIP (Lindstrom and

Isenburg, 2006) and ISABELLA (Lakshminarasimhan

et al., 2011), which also do not support absolute error con-

trols required by the application users. The original data set

(called calibrated data) was stored in the form of integers

(in 4 dimensions, 10� 32� 185� 388), which we convert

to floating-point values in our experiment for fairness,

because floating-point data compression is the optimized

mode for the two compressors. The visualization of the

crystallography analysis data is demonstrated in Figure 6.

We present the compression results in Table 2. The

compression was conducted on one node of the Bebop

cluster (LCRC Bebop cluster, 2018) at Argonne National

Laboratory, indicating the single-core compression perfor-

mance. We compress the data by treating it as a 2-D array

and a 1-D array, respectively, in that we observe that 1-D-

style compression will lead to higher compression quality

probably because of the nonsmoothness feature of the data

in space. From the table, we can observe that when setting

the absolute error bound to 30 ADU for SZ 2.0, the CR is

slightly better when treating the data set as a 1-D array than

as a 2-D array. By comparing the error bound setting and

Figure 5. Data system for the LCLS-II (extracted from Thayer et al. (2017)). LCLS: Linear Coherent Light Source.

Figure 6. Visualization of LCLS-II crystallography analysis data
(more details can be found in Yoon et al. (2017) and Mark et al.
(2016)). LCLS: Linear Coherent Light Source.
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real maximum compression errors, we can see that the ZFP

compressor does not respect the error bound. We also

observe that ZFP is 50% faster than SZ, while SZ has about

2� higher CRs. Considering that the original data are

stored in 16-bit integers while the floating-point values

used in our experiments are in 32-bit format, the real CRs

is half of the numbers shown in the table.

In summary, Table 2 shows promising results concern-

ing the CR (close to 10 for SZ 2.0 in 1-D) of generic lossy

compression for the LCLS-II data. A significant gap still

remains, however, concerning the compression rate: At the

current compression rate, about 2000 cores will be needed

to sustain the data acquisition rate. A collaboration between

LCLS-II and the SZ team is exploring solutions to improve

the CRs and rates.

3.3. Reducing the storage footprint

Some scientific simulations (e.g., geoscience and fluid

dynamics) may involve large problem sizes with long

simulation timescales, in order to exploit as many scientific

findings as possible. These simulations generate data for

post-execution analysis that includes complex structure

calculations and feature finding. At extreme scale, they

would generate overwhelming volumes of data if all the

data produced during their execution (over multiple itera-

tions) was to be saved. However, the limited storage of

supercomputers hinders scientists from running such simu-

lations or from saving all the produced data. Adding more

storage units to a supercomputer is not a practical solution

because of the expense and the superfluous storage for

other high performance computing (HPC) applications that

do not need as much storage.

Thus, to reduce the storage of scientific simulations,

researchers have developed lossless compression algo-

rithms (Engelson et al., 2000). However, lossless compres-

sion has limited compression, a factor of at most 2 in most

cases (Son et al., 2014) because of the random mantissa

bits. Such a low CR is not enough for the high volume of

simulation data. Therefore, researchers have been explor-

ing lossy compressors.

Since the post-analysis of scientific simulation results

generally allows a certain level of data distortion, error-

controlled lossy compression is a good choice to signifi-

cantly shrink the simulation data, and thus it will greatly

mitigate the demand for extremely large capacity of storage

systems on a supercomputer. With lossy compression, one

can run a simulation with a much larger problem size and/

or more timesteps/snapshots on the existing HPC storage

system without any hardware modifications. Also, lossy

compression can effectively save the cost paid for the use

of storage. In the following, to demonstrate the benefits of

reducing the storage footprint, we present two typical real-

world simulations: climate and cosmology.

In climate simulation, the Community Earth System

Model (CESM) is the most widely used simulation code

(Hurrell et al., 2013). In the CESM set of simulations, the

CESM-Large Ensemble (CESM-LE) project involves

large-scale and 180-year climate simulations at high reso-

lution. Such simulations produce huge amounts of data.

Because of storage constraints, CESM-LE users have to

enlarge the time period for output between every two adja-

cent simulation steps. Moreover, the simulation results

have to be deleted monthly. Specifically, in terms of data

volume and the storage limits, the first 30 ensemble mem-

ber CESM-LE simulations produce more than 300 TB of

data, of which only 200 TB could be kept in the disk (Kay

et al., 2016). With the help of lossy compression, CESM-

LE could run at larger scale in longer simulations time,

which clearly is beneficial to more scientific investigations.

This case uses lossy compression in an online fashion,

which means that lossy compression should be incorpo-

rated into the CESM-LE simulation. We then show that

offline lossy compression is also meaningful for CESM-

LE simulation data. Since the raw simulation data would

take a huge amount of storage and since users have to pay

for the storage they use, using lossy compression can shrink

the data size and save the cost of storage. Furthermore,

lossy compression is suitable for users who need to make

space for other application executions without deleting the

existing simulation results.

In cosmology simulation, the Hardware/Hybrid Accel-

erated Cosmology Code (HACC) (Habib et al., 2016) has

been designed to enable portability across diverse comput-

ing platforms and scalability at millions of cores. HACC

starts simulating the later half of the history of the universe

from 50 million years after the Big Bang. It has been able to

run at the trillion-particle scale. However, such simulations

produce about 500 snapshots with more than 40 TB of data

per snapshot. Since the total storage capacity of Mira is 24

PB and the full data of a trillion-particle simulation would

occupy 20 PB, users need to reduce the data significantly.

They currently use decimation in time, keeping only 1

snapshot in 5 or even 1 snapshot in 10. To reconstruct the

missing snapshots, users rely on interpolation. However,

recent results show that decimation in time generates much

more errors and much higher error rates than does compres-

sion for a given data reduction ratio (Li et al., 2018a). For

exascale simulations, the number of involved particles is

projected to be 125 trillion, which will produce 5 PB of data

per snapshot (Habib, 2017). The full data of a 500-iteration

execution would require more than 2 EB, while projected

Table 2. Compression results on crystallography data.

Compressors
Error
bound

Max
error CR PSNR

Compression
rate

SZ 2.0 (2-D) 30 ADU 30 ADU 7.73 71.6 121 MB/s
SZ 2.0 (1-D) 30 ADU 29.5 ADU 8.04 71.6 107 MB/s
ZFP 0.5 (2-D) 30 ADU 30.25 ADU 4.46 81.5 184 MB/s
ZFP 0.5 (1-D) 30 ADU 47 ADU 3.86 75.6 121 MB/s

CR: compression ratio; PSNR: peak signal-to-noise ratio; ADU: analogue-
to-digital unit.
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exascale systems would provide on the order of .5 EB of

storage. Thus, lossy compression can facilitate the success

of exascale cosmological simulation.

We now discuss the constraints on the lossy compressors

when they are used for reducing storage in offline mode.

(The online mode has different constraints, which will be

addressed in the next section.) The compressors should have

CRs of tens, but they can be slow since the primary goal is to

reduce storage. However, the lossy compression should have

high accuracy for post-analysis depending on the simulation

and the analysis. For example, in the evaluation of lossy

compression effects on CESM simulation data (Baker

et al., 2017), the absolute error bounds can be small, on the

scale of 10�6. Table 3 shows the CRs of several state-of-the-

art lossy compressors (Liang et al., 2018; Li et al., 2018a) for

CESM and HACC simulation data. The results are obtained

by changing the absolute error bound relative to value range.

Lower error bound results imply higher PSNR values. For

HACC data, we include the results only in the position field,

x. We can see from the table that lossy compressors are

efficient in terms of CR for CESM and HACC data—more

than 100 in some cases. For HACC data, although SZ_vlct

has only one-third of the compression rate compared with

that of SZ, here for the goal of reducing storage we prefer

SZ_vlct to SZ because of its much better CR.

3.4. Reducing I/O time

The I/O bottleneck is becoming a serious issue because of the

ever-increasing volume of data produced by today’s HPC

scientific simulations at runtimeand the limited I/Obandwidth

of the parallel file system (PFS).Ourexperiments (Liang et al.,

2018; Li et al., 2018a), for instance, indicate that the I/O

bandwidth of the Bebop cluster (LCRC Bebop cluster,

2018) at Argonne National Laboratory is only 1–2GB/s when

simultaneously writing/reading a large amount of data by dif-

ferent ranks to/from the PFS. In this case, the total datawriting

time will go up to hours if the total size of the data to store is

10þ TB. Such a volume could be easily reached since one

HPC simulation may involve a large number of ranks/cores,

each producing a portion of simulation data. Suppose there are

40k ranks in a simulation and each rank may produce 2 GB of

data to store; then the total data size would be about 80 TB.

Although other more powerful supercomputers have higher I/

O bandwidths in their PFS than the Bebop cluster does, they

still have an upper-bound I/O bandwidth on the data writing/

reading because of the separate I/O devices (such as I/O racks,

drawers, or nodes) deployed, and such an upper bound would

still become a bottleneck when the volume of data produced

by simulations is large enough. For instance, according to

cosmological simulationusers anddevelopers atArgonne, one

HACC (Habib et al., 2016) simulation may simulate trillions

of particles through 500 snapshots, which means dozens of

petabytes of data to be produced during the simulation.

In order to improve the I/O performance, many existing

I/O libraries designed for scientific data sets allow com-

pression of the data before writing it to the PFS. The HDF5

library (HDF5 Library, 2018), for instance, allows users to

specify a lossless or lossy compression filter (HDF5 Filter

Plugin, 2018) when storing the data in the HDF5 format.

The compression filter will call a specific lossless or lossy

compressor (such as Gzip (Deutsch, 1996), Zstd (Zstandard

compressor, 2018), SZ (Di and Cappello, 2016; Liang et al.,

2018; Tao et al., 2017c), or ZFP (Lindstrom, 2014)) to

perform the compression before the data dumping and per-

form the decompression automatically during the data load-

ing, actions that are totally transparent to users.

Compared with lossless compressors, error-controlled

lossy compression techniques can significantly reduce the

total size of the data to be stored during the simulation with

respected data distortion, thus effectively reducing the run-

time data dumping time as well as the data loading time for

post-analysis. The total data-dumping time can be approxi-

mated as the total compression time plus the total time of

writing the compressed data. Obviously, the important con-

straint of reducing I/O time by compression techniques for

HPC simulations is that the total data dumping/loading time

should be less than the time of writing/reading the original

data. This constraint involves many factors such as compres-

sion/decompression time, CR, and I/O bandwidth.

Note that the compression operation could be performed

by each rank in parallel without any communication; the

total compression time is equal to the maximum compres-

sion time on one rank. As such, the compression time

would be negligible when the execution scale is very large

(such as 10kþ ranks). The total data-dumping time is actu-

ally dominated by the data writing time for a large-scale

simulation with vast volumes of data to write/read, while it

is dominated by the compression time for a small-scale

simulation in general. This situation has been observed in

many studies based on real-world simulations (Liang et al.,

2018; Li et al., 2018a; Tao et al., 2017a, 2017b, 2017c).

In the following, we further illustrate the use cases of

adopting lossy compressors to reduce I/O time, using the

experimental results with real-world simulation data

(called NYX) from the cosmology research project.

Table 3. CRs on CESM and HACC data (higher PSNR means
lower average error).

Compressors PSNR ¼ 43 PSNR ¼ 55 PSNR ¼ 67 PSNR ¼ 86

CESM-ATM

SZ 350 70 35 14

ZFP 29 22 14 8

Compressors PSNR ¼ 65 PSNR ¼ 85 PSNR ¼ 105 PSNR ¼ 125

HACC-x

SZ_vlct 118 36 13 6

SZ 29 10 5 3

CESM: Community Earth System Model; HACC: Hardware/Hybrid
Accelerated Cosmology Code; PSNR: peak signal-to-noise ratio.
Extracted from our conference papers Liang et al., 2018; Li et al.,
2018a.
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The experiments are conducted on Bebop. For reading/

writing data in parallel, we adopt file-per-process mode

with POSIX I/O (Welch, 2005) on each process.3

We evaluate the overall performance of dumping/loading

data in the NYX simulation using various state-of-the-art

lossy compressors with the same data distortion level. Spe-

cifically, the PSNR is set to 60 for each field except for dark

matter density (PSNR ¼ 30) and baryon density (PSNR ¼
40), since such a setting already reaches a high visual qual-

ity. We conduct a weak-scaling evaluation in which each

rank processes 3 GB data and the total data size increases

linearly with the number of cores. We assess the perfor-

mance by running different scales (2048 cores–8192 cores).

The original uncompressed data size is about 24 TB when

using 8192 cores, which may cost over 6 h to store on the

PFS. We present the breakdown of the data-dumping perfor-

mance (sum of compression time and data-writing time) and

data-loading performance (sum of data-reading time and

decompression time) in Figure 6 for the lossy compressors

(SZ 1.4, ZFP, and SZ 2.0) with the best CRs on this data set,

in order to clearly observe the performance difference. Other

compressors such as VAPOR (VAPOR, 2018), FPZIP

(Lindstrom and Isenburg, 2006), and ISABELA (Lakshmi-

narasimhan et al., 2011) would cause much longer time

because of much lower CRs.

We observe that the overall data-dumping times with the

three compressors can be reduced significantly compared

with the original data-writing time (about 6 h). The evalua-

tion results (Figure 7) also show that different compressors

may lead to different performance. Under SZ 2.0, for exam-

ple, it takes only 24% and 54% of the time cost by SZ 1.4

and ZFP 0.5 when adopting 8192 cores, which correspond

to 4.12X and 1.86X performance gain, respectively. The

key reason is that SZ 2.0 leads to 1.5–8X higher CRs than

do the other two compressors with the same PSNR in the

range of [30,60] dB, as shown with SZ 2.0 results in Figure

1(b). SZ 2.0 can also obtain 1.95X higher data-loading

performance (49% lower time cost) than the second best

solution (ZFP 0.5) does, when running the experiment with

8192 cores. It is slightly higher compared with the data-

dumping performance (1.86X) because of the higher

decompression rate than the compression rate. We note that

ZFP 0.5 is generally faster than SZ 2.0 when compressing

the data set, so its overall data dumping/loading perfor-

mance is higher than that of SZ 2.0 when the data size is

relatively low (such as running small-scale simulation with

fewer than 64 ranks/cores each producing 2 GB of data).

The reason is that the overall I/O performance is dominated

by the compression/decompression time in the small-scale

simulation with relatively small amounts of data to write/

read, as discussed previously.

3.5. Accelerating checkpoint/restart

With ever-increasing scales of scientific research problems,

scientists need to run their applications on hundreds of

thousands and even millions of cores in parallel. At these

scales, resilience is a critical issue, because experiencing

interruptions or failure events without fault tolerance would

mean the loss of the execution products and a drastic waste

of resources and energy. The existing fault tolerance strat-

egy used in HPC environments is already the source of

considerable performance overhead. Extreme-scale appli-

cation executions on future and larger systems will need

dramatic improvements in the fault tolerance strategy in

order to keep its performance overhead acceptable.

The current approach used by most applications is

checkpoint/restart. The role of checkpointing is to capture

and save the execution state in a reliable storage system.

Upon failure, the execution is restarted from the checkpoint

accessed on the storage system. File systems are designed

to be extremely reliable, and they represent a place of

choice to save checkpoints. However, while the memory

of extreme-scale systems continues to grow (by a factor of

5 or more for the next generation of systems compared with

the current one), the file system bandwidth is increasing

relatively slowly (as shown in Table 1), meaning that sav-

ing application state (that will be much larger since appli-

cations tend to use all available memory) on file systems

will take much longer than in current systems.
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Optimization strategies of checkpoint/restart model

have been studied for decades. A multilevel checkpoint/

restart model (Bautista-Gomez et al., 2011; Moody et al.,

2010), for instance, was proposed to provide tolerance for

different types of failures. Recently, a few studies have

demonstrated the feasibility of using compression tech-

niques to improve the checkpoint/restart performance.

Islam et al. (2013) adopted data-aware aggregation and

lossless data compression to improve the checkpoint/restart

performance. Sasaki et al. (2015) proposed a lossy com-

pression technique based on wavelet transformation for

checkpointing and explored its impact in a production cli-

mate application. Calhoun et al. (2018) verified the feasi-

bility of using lossy compression in checkpointing two

specific PDE simulations experimentally. Their results

show that the compression errors in the checkpointing files

can be masked by the numerical errors in the discretization,

leading to improved performance without degraded overall

accuracy in the simulation.

Generally, in the context of checkpoint/restart with lossy

compression, researchers have to address three questions:

(1) How does the lossyness level of checkpoints correlate

with application completion time, or even completion at

all? (2) Can lossy checkpoint/restart provide significant

performance gain compared with classic checkpoint/

restart, not only for the time gained on I/O and storage

operations and the time lost on compression/decompres-

sion, but also for the extra application iterations that might

be needed to reach convergence from lossy recovery? (3)

How can one optimize performance in the presence of lossy

checkpointing and failures?

Previous work (Calhoun et al., 2018 Sasaki et al., 2015)

studied a specific scientific application such as climate

simulation or cosmology simulation. In comparison, we

will illustrate how to use lossy compression for checkpoints

in the context of fundamental iterative methods being used

by the scientific community more widely. These methods

are the Jacobi stationary iterative method, conjugate gradi-

ent (CG) method, and generalized minimal residual

(GMRES) method. The following context will illustrate

that lossy compression of checkpoints can significantly

improve the overall performance for these popular iterative

methods in numerical linear algebra.

For demonstration purposes, we use the sparse matrix

arising from discretizing a 3-D Poisson’s equation. We

refer readers to (Tao et al., 2018) for the matrix details.

We use the PETSc (v3.8) (Balay et al., 2018) library for

GMRES and its default preconditioner (block Jacobi with

ILU/IC). We set the relative convergence tolerance to

10�6. For GMRES, we use PETSc’s recommended setting

30 as its restarted step (i.e. GMRES(30)). For the lossy

compressor, we adopt the SZ lossy compression library

(v1.4.12) (Tao et al., 2017c). We use a relative error bound

of 10�4 for all the experiments. We choose the Gzip

(Deutsch, 1996) lossless compressor to represent the loss-

less compression for comparison with the lossy

compression strategy. We call the checkpointing without

any compression techniques traditional checkpointing, the

checkpointing with lossy compression lossy checkpointing,

and the checkpointing with lossless compression lossless

checkpointing.

We evaluate the lossy checkpointing technique for the

iterative methods using 2048 processes/cores from the

Bebop cluster (LCRC Bebop cluster, 2018) at Argonne

National Laboratory. The checkpoints are stored on a par-

allel file system. We characterize the checkpointing and

recovery overheads by running the iterative methods five

times, with a total of about 80 checkpoints and 15 recov-

eries for each execution scale.

Figure 8 shows the average checkpointing time and recov-

ery time for GMRES based on different settings: traditional,

lossless, and lossy checkpointing.We observe that the check-

point/recovery time can be reduced significantly by storing

the checkpoint data compressed by the SZ lossy compressor,

as compared with the other two solutions. In absolute terms,

the lossy checkpointing time is only one-fifth of the tradi-

tional checkpointing time and about one-third to one-half of

the lossless checkpointing time, because of inevitable signif-

icant I/O bottleneck when processing the large volumes of

data on the parallel file system. Jacobi and CG simulations

exhibit similar results for the checkpoint/restart cost.

Figure 9 shows the average overall extra time of running

the three iterative methods (Jacobi, GMRES, and CG) with

different checkpointing solutions with their corresponding

checkpoint intervals using 2048 cores on Bebop in the
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presence of our injected failures. We observe that lossy

checkpointing improves the overall performance of the

iterative methods significantly. Specifically, for Jacobi,

lossy checkpointing reduces the fault tolerance overhead

by 59% compared with the traditional checkpointing and

24% compared with the lossless checkpointing; for

GMRES, lossy checkpointing outperforms the traditional

checkpointing and the lossless checkpointing by 70%

and 58%, respectively; for CG, lossy checkpointing

reduces the fault tolerance overhead by 23% and 20%

compared with the traditional and lossless checkpointing,

respectively. Note that for simplicity we used Young’s

formula (Young, 1974) to calculate the corresponding

checkpoint intervals.

Lossy compression of checkpoints can be also exploited

in context of iterative methods for nonlinear systems of

equations. Lossy checkpointing, for instance, is currently

being investigated for adjoint computations (Boehm et al.,

2016; Kukreja et al., 2018).

The constraints on the lossy compressors when they are

adopted for improving the performance of checkpoint/restart

include the following aspects. First, the application still

needs to reach the convergence from lossy recovery. This

convergence can be because either compression errors in

checkpoints were masked by numerical errors or compres-

sion errors caused extra application iterations even though

they were not masked by numerical errors. Second, the per-

formance degradation due to the extra application iterations

must be mitigated by the time saved on I/O and storage

operations. Third, in order to optimize the overall execution

performance in the presence of failures, one needs to calcu-

late the checkpoint intervals based on the revised perfor-

mance model proposed in (Tao et al., 2018). According to

the model, the compression and decompression speeds need

to be able to be estimated based on the (compressed) check-

point size and user-set compression error bound.

3.6. Reducing the memory footprint

Quantum circuit simulation is a good example of a use case

for reducing memory footprint. In quantum computing

research and development, using classical HPC systems

to simulate quantum computers is important for under-

standing the operations and behaviors of quantum comput-

ing systems. Such simulations allow developers to evaluate

the complexity of new quantum algorithms and validate the

design of quantum devices. To simulate a quantum system

of n quantum bits (qubits), one needs 2n amplitudes to

describe the quantum system. All the amplitudes are writ-

ten as a vector, called state vector. Each amplitude is a

complex number, represented by two double-precision

floating-point data points, one for the real part and the other

for the imaginary part. Thus, given n qubits, the state

vector requires 2nþ4 bytes. Since the number of quantum

state amplitudes grows exponentially with the number of

qubits in the system we want to simulate, the size of the

quantum circuit simulation is limited by the memory

capacity of the classical computing system. For example,

in order to store the full quantum state of a 45-qubit sys-

tem, the memory requirement is 0.5 petabytes. Quantum

systems with more than 49 qubits would require too much

memory to simulate. Since all the amplitudes are gener-

ally involved in every quantum gate computation, storing

the state vector on hard disk would introduce too much I/O

overhead to simulate. In order to reduce the footprint in

memory, the latest approach is to apply lossy compression

(SZ compressor) for floating-point data (quantum state

amplitudes) to the quantum circuit simulation (Wu et al.

2018a, 2018b).

By using data compression to reduce the memory

requirement of storing the full quantum state, the simula-

tors are able to simulate larger quantum systems within the

same memory capacity. The state vector CR is the key

factor that determines how large the quantum system can

be. In general, lossy compressors achieve higher CRs than

lossless compressors do, while introducing errors to a cer-

tain extent. This approach thus involves trading data accu-

racy for memory footprint reduction.

There are two constraints on the lossy compressor when

we apply this technique to quantum circuit simulation.

First, the compression errors must be low enough to get

meaningful results. For the simulations generating only one

output solution, we may tolerate a larger compression error.

However, if the simulation is expected to deliver a prob-

ability distribution of a certain problem, we need to have a

smaller compression error. Second, when we want to

increase the simulation size by n qubits, the CR must be

greater than 2n.

3.6.1. Simulation steps. The quantum circuit simulator with

lossy compression divides the whole state vector into sev-

eral strides ðs1; s2; :::; snÞ, and all the strides are stored in

the compressed format in memory, so that the memory

footprint for storing the state vector is reduced. The

pseudo-code of the simulation process is shown in Algo-

rithm 1. The simulation of a quantum program is processed

gate by gate. When a gate is applied to the quantum state,

only the stride, sj, under processing is decompressed; the

unitary computation is performed on the decompressed
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stride, and then the stride is compressed. This is a complete

operation cycle for a stride. After a stride is finished, the

simulator processes the next stride.

3.6.2. Simulation results. Table 4 shows the simulation results

with the lossy compression approach. The first benchmark

is a case of a quantum approximate optimization algorithm

(QAOA), which is one of the most promising quantum

applications that can be executed in the intermediate-

scale quantum computers. The second benchmark is a

quantum Fourier transform (QFT), which is one of the most

popular quantum core functions of quantum applications

(e.g. Shor’s factorization algorithm). The third, Grover’s

Search algorithm, is one of the most famous quantum algo-

rithms. The simulation quality is assessed by the state fide-

lity, CR, and performance overhead. State fidelity is a

measure of the similarity of two quantum states (Nielsen

and Chuang, 2002). If the fidelity value is 1, then the two

quantum states are identical. The CR determines the mem-

ory footprint reduction. In general, the SZ lossy compressor

successfully reduces the memory requirement of quantum

circuit simulation.

3.7. Accelerating execution

Accelerating the computation has been one of the most

important driving forces for advancements in both com-

puter software and hardware since the development of elec-

tronic computers. Apart from the conspicuous consequence

of completing the given job earlier, faster computer soft-

ware can also have other beneficial properties such as

releasing computing resources earlier or reducing the total

system energy consumption. On the other hand, the effi-

ciency of data storage is becoming increasingly important

for modern computers (Goda and Kitsuregawa, 2012),

especially with the emergence of the supercomputers. Con-

sequently, many scientific works are proposing high-speed

compression algorithms, which attempt to solve both of the

aforementioned problems: speed and data storage effi-

ciency. Even though such a compression stage adds more

computations, it may still be possible to improve overall

execution speed by relieving the memory bandwidth and

size bottlenecks.

For some applications, it may be possible to exploit the

repetition and self-similarities in the data to accelerate exe-

cution. One such application is GAMESS (Schmidt et al.,

1993), where two-electron repulsion integrals are com-

puted for quantum chemistry simulations. The GAMESS

application calculates a large number of data blocks that

contain two-electron repulsion integral (ERI) data in

single-precision floating-point numbers. These blocks are

generated and then consumed repeatedly in quantum chem-

istry simulations during the runtime. Most of these blocks

have high computation costs; however, many of these cal-

culated blocks are identical to each other but still calculated

over and over again nonetheless. Furthermore, within each

are a large number of self-similarities. As shown in Gok

et al., (2018), one can exploit the repetition of blocks and

self-similarities within such blocks to improve the execu-

tion time while maintaining the accuracy and CR

requirements.

3.7.1. Exploiting repetition. Most of these data blocks are

costly to compute; furthermore, such computation can be

considered wasteful since many of the blocks are just repe-

titions of each other. In order to decrease repetitive com-

putations, the data blocks can be stored on either d disk or

memory instead of recalculating these repetitive blocks

over and over again. Since the amount of data generated

by typical simulations is very large, it is usually not prac-

tical to store the data blocks in memory. However, storing

them on disk is also not practical because of the excruciat-

ingly high access times for disks. Furthermore, moving

huge amounts of data to memory or disk brings bandwidth

problems. On the other hand, compressing these blocks

may make it possible to fit them into the memory and have

significantly smaller bandwidth requirements. In this

approach, each unique block is calculated, compressed, and

written into the memory only once; and whenever a block is

needed again in simulations, it is read from the memory and

decompressed. Compared with the original GAMESS

infrastructure, where all blocks are generated and con-

sumed by the simulation on the fly and are then deleted

from the memory, this approach would achieve a reduction

in the block computation costs. Note that all these opera-

tions should be done at runtime because blocks are gener-

ated and consumed repeatedly during a simulation.

Consequently, the timing requirements of such a compres-

sion algorithm would be strict.

In order for this approach to be practical, the following

condition should be satisfied

Table 4. Quantum circuit simulation results.

Benchmark
No. of
qubits

No. of
gates CR Fidelity

Performance
overhead

QAOA 17 260 8� 99.9% 6�
QFT 26 1710 16� 99.9% 15�
Grover’s

Search
20 199 4:59� 105� 99.9% 19�

QAOA: quantum approximate optimization algorithm; QFT: quantum
Fourier transform; CR: compression ratio.

Algorithm 1. Quantum state vector stride update.
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N�TCal > TCal þ TC þ TW þ ðN � 1Þ�ðTR þ TDÞ

where N is the number of times the current block is repeti-

tively consumed during the simulation, TCal is the block

calculation time, TC is block compression time, TW is

block write time, TR is block read time, and TD is block

decompression time. The number N can be considered to

be between 10 to 30 for most blocks in most typical simu-

lations. Note that TCal represents the step with the highest

time cost and would typically be the largest value in the

inequality above.

In Gok et al. (2018), the authors propose SZ-PaSTRI for

this approach, which is a new lossy compression algorithm

implemented in terms of the SZ compression framework

(predictionþ quantizationþ encoding). Significant perfor-

mance improvements for CRs and speeds are obtained by

using SZ-PaSTRI, in that SZ-PaSTRI adopts a very effi-

cient predictor based on the pattern feature of the two-

electron integrals data sets. With SZ-PaSTRI, SZ has now

three different prediction schemes or three different com-

pression pipelines. The SZ-PaSTRI can keep a high CR

(about 10–20) even with very high accuracy requirements,

such as 10�9 to 10�11. Such high-accuracy requirements

are usually considered to be a sufficient condition to

achieve acceptable output quality, yet not a necessary con-

dition. Most algorithms that consume two-electron integral

data are not analyzed in depth according to their input error

propagation to the output; consequently it may be possible

to have more relaxed error conditions in the future if such

analyses are conducted in detail.

To summarize, in order to avoid recalculations, be able

to keep the compressed data blocks in the memory, and

reuse them whenever needed, a compression algorithm

with very high speed and accuracy, along with a significant

CR, is required. Even though lossless compression algo-

rithms always satisfy the accuracy requirement, a lossy

compression algorithm may have better opportunities to

exploit some other aspects in the data. One such opportu-

nity is self-similarities within a data block, as proposed in

the SZ-PaSTRI work (Gok et al., 2018).

3.7.2. Exploiting self-similarities. Each block in two-electron

integral data generated by GAMESS correspond to a scan

of full ranges of four indices that correspond to four basis

functions. The ranges of such basis functions depend

on chemical orbitals, which are represented with letters

s, p, d, f, and so on. If the data within a block is enumerated

according to these four indices, a self-similarity becomes

apparent within that block (Figure 10).

Each block can be divided into subblocks of fixed length,

which is defined by the basis function types (Figure 10a).

Each subblock can actually be considered as a scaled version

of one another, with some minor differences (Figure 10(b)

and (c)). In order to represent the whole block, one subblock

is chosen to be the Pattern and written to the compressed

output. With a pattern selected, all subblocks within that

block can be represented as a scalar multiplication

(scaledpattern) of it, requiring only one number to be saved

per subblock. Some minor differences are possible between

the original data and the scaled pattern, but these differences

are far smaller than the original data range and can be

encoded by using much fewer bits (Figure 10(d)). SZ-

PaSTRI achieves high CRs but also runs fast for both com-

pression and decompression because of the simplistic nature

of the scaling algorithm. Additionally, SZ-PaSTRI employs

other mathematical and bit-level optimizations to improve

both compression speed and ratio even further.

The SZ-PaSTRI algorithm relies on exploiting self-

similarities to achieve high CRs, consequently decreasing

the pressure on the MS and bandwidth requirements, and

relieving the memory bottleneck problem to improve exe-

cution speed (Figure 11). Additionally, compared with its
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parent compressor SZ, exploiting self-similarities allows a

much simpler algorithm, resulting in a very fast execution

speed for SZ-PaSTRI itself.

Another example that improves overall execution time

by leveraging lossy compression can be seen in (Fu et al.,

2017). Sunway TaihuLight is one of the world’s top super-

computers in terms of its computational capabilities, but its

MS and bandwidth are relatively small compared with

other supercomputers of similar scale. Consequently, MS

and bandwidth become key bottlenecks for many applica-

tions on Sunway TaihuLight.

The authors in Fu et al. (2017) ran earthquake simula-

tions that employ floating-point data with large grid sizes

and high-frequency support on Sunway TaihuLight. They

were focused on memory organization and bandwidth

problems since Sunway TaihuLight has a huge number of

computing nodes with a relatively small MS. Eventually,

they proposed an on-the-fly fast compression algorithm

that focuses on speed over anything else. To reach the

desired speed, they have chosen a lossy compression algo-

rithm that first employs a lower-resolution version of the

original simulation to analyze different blocks in the grid.

This analysis focuses on gathering the information about

the data value ranges within each block. After obtaining

this information, the compression algorithm simply reduces

the resolution of the floating-point numbers according to

the value range of each block (Figure 12). Each 32-bit

floating-point number becomes 16-bit compressed data,

thus achieving a 2:1 CR. This CR seems small compared

with most other compression algorithms. However, the

main requirement for this algorithm was high speed, not

high CR, since it is supposed to run on the fly. Eventually,

the developers have achieved a 24% performance improve-

ment with almost unnoticeable errors in the output.

In today’s computer systems and supercomputers, the

most important performance bottleneck is usually the mem-

ory system’s size and bandwidth. To improve the total

system performance, researchers frequently employ differ-

ent types of compression algorithms to reduce the pressure

on the memory systems. A few decades ago, many general-

purpose compression algorithms were proposed, usually

targeting offline compression and decompression. In con-

trast, modern systems have serious memory-related bottle-

necks, which can be solved by specialized on-the-fly

compression algorithms, which have much more strict

speed requirements. In order to achieve required execution

speeds, lossy algorithms are employed frequently, but the

accuracy requirements are usually set very high in order to

ensure that the output will not be distorted much. Such

accuracy constraints may be relaxed in the future if proper

analysis for numerical stability is done for such applica-

tions. On the other hand, CR requirements for such com-

pression algorithms is usually not very high, since they only

need to relieve the memory system enough to divert the

bottleneck to be somewhere else in the system.

4. Toward compressor specialization

The current trend on lossy compression for scientific data is

to design generic lossy compressors that can be used for a

large diversity of applications and use cases. However, the

presentation of the seven use cases reveals that each has a

specific and different set of constraints. Table 5 compares

the requirements for each use case, based on our interaction

with the application developers and users, in terms of

speed, ratio, and accuracy. The table presents the relative

constraints for different use cases. We evaluate the con-

straints qualitatively because they quantitatively depend

on the specific characteristics of the applications and the

system running the applications. For visualization pur-

poses, for instance, the accuracy on error controls is gen-

erally low since the cognitive systems of human can

tolerate visual distortion to some extent. By comparison,

the lossy checkpoiting use case requires fairly high accu-

racy in general because it needs to control the error propa-

gation (or the impact of the data loss to the execution result)

during the simulation after the restart upon the failures.

The table confirms our experience that a single compres-

sor pipeline can serve only a limited set of these use cases.

For example, all known results and experiments show that

reaching high CRs while keeping high accuracy (reducing

footprint on storage) require sophisticated compression

pipelines and significant computation at each stage. Com-

pressor software with such characteristics cannot be used

for online compression of memory accesses (accelerating

execution) because it would slow the application execution

instead of accelerating it. A carefully designed hardware

version of the same compressor might be fast enough to

accelerate the application execution, but currently no

results show that this is the case.

The table suggests the need for designing and imple-

menting specialized compression pipelines to serve the dif-

ferent use cases as effectively and efficiently as possible.

5. Related work

We discuss the related work that addresses the use of lossy

compression techniques in different domains.

As mentioned previously, since visualization is often the

first and foremost step for researchers to understand the

characteristics of the scientific data sets, many lossy com-

pressors are designed for visualization. Li et al. (2018b)

provide a survey of the lossy compression techniques and

sign(1b) exp(8b) frac(23b)

sign(1b) exp(0-8b) frac(7-15b)

Uncompressed

Compressed

Figure 12. The compressor suggested in Fu et al. (2017). 32-Bit
floating-point number is halved in size by adjusting the number of
bits used for its exponent and fraction.
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their use cases (such as reducing storage cost and I/O time)

mainly from the perspective of visualization purpose; in

contrast, our article targets more comprehensive use cases

(including checkpointing/restart, reducing I/O time, and

accelerating execution) in scientific research across differ-

ent domains.

Some other studies (Son et al., 2014; Welton et al.,

2011) discuss the use cases of data compression, but all

of them focus only on specific contexts or relatively old

compression techniques; in contrast, our article gives a

comprehensive discussion of lossy compression use cases

with the corresponding constraints identified by users and

also describe the up-to-date state-of-the-art lossy compres-

sion techniques. Welton et al. (2011), for example, discuss

the gap between CPU and network speed and propose to

reduce the network traffic by lossless compressors. Son

et al. (2014) conducted a survey on the data compression

techniques only in the use case of checkpointing. Their

survey was also limited to the old compressors such as

ISABELA (Lakshminarasimhan et al., 2011) and FPZIP

(Lindstrom and Isenburg, 2006). This survey did not cover

important lossy compressors such as SZ (Di and Cappello,

2016; Liang et al., 2018; Tao et al., 2017c) and ZFP (Lind-

strom, 2014) that have much higher compression perfor-

mance as confirmed in the recent studies (Liang et al.,

2018; Lindstrom, 2014).

6. Conclusion

Limitations in memory and storage space and in bandwidth

in supercomputers and scientific instruments, in conjunc-

tion with recent progress in lossy compression technology

and, in particular, the strict respect of user-set error bounds,

have opened opportunities for new use cases of lossy com-

pression for scientific data. In this article, we describe

seven identified use cases of lossy compression for scien-

tific research. Three of the use cases, involving visualiza-

tion, reduction of storage footprint, and reduction of I/O

bandwidth, are classic. The other four user cases are more

recent. Although overlaps exist between these use cases,

our experience is that they have different sets of con-

straints, as listed in Table 5. While the current trend in lossy

compression is to design generic lossy compressors

targeting many different use cases, the different sets of

some time-conflicting requirements of the use cases sug-

gest that more specialization is needed in compression

pipelines. This in turn suggests that, in order to be efficient

and effective for a large diversity of use cases, generic lossy

compressors need to be adaptable and provide multiple

configurations or/and multiple pipelines.
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Notes

1. Some compressors such as ISABELA (Lakshminarasim-

han et al., 2011) were designed with pointwise error

control, but tests have shown that the max error could

be much larger than the user-set error bound (Di and

Cappello, 2016).

2. In rare cases, ZFP may not respect an error bound if all

values within a block cannot be represented by the same

exponent.

3. POSIX I/O performance is close to other parallel I/O

performance such as MPI-IO (Thakur et al., 1998) when

thousands of files are written/read simultaneously on

GPFS, as indicated by a recent study (Turner, 2017).
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