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Moore’s Law scaling continues to yield higher transistor density with each succeeding process generation,
leading to today’s many-core chip multiprocessors (CMPs) with tens or even hundreds of interconnected cores
or tiles. Unfortunately, deep submicron CMOS process technology is marred by increasing susceptibility to
wear. Prolonged operational stress gives rise to accelerated wearout and failure due to several physical
failure mechanisms, including hot-carrier injection (HCI) and negative-bias temperature instability (NBTI).
Each failure mechanism correlates with different usage-based stresses, all of which can eventually generate
permanent faults. While the wearout of an individual core in many-core CMPs may not necessarily be
catastrophic, a single fault in the interprocessor network-on-chip (NoC) fabric could render the entire chip
useless, as it could lead to protocol-level deadlocks, or even partition away vital components such as the
memory controller or other critical I/O. In this article, we study HCI- and NBTI-induced wear due to actual
stresses caused by real workloads, applied onto the interconnect microarchitecture and develop a critical
path model for NBTI-induced wearout. A key finding of this modeling is that, counter to prevailing wisdom,
wearout in the CMP’s on-chip interconnect is correlated with lack of load observed in the NoC routers rather
than high load. We then develop a novel wearout-decelerating scheme in which routers under low load have
their wear-sensitive components exercised without significantly impacting cycle time, pipeline depth, area,
or power consumption of the overall router. A novel deterministic approach is proposed for the generation
of appropriate exercise-mode data, ensuring design parameter targets are met. We subsequently show that
the proposed design yields an ∼2,300× decrease in the rate of wear.
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1. INTRODUCTION

The continuous aggressive miniaturization of CMOS feature sizes and the resulting
increase in transistor density has recently sparked the multicore era. Architects have
harnessed this increasing supply of transistors, resulting in the design of parallel sys-
tems, including chip multiprocessors (CMPs) [Howard et al. 2011]. In these systems, the
on-chip interconnect, typically organized as a network-on-chip (NoC) [Dally and Towles
2001], plays a vital role in enabling communication among the various on-chip computa-
tional, memory, and peripheral components, as illustrated in Figure 1. Unfortunately,
deep submicron CMOS process technology is marred by increasing susceptibility to
wearout, dramatically shortening the useful lifespan of such on-chip parallel systems.
Recent ITRS reports indicate a ten-fold decrease in wear-rate will be required to main-
tain current design lifetimes without dramatically increasing timing margins [ITRS
2009]. As we will illustrate, wearout does not affect all components equally: wear of the
cores can often be managed, while wear of the NoC interconnect can be catastrophic.
Furthermore, we will show that wear in the NoC is highly dependent upon the actual
operational stresses caused by real CMP workloads. In this work, we develop tech-
niques to proactively maintain the CMP’s NoC in the face of workload-dependent wear,
and hence improve the overall functional lifetime of the CMP as a whole.

Two key operational stress-induced wear mechanisms in current and future CMOS
technology are hot-carrier injection (HCI) and negative-bias temperature instability
(NBTI) [Oboril and Tahoori 2012]. Both HCI and NBTI cause a shift of the transistor’s
threshold voltage, leading to switching delay and critical path degradation [JEDEC
2011]. Though these effects do not result in circuit opens or shorts, over time they can
cause critical path timing violations. Given equivalent supply voltage and temperature,
HCI and NBTI degradation are primarily dependent upon the time transistors have
been operating under stress. These types of stresses are essentially data- and usage-
dependent in terms of the activity factor (i.e., the fraction of cycles during which a
transistor switches) and duty cycle (i.e., the percentage of time the gate’s voltage is
held at a constant zero), respectively, of the gates in typical CMOS logic circuits.

Figure 1 illustrates a CMP exposed to wearout failures in its various components.
As prior work would indicate, individual core wearout and failure need not be catas-
trophic to the functionality of many-core CMPs due to the inherent core redundancy
that a CMP implies [Karpuzcu et al. 2009; Blome et al. 2007; Smolens et al. 2007;
Powell et al. 2009; Li et al. 2008a; Huang and Xu 2010]. With increasing numbers of
cores, an equivalently smaller portion of the overall system’s required throughput is
dependent upon each individual core. The component failure scenario (1) of Figure 1
shows this case. Failure caused by wearout of some cores need not result in full-system
failure. Instead, the system could suffer some performance loss while preserving cor-
rect functionality, assuming core-level error detection and appropriate system support
is available [Blome et al. 2007; Smolens et al. 2007; Powell et al. 2009; Li et al. 2008a;
Huang and Xu 2010; Skitsas et al. 2013].

For the NoC interconnecting the cores, however, redundancy-based wear resilience
breaks down (c.f., component failure scenarios (2), (3), and (4) of Figure 1). Scenario (2)
illustrates the case in which a wearout-induced link failure precludes access to a key
I/O peripheral, while in scenario (3), link and router wearout has partitioned away
a large fraction of the network, making those cores and I/O components inaccessible
from the rest of the system. In both cases, wearout is catastrophic in that the system
will likely be rendered unusable due to these failures, unlike the core wearout in
scenario (1) discussed earlier. Even scenario (4), in which a single link is broken due
to wear-induced failure, might lead to a communication protocol-induced deadlock(s),
or subnetwork isolation, if the network is not provisioned to address wear-induced
failures.

Prior work has proposed various fault-tolerant routing algorithms and fault-
insensitive router and link designs in an attempt to manage faults as they
occur [Zhang et al. 2008; Schonwald et al. 2007; Fick et al. 2009; Bhardwaj et al. 2012,
2013; DeOrio et al. 2011]; however, network isolation and key resource partitioning
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Fig. 1. A 64-core CMP with an 8×8 2D mesh NoC. Components marked with a black × illustrate wearout
failure. The failure scenarios are as follows: (1) failure of cores; (2) peripheral device disconnected from the
system due to link failure; (3) network segmentation resulting in a disconnected subnetwork; (4) individual
link failure.

cannot be fully resolved using only such reactive techniques. Ideally, one would prefer
to develop proactive mechanisms to extend the healthy status of the system without
failure rather than react to the faults once they occur. Such proactive mechanisms
could be coupled to reactive mechanisms in the hope that the latter would be required
less frequently as faults in the system would occur sporadically.

In this work, we present a proactive technique designed to decelerate the effects of ag-
ing in the CMP NoC. Based upon detailed HCI and NBTI transistor-level aging models,
we develop a novel, critical path-based model to characterize the effects of aging-related
wear. Based upon this model, we analyze the NoC router microarchitecture to find the
paths most susceptible to wearout. Using real workloads from the PARSEC Benchmark
Suite [Bienia et al. 2008], we characterize various wearout mechanisms that map onto
those paths. Finally, we develop a wearout-resistant router micro-architecture, coupled
with a deterministic generation of exercise mode data, which prolongs circuit lifetime
with negligible influence on the router’s timing, pipeline, CMOS area requirements,
and power consumption. This proposed technique yields a ∼2300× decrease in the
CMP wear rate.

This article provides the following contributions.

(1) We present a generalized, microarchitecture-level (rather than device-level)
wearout model.

(2) We characterize NoC router and link wearout due to HCI and NBTI under real
workloads from the PARSEC Benchmark Suite [Bienia et al. 2008].

(3) We provide a novel wear-resistant router microarchitecture which dramatically
improves interconnect lifetime, and hence full-system survivability in the presence
of both HCI- and NBTI-wearout mechanisms.

(4) We use a novel systematic approach, inspired by recent work in automatic test
pattern generation, to generate exercise mode data which supervises the NoC’s
lifetime extension, while maintaining a small hardware overhead for the underlying
router microarchitecture.

This article is organized as follows. Section 2 examines existing transistor-level mod-
els for HCI- and NBTI-induced wear. Next, Section 3 examines the sensitivity of the
router’s critical path to wear by analyzing the activity and duty cycle of its critical
path, and characterizes the router’s wear caused by the behavior of real application
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workloads. Based upon these wearout models, Section 4 then develops a circuit path
delay model for workload stress-induced wear. Section 5 proposes a novel router mi-
croarchitecture to improve the lifetime of NoC routers under realistic workloads which
utilizes the exercised mode data derived by the systematic methodology described in
Section 6, while Section 7 evaluates the proposed design. Finally, Section 8 presents
prior related work, while Section 9 concludes article.

2. BACKGROUND

Prior research shows that the two dominant CMOS transistor physical failure mech-
anisms are hot-carrier injection (HCI) and negative-bias temperature instability
(NBTI) [Nassif et al. 2007]. Under both, failure mechanisms charge becomes trapped in
or near the gate oxide, resulting in a slow increase of the transistor’s threshold voltage
(Vth). This in turn causes the delay in transistor state switching to expand.

In traditional circuit CMOS design, the clock frequency of a given design is deter-
mined by the circuit path which exhibits the longest latency between its end latches.
This critical path comprises a chain of connected gates between latches. As HCI- and
NBTI-induced aging progresses, it gradually extends the delay of each gate found in
this chain, slowing down the entire critical path. In modern CMOS designs, due to
this age-induced slow-down and other causes, such as process variation [Kuhn 2007],
designs are given timing guard-bands so as to guarantee their intended functionality
for a certain duration of time [Agarwal et al. 2007]. Once the aggregate increase in
delay along a timing-critical path exceeds this guard-band, due to the aggregation of
increasing delays occurring in individual gates along this path, the functionality of the
system is no longer assured. The moment at which this timing violation first occurs de-
termines the system’s useful life span. Of course, HCI and NBTI impact all transistors
in the design (not only those in the critical path); however, those on the critical path
are more likely to exceed the guard-band, thus causing a critical failure.

In this section, we first describe the impact of these aging mechanisms upon Vth using
transistor-level analytical models. We then examine a number of specific NoC router
critical paths which are most susceptible to these aging effects, since they determine
the system’s clock rate.

2.1. Failure Mechanisms

Design rules and operating conditions are precisely chosen to ensure correct product
functional operation over its intended lifetime [Li et al. 2008b]. To obtain a given level
of performance when utilizing an integrated circuit under various design constraints,
it becomes imperative to create and analyze the reliability model of the digital system
under consideration and during its design phase.

As previously discussed, the HCI and the NBTI mechanisms do not induce fail-
ures; rather, they shift parameters over time under circuit operational stresses. The
Reaction-Diffusion (R-D) model uses the threshold voltage (Vth) shift as a proxy of NBTI
and HCI stress [Wang et al. 2011]. A shift in Vth causes transistor delay degradation
according to the Alpha Power Law [Sakurai and Newton 1990]:

dg ∝
Vdd

μ(Vdd − Vth)α
, (1)

where dg is the transition delay, μ ∝ T −1.5 (T being temperature), and α = 1.3.
Lifetime can be defined as the time until an important material of a component or

device parameter degrades beyond the point at which the device or circuit can function
properly in its originally intended application. For a single gate, when �Vth reaches
some level (in practice, it is usually 10% [Wang et al. 2011]), the transistor is considered
to be over-aged. For the multigate path, the cumulative transistor delay shift increases
faster than a single gate’s worst-case delay degradation. Therefore, a total gate delay
shift over the entire path, when its value reaches or exceeds the 10% threshold mark,
can serve as a lifetime period indicator.
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Fig. 2. CMOS in-
verter.

Fig. 3. HCI and NBTI stress time windows for a CMOS inverter.

Figure 2 shows a typical CMOS inverter, indicating the failure mechanisms asso-
ciated with each type of transistor: HCI affects both the nMOSFET and pMOSFET
transistors, while NBTI affects only the pMOSFET transistor (note that PBTI is the
complement of NBTI and affects nMOSFET transistors only; however, its effect is gen-
erally considered to be much smaller than that of NBTI). The following sections present
a device parameter degradation model that captures the HCI and NBTI wearout effects.

2.1.1. Hot-Carrier Injection (HCI). Hot-carrier injection (HCI) is a wear-out mechanism
which occurs when carriers flow along the channel in MOSFET transistors and gain
sufficient kinetic energy to be injected into the gate oxide resulting in a charge trap
and interface state generation. This leads to a gradual transistor parameter shifting,
including switching frequency degradation, rather than causing an immediate failure
event [JEDEC 2011].

A substrate current-based (Isub) model is commonly used to estimate HCI’s effect.
Prior work shows that the threshold voltage shift due to HCI under DC stress is

�Vth HCI|DC = A(Isub)mtn′

stress, (2)

where A is the material-dependent parameter, tstress is the stress time, and n′ and mare
technology-related exponents [Li et al. 2008b; JEDEC 2011].

According to the Alpha Power Law of Equation (1), the delay of a transistor depends
linearly on threshold voltage for small shifts, so the gate delay shift can be expressed
as

�dg HCI

∣

∣

DC
= Â(Isub)mtn′

stress, (3)

where Â is a fitting constant.
The lifetime of a device exposed by a direct HCI effect [JEDEC 2011] is

TTFHCI|DC = AHCI (Isub)
−N′

e

(

EaHCI
kT

)

, (4)

where EHCI is the apparent activation energy, Isub is the substrate current under stress
at VG = VD, T is the runtime temperature, k is Boltzmann’s constant, N′ is the
technology-related exponent, and AHCI is a fitting constant.

HCI stresses the device only during dynamic transitions when current flows through
the device. Figure 3 shows voltage waveforms of a standard CMOS inverter. The pMOS-
FET transistor suffers HCI stress when the output of the inverter is pulling up and C0
is charging up (see Figure 2). The nMOSFET transistor experiences HCI degradation
during the reverse dynamic stage, when the output of the inverter is discharged to
the ground (low-voltage level) [Li et al. 2008b]. Thus, each of the CMOS transistors
experiences degradation only during half of a switching period, and hence the relation
between HCI stress time tHCI

stress and runtime t can be derived as

tHCI stress = dg f αSAt, (5)

where dg is the transition delay, αSA is the switching activity, and f is the frequency.
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Since HCI stress occurs during the device turn-on and turn-off periods, the impact
of HCI under AC stress can be extracted from Equations (3) and (4) using (5):

�dg HCI

∣

∣

AC
= A(Isub)m(dg f αSAt)n′

. (6)

And finally, the last equation is transformed into a relation for HCI lifetime:

TTFHCI(T , αSA)
∣

∣

AC
= AHCI

1

dg f αSA
(Isub)

−N′

e

(

EaHCI
kT

)

. (7)

This relation shows that the lifetime of a transistor due to HCI is inversely related
to the switching activity αSA of the gate input. Hence, frequent switching, such as
that shown in Figure 3(a), not only increases the dynamic power consumption but also
speeds up the aging effect, whereas a gate with less frequently-occurring transitions,
as shown in Figure 3(b), will experience lighter HCI-induced aging.

2.1.2. Negative-Bias Temperature Instability (NBTI). Negative-bias temperature instability
(NBTI) is a wear-out effect that influences pMOSFET transistors as long as they oper-
ate in inversion (i.e., a “0” voltage on the input of an inverter, as shown in Figure 2).
Thus the data-dependent stress caused by NBTI is very different from that of HCI,
which is under stress during voltage-level switching. NBTI changes the pMOSFET
transistor parameters over time. In particular, it leads to an increase in the threshold
voltage (Vth) as well as a reduction in the drive current due to charge carrier mobility
degradation. As with HCI, NBTI does not result in complete circuit failure but rather
in circuit-speed degradation. JEDEC reports that process technology scaling will lead
to a larger NBTI-induced threshold voltage in pMOSFET transistors [JEDEC 2011].
It has been reported that, unlike HCI, some degree of recovery from NBTI degradation
can occur in the event that a relaxation period occurs after the stress period [JEDEC
2011; Li et al. 2008b; Wang et al. 2011].

We use the AC stress model for NBTI degradation under high-frequency CMOS
operation, as proposed by Lu et al. [2009], which provides a theoretical upper-bound
estimation of the NBTI effect in terms of time as

�Vth NBTI = A

(

β

1 − β

)n

tne

(

−
nEaNBTI

kT

)

, (8)

where β is the duty cycle (i.e., the fraction of time the gate’s voltage is zero), EaNBTI is
the activation energy, T is the temperature, t is the operating time, k is Boltzmann’s
constant, n is the time exponent, and A is a fitting constant [Lu et al. 2009].

According to the Alpha Power Law (1), the first-order gate delay can be approximated
as a linear function of the threshold voltage. Hence, the gate delay shift can be expressed
as

�dg NBTI = Â

(

β

1 − β

)n

tne

(

−
nEaNBTI

kT

)

. (9)

The lifetime of a single transistor under AC stress can be derived from (9) as

TTFNBTI =

[

ANBTI

(

1 − β

β

)n

e

(

nEaNBTI
kT

)
]1/n

. (10)

Thus, lifetime degradation due to NBTI depends on the duty cycle of the input signal.
Transistors with a smaller duty cycle, such as the duty cycle shown in Figure 3(a) in
comparison to the duty cycle shown in Figure 3(b), experience a slower degradation
rate.

2.1.3. HCI and NBTI Failure Mechanism Analysis. It may first appear that a technique
which improves device lifetime by decreasing NBTI must come at the cost of a com-
parable degradation caused by HCI-related wear (and vice versa). We note, however,
that the activity factor αSA is not the inverse of duty cycle β; when β is large, it is
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Fig. 4. Baseline router.

possible to make a substantial change to β without proportionally impacting αSA. Fur-
thermore, because of the 1

(1−β) term in Equations (8) and (9), large βs tend to have a

disproportionate impact on aging-related slow-down. Even a small improvement in the
value of β can therefore have a substantial positive effect on the overall device lifetime
(especially when β is relatively large).

2.2. Router Microarchitecture

The canonical NoC virtual channel router is proposed by Peh and Dally [2001]. Its block
diagram is shown in Figure 4(a). The major building blocks of this NoC router are input
channels, a crossbar (switch), and the control logic which includes the switch and virtual
channel allocators. When used in a two-dimensional mesh NoC architecture, typically
five input and output channels, p, are used to connect its four immediate neighbors at
the cardinal points and its local processing element. An input channel is composed of a
given number of virtual channels (VCs), each of which includes registers to keep track
of their statuses and buffers to store flits (flow-control digits, a logical fixed-segment of
a packet). The routing units also examine flits found in the input channels to determine
the next-hop direction packets should take (i.e., east, west, north, or south directions).
The VC allocator assigns a free VC at a downstream router to a head flit, the first
flit of a packet. If the head flit successfully obtains a VC, it competes with any other
flits destined to the same output port during switch allocation. Body and tail flits in
the same packet skip the routing and VC allocation stages and directly proceed to
the switch allocation stage. Once switch allocation is complete, the flit traverses the
crossbar.

Our baseline router performs both VC and switch allocation during the same cycle by
speculatively allowing a packet to compete for the switch while it is still competing for a
free VC at the downstream router [Peh and Dally 2001]. Figure 4(b) shows the baseline
router pipeline. Flit decoding and routing computation are carried out in Stage 1. The
combined VC and switch (SW) allocations are carried out in Stage 2. In Stage 3, flits
traverse the crossbar.
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NBTI and HCI both slow transistor switching, and thus damage from the circuit
aging first takes place where timing is most critical. To determine the critical path of
the baseline router, we adapted our baseline RTL from the publicly available router
RTL model designed by Becker [2012]. This RTL model is synthesized using Synopsys
Design Compiler and mapped to TSMC 45nm standard cell library to a 1GHz frequency.
All critical paths with slack less than 10% of the clock frequency are gathered using
Synopsys Design Vision and analyzed offline.

The results of this analysis are highlighted in Figure 4(b). We find that all timing
critical paths (i.e., those within 10% of the 1GHz clock frequency) pass through the VC
and switch (SW) allocators. These results correspond well with prior research [Peh and
Dally 2001].1 The utilization of the allocators is closely related to the router’s incoming
rate or the number of flits traversing the given router per cycle, because the allocators
are enabled by the input channel which sends the request signal to the allocators when
it has flits to forward. As the critical path is initiated by the request signal, the wire
activity along the path is dependent upon how often the request signal is set, which in
turn is determined by the workload’s utilization of that router. We therefore expect that
the stress time for HCI and NBTI, which are closely related to the activity factor and
the duty cycle, thereby should be also closely correlated to the router’s utilization. Next,
in Section 3.3, we perform an in-depth study on the impact of typical CMP workloads
on the router’s critical path in terms of activity factor and duty cycle.

3. ROUTER WEAROUT CHARACTERIZATION

To examine the sensitivity of the router’s critical path to HCI and NBTI wear, we first
analyze the activity of wires residing in the baseline router under synthetic workloads.
The router has five physical channels, four VCs per physical channel, and 4 flit-deep
buffers per VC. Dimension-order routing (DOR) is used. The network is designed to
transfer 64-byte memory blocks where the link-width between adjacent routers is 128
bits, discounting any flow-control signals. Hence, if a packet includes such data, it is
composed of 5 flits (1 head flit containing routing information and metadata and 4 data
flits); otherwise, it is composed of only 1 head flit. The workload is generated with an
arbitrary injection rate, maintaining a 50-50% proportion of 1-flit and 5-flit packets. As
described in Section 2.2, all paths from the post-synthesis router model with 10% or less
slack relative to the 1GHz clock frequency, were examined. In particular, information
about the activity factor and duty cycle of all wire nodes along each critical path under
these workloads was retained for analysis.

3.1. Impact of Workload upon Router Activity Factor

HCI is proportional to the activity factor of the NoC’s interconnect wires such that
a higher activity factor results in an accelerated (higher) aging rate (refer to Sec-
tion 2.1.1). Figure 5(a) shows the histogram of activity factors of the wires on the
critical paths of an NoC router with respect to varying incoming rates. The first ob-
servation we make is that the nodes have a quite low activity factor, the vast majority
switching less than 10% of the time (activity factor of 0.1).

Intuitively, the higher incoming rate should cause a correspondingly higher activity
factor. This implies that a router experiencing traffic from an application that injects
more frequently ages at a faster rate because of HCI stress. Hence, it is desirable to
keep a low incoming rate so as to improve the longevity of the router. We find, however,
the activity factor does not increase very significantly as the incoming rate increases.
For instance, even at the very high incoming rate of 1.0 flits/cycle, the activity factors
of most of the wires remain at a relatively low value, and only 7.7% of wires have an
activity factor greater than 0.1.

1Some prior work highlights the credit return path as the critical path within the router; in our experiments,
assuming 6mm links between routers, we found that the credit return path was not found on the critical
path. With longer links, however, the return path might become critical, requiring further analysis.
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Fig. 5. Sensitivity to the activity factor.

Without a priori knowledge of the router’s critical path, one might expect that the
content of the data traversing the network would also affect the activity of routers. Fig-
ure 5(b) shows the histogram of activity factor with various data contents (percentage
of logical zeros in each data-flit vector) at a fixed incoming rate of 0.10 flits/cycle to ex-
amine the router’s critical path activity factor sensitivity to data content. As expected,
the data content does not affect the activity factor of the wires along the router’s critical
path.

3.2. Impact of Workload upon Router Duty Cycle

NBTI is highly sensitive to the duty cycle of gates (see Section 2.1.2). Figure 6(a)
depicts the histogram of wires along the critical path at a given duty cycle for different
incoming rates in terms of flits per cycle. In Figure 6, the width of each bin is 0.05;
hence bin[0] shows the percentage of gates with a duty cycles in the range of [0, 0.05)
and so on. In general, the majority of gates fall into duty cycle bins near 0, 0.5, or 1.0,
regardless of the incoming rate. As the incoming rate grows, the bins at the two ends
of the spectrum fall while the central part moves up, indicating that an increasing flit
incoming rate causes less skew in the duty cycle towards these extremes. Figure 6(b)
and Figure 6(c) magnify the two ends of Figure 6(a). To improve observability in these
figures, we use a narrower bin width of 0.001. With the increased resolution, we note
that higher incoming rates have great impact on duty cycles at these extremes, reducing
the percentage of wires along the critical path with the highest and lowest duty cycle
from ∼35% to near 0%.

The incoming rate’s effect on the duty cycle causes notable differences in the NBTI’s
impact upon gate delay. As shown in Equation (9), there is a nonlinear relationship
between duty cycle and gate delay such that the gate delay shoots up as the duty cycle
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Fig. 6. Histogram of duty cycle with respect to incoming rate.

Table I. System Setup

Cores 64 on-chip, in-order, Alpha ISA

L1 Cache 32KB instruction/32KB data, 4-way,
64B lines, 3-cycle access time
MESI cache coherent protocol

L2 Cache 64-bank fully shared S-NUCA, 16MB,
64B lines, 8-way associative,
8-cycle bank access time

Memory 150-cycle access time, 8 on-chip memory
controllers

Network 8 × 8 Mesh, X-Y routing,
4 VCs/port, packet length: 1 flit or 5 flits

gets closer to 1.0. Hence, for example, it is ideal to have two gates in a given path
with the same duty cycle of 0.5, instead of having two gates with duty cycle of 0.0
and 1.0, respectively, in terms of the path-cumulative impact of NBTI upon gate delay.
The delay increase due to NBTI from a single gate under a duty cycle of 1.0 alone will
greatly exceed the sum of delay increases from two gates, each with a duty cycle of
0.5. Thus, it is preferable to have a higher incoming rate with more gates with duty
cycles closer to 0.5 than to have a lower incoming rate and gates that have duty cycles
closer to 1.0; although it is notably counterintuitive that accelerated wear-out occurs
when routers are underutilized. Based upon these observations, we will next develop
a multigate delay model in Section 4.

We examined the router’s critical paths to determine why these paths exhibited such
a skewed duty cycle and low activity factor (see Section 3.1). In a router, the longest
paths through the crossbar and VC allocators are primarily concerned allocation corner-
cases, such as multiple simultaneous incoming packets attempting to allocate a VC with
limited available VCs. These cases are relatively rare, only occurring under highly
loaded network conditions, thus these control signals switch infrequently and have
very poor duty cycles when the NoC experiences low loads.

3.3. Workload Characterization

Having identified the per-router incoming rate to be a critical workload characteristic
that correlates with wear, we now examine the router-to-router incoming rate vari-
ance in realistic workloads. In this study, we use the PARSEC benchmark suite as our
workload, as these benchmarks mimic a range of representative next-generation, large
shared-memory, multithreaded programs for CMPs [Bienia et al. 2008]. The diversity
of the PARSEC benchmarks makes them especially useful for this study, as they span
a diverse range of emerging applications with varying on-chip communication spa-
tiotemporal characteristics. Specifically, with the PARSEC benchmarks, one observes
different and varying behaviors in the NoC’s packet (or flit) incoming rate, as will be
outlined next in detail.
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Fig. 7. Average flit incoming rate per router for the entire range of the PARSEC benchmark suite (bars)
and related range of incoming values (lines).

The realistic workloads are generated from the gem5 simulator [Binkert et al. 2011]
emulating a 64-core system executing multithreaded programs in the PARSEC v2.1
[Bienia et al. 2008] benchmark suite. Table I shows the details of the system setup
used in our simulations. We first generate NoC traffic for each application for its
region of interest (ROI). We then count the number of flits traversing each router to
compute the incoming rate of that router. We note that the term incoming rate here
is the number of flits injected to a particular router per unit time, rather than the
number of flits generated and injected to the network as a whole. This includes the
number of flits generated by the router’s local processing element and the flits going
through or headed for the router. The reason for concentrating on the incoming rate
temporal characteristics is that the router’s critical path activity is highly related to
the frequency of flit arrival (see Sections 3.1 and 3.2).

Figure 7 depicts the average number of flits injected into a router (shown by the
solid bars) according to the aforementioned experimental setup, per unit time for each
PARSEC benchmark. The incoming rate at routers, on average, is 0.02 flits per cycle.
It varies across the programs under examination ranging from 0.003 (x264) to 0.05
(canneal). The average incoming rate also varies within the same application based on
the cartesian location of the router, and the variance is captured by the dark line over
each bar. The bottom of the line shows the incoming rate of the router which handles
the least traffic among the routers in the network for that benchmark (min incoming
rate), and the top of the line denotes the incoming rate of the busiest router (max
incoming rate). Hence, the per-router incoming rate under the PARSEC workloads
actually varies between 0.0005 (min of x264) and 0.085 (max of canneal). In Figure 7,
“AVG” denotes the arithmetic means of the average incoming rate (the bar) and the
min and max incoming rates (the line) across the entire range of benchmarks. “ALL”
captures those three incoming rates when the system runs all the benchmarks, one at
a time, sequentially.

In general, the average incoming rate seen at each router is quite low, at 0.02 flits
per cycle. Hence, HCI-induced aging is not expected to contribute significantly to gate
delay under these workloads. Alternately, as discussed previously, a low incoming rate
causes NBTI-induced aging. Thus, routers running PARSEC workloads are exposed
to accelerated NBTI-induced aging due to their light traffic. Furthermore, there is
an observable high variance in their spatially-distributed network flit incoming rates
such that some routers executing the ferret and x264 benchmarks experience even less
than a 0.001-flits-per-cycle incoming rate. We therefore focus on NBTI aging in the
remainder of this study.

4. PATH DELAY

In Section 2.1, we examine existing formulas characterizing wear-induced transistor
gate delay. While these equations accurately model the incremental breakdown of
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Fig. 8. An example circuit path with multiple gates.

individual gates, we observe that a single gate is only one component of a particular
critical path. Here, we derive formulas to compare the relative lifetime of two systems
that operate under the same conditions, focusing on the microarchitectural level. There
are a number of delay models which take into consideration the aging effect at the
transistor level or gate level, but few exist at the microarchitectural level. Ultimately,
to calculate the point at which gate delay compromises timing along a particular path,
one must examine the cumulative increase in delay (delta-delay) along that path. Here,
we propose a method for computing the relative lifetime of a path between latches given
the duty cycle of each gate along that path.

We assume that a number of sequential gates comprise a circuit path, as shown in
Figure 8. Along this path, the delay increase due to the ith gate with duty cycle βi at
time t can be expressed as

�di(βi, t) = ψ × tn ×

(

βi

1 − βi

)n

, (11)

where the constant ψ includes all other terms in Equation (9) under the assump-
tion that those will remain constant under the same condition. The cumulative delay
increases along a path with N gates at time t can be computed as

�d(t) =

N−1
∑

i=0

�di(βi, t) = ψ × tn ×

N−1
∑

i=0

(

βi

1 − βi

)n

. (12)

A system is reliable as long as the �d(t) of the critical path is smaller than the
guard band. Hence, we define lifetime, Tlifetime, such that �d(Tlifetime) < guardband.
The acceleration factor (AF) is defined as the ratio of the lifetime of the system under
consideration, Tlifetime(x), and a reference system, Tlifetime(re f ):

AF(x) =
Tlifetime(x)

Tlifetime(re f )
=

⎛

⎜

⎜

⎜
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⎟

⎟

⎠

1/n

, (13)

where βi is the duty cycle of the ith gate on the critical path of the system under
consideration, and β j is the duty cycle of the jth gate on the critical path of the
reference system. In Equation (13), it is assumed that the number of gates on the
critical path of the two systems are N and M, respectively. We note that the method
proposed here computes the relative lifetime improvement under NBTI degradation.
As discussed in Section 3.3, under the workloads examined, HCI degradation is low
and relatively insensitive to the incoming rate; thus we are not modeling its effect on
lifetime here.

5. LIFETIME-EXTENDING ROUTER MICROARCHITECTURE

As outlined in Section 3, the aging process is incoming rate-dependent along the crit-
ical path. The gate delay increases and the timing constraints are violated along the
critical path first. A low incoming rate causes a biased duty cycle in the wires along the
critical paths, because those paths deal with allocation corner-cases which are rare,
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Fig. 9. Virtual channel and switch allocation stages.

unless the load is very high. These biases accelerate NBTI; thus the router requires
an increased incoming rate to improve the duty cycle of nodes along critical paths,
which subsequently improves lifetime. However, increasing the incoming rate artifi-
cially yields other problems, such as increased power consumption. Also, as mentioned
in Section 3.1, an increase in incoming rate slightly increases its activity factor as well,
which accelerates the HCI effect. The duty cycle must therefore be improved without
increasing the activity factor significantly. We note that although duty cycle and ac-
tivity factor are related, it is possible to reduce the duty cycle of a node substantially
without increasing the activity factor substantially by infrequently changing the value
of that node. Hence we propose a method to exercise the critical path which improves
the duty cycle while minimally disturbing the activity factor, that is, improving NBTI
without substantially impacting HCI. The goals of the proposed mechanism are (1) to
improve the duty cycle by allowing the circuits to operate at a greater portion of their
time in the “1” state without affecting the actual data values being transferred, (2) to
not change the state of the router, (3) to not worsen the critical path timing, and (4) to
not significantly increase the activity factor.

5.1. Router Critical Path

Figure 9 shows the second pipeline stage of the router (VC and SW allocation) in detail.
As indicated by the dotted line in Figure 9, the critical path of the NoC router starts
with the flip-flops inside VCs, passes through the allocators and ends again in one of
the VCs. Each VC sends a one-bit “Request” signal to the allocator to reserve a VC at
the downstream router and/or to bid for switch bandwidth at the crossbar so that the
crossbar can be traversed by competing flits. There are p physical channels, each of
which has v virtual channels; hence, there are p × v such control bits in total. Each
“Request” signal must be sent with a p bit-width “Route” signal giving the allocator
the information as to where the corresponding flit is destined (i.e., to the allocated VC
located at a physical port downstream). There is a combinational cloud within each of
the Input VCs situated between the flip-flops which reside at the start of the second
pipeline stage and the output of the Input channel blocks comprising the “Request”
and “Route” signals.

The netlist which represents the combinational logic in a pipeline stage can be
represented as a directed acyclic graph (DAG) with a set of primary inputs and a set
of primary outputs. All vertices of the graph comprise the gate instances, while the
graph edges represent the connections between the gates. A timing arc on this DAG
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Fig. 10. Critical path logic with proposed exercise logic. Additional exercise logic is shown in a darker shade.

can be defined as a path from any of the primary inputs to any of the primary outputs.
By starting at the endpoint of a timing arc and building the logic cone backwards until
a set of primary inputs are reached (basically a graph traversal using breadth-first
search or depth-first search), all the logic gates which affect that particular path can be
extracted. We have constructed such a connectivity graph for our netlist, obtained after
synthesizing our baseline router. The critical path logic is extracted by constructing
the logic cone for each of the timing paths which have slack of less than 10%.

5.2. Exercise-Mode Logic for Duty-Cycle Balancing

We propose balancing the duty cycle of nodes along the critical paths within the router
through the allocators by exercising these paths when the router is quiescent (i.e.,
there are no packets in-flight through the router). We consider all paths with ≤10%
slack for this purpose. To ensure that all nodes along critical paths are exercised, we
characterize the complete logic circuit which forms each critical path. This critical path
logic is extracted from the netlist generated by the the router synthesis, as described in
Section 5.1. The resultant combinational logic cloud has 1,435 inputs and 357 outputs.2

Figure 10 shows a block diagram of the second pipeline stage which contains the
router’s critical path with the proposed additional “exercise mode” logic darkened. The
exercise mode signal will be high whenever the router is quiescent for a period of time.3

When the exercise mode signal is high, the input to the critical path logic is taken from
the ROM which contains a set of “Exercise vectors” which aim to improve the duty
cycle of nodes along the critical paths (the generation of these vectors is described in
the next section). As the exercise mode logic must not be allowed to change router state
or propagate to the next pipeline stage, the flip-flops or latches between the allocator
and the next stage are disabled during the exercise mode.

In order to mitigate the impact on activity factor, the exercise mode input vector
from the ROM is rotated within a predefined period. A counter maintains the number
of cycles for which exercise mode is active and generates a “toggle” signal (used to
change the input vector) once it reaches the predefined rotation period. We note that
the duty cycle is insensitive to the frequency of input vector rotation, while the activity
factor is linearly related to it. We tested a range of rotation periods, between 16 and
2,048 clock cycles. We explore the implications of period length on the circuit’s energy
consumption and lifetime in Section 7. In the effort to minimize the impact on the

2While the impact of adding a 1,435-bit wide mux could be significant, as we will discuss in Section 6, through
vector optimization the overheads can be reduced dramatically.
3After experimentation with different values, a period of 16 cycles is chosen to maximize the lifetime gain
while minimizing impact on energy.
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Fig. 11. (a) Activation and propagation cones for fault location f ; input signals B, C (A,B,C,D) determine
activation (propagation); (b) test generation for f stuck-at-0; B=1 and C=1 activate the fault and D=1 prop-
agates its effect to O2; possible test vectors ABCD=X111 ={0111, 1111}; (c) let f be a critical net; exercising
f=1 requires activation of f stuck-at-0 with B=1 and C=1.

router’s timing and hence the clock rate, vector generation and all other exercise mode
selection logic, as shown here, are placed off the critical path.

6. VECTOR GENERATION

As mentioned in Section 5, data is injected during the exercise mode of the router for the
purpose of balancing the duty cycle of the nets on the critical paths. In order to optimize
this process, we consider deterministic generation of the data to be injected. This
particular problem resembles the Automatic Test Pattern Generation (ATPG) process,
a well-known NP-complete problem [Abramovici et al. 1990] used for manufacturing
tests for integrated circuits [Bushnell and Agrawal 2000]. The ATPG process involves
the generation of a set of vectors, called tests, which are applied to each manufactured
circuit in order to detect possible defects. ATPG is typically performed at the gate level
using predefined fault models, such as the established stuck-at-fault model in which
each signal may be stuck to either the logic “1” or the logic “0” value.

6.1. ATPG Preliminaries and Basic Concepts

The basic ATPG procedure followed in generating a test vector for stuck-at fault tests
comprises two phases: the fault activation phase and the fault propagation phase.
During fault activation, the fault location (signal) is activated by injecting the opposite
of the fault value. The part of the netlist driving the fault location is referred to as the
activation cone. The fault propagation phase involves the propagation of the fault effect
to some observable output signal. The part of the circuit driven by the fault location is
referred to as the propagation cone, and it contains all the possible propagation paths
from the fault location to the output signals. Figure 11(a) illustrates the activation and
propagation cones for the fault location f in the given netlist.

During ATPG, a signal justification procedure is performed during each of the two
phases. Justification during fault activation determines values on the input signals
to allow for the activation of the fault, whereas justification during fault propagation
determines the values of remaining input signals to allow for fault propagation via
some propagation path. Figure 11(b) illustrates one such scenario which sets B=1 and
C=1 during the activation phase for the fault f stuck-at-0, and D=1 in order to propagate
the fault to the output signal O2. It is noted that signal A is not set and assumes the
“don’t care” value (X), which implies that it can be set to any of the two logic values. In
this example, if a stuck-at-0 fault exists at f, the value at the output O2 is ‘1’; otherwise,
it is ‘0’ (the composite value v f f /v f stands for fault-free value v f f and faulty value v f

at f ). We note that typically the fault propagation phase in ATPG is harder than the
activation phase, as it involves the selection of propagation paths and constrained
justification based on the results of the activation phase. Nevertheless, both processes
are NP-complete due to the justification process which is, in the worst-case, exponential
to the number of input signals.

The problem examined in this work resembles an easier, restricted version of the
ATPG problem previously discussed. The process of exercising the value ‘1’ at some
critical net f corresponds to activating the stuck-at-0 fault at f. No propagation is
necessary in this case; hence, it suffices to justify the activation value in order to
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Fig. 12. (a) Possible ROM of size 3 × 10 with 10 possible MUX locations; (b) necessary ROM of size 3 × 4
with 4 + 4 MUX locations.

generate the necessary exercise vector. For example, it suffices to set B=1 and C=1 in
Figure 11(c) in order to exercise signal f (which could belong to the critical netlist). The
generated vector in this case is ABCD = {X11X}.

6.2. Hardware Overhead Optimization via Compaction of Exercise Data

A considerable portion of the hardware overhead of the exercise logic, given in Fig-
ure 10, consists of the ROM which stores the exercise vectors as well as the various
multiplexers (MUXes) inserted to allow for the ROM vectors to be exercised. Both the
size of the ROM and the number of new MUXes is data-dependent on both dimensions
of the exercised data matrix. To better understand this issue, consider the example in
Figure 12 which shows three exercise vectors. The row dimension of the matrix de-
pends on the number of exercise vectors, three in this example. Hence, the generation
procedure should attempt to minimize the number of exercised vectors by generating
vectors that exercise a large number of critical nets. Looking at the ATPG parallel, this
is known as the Test Vector Compaction Problem [Bushnell and Agrawal 2000].

The column dimension contains the exercise data feeding each new MUX (up to 10
in this example). A straight-forward implementation requires a ROM of size 3×10 and
10 new MUXes for this example. However, we observe that each multiplexer’s data can
fall in one of three categories. In the first category, all data have the “don’t care” value
(columns 3 and 10 in Figure 12(a)). These columns can be removed from the ROM.
Furthermore, no MUX is necessary for these signals. In the second category, we have
columns that can assume either a constant ‘0’ or a constant ‘1’ value (columns 2, 4, 7,
8). These columns can also be removed from the ROM but still require a corresponding
MUX set to the constant value. In the third category, both an MUX and an ROM column
are needed, as the value of the MUX data varies among different vectors (columns 1,
5, 6, 9 in Figure 12(a)). We define all MUXes in the first category as MUXX, those
in the second category as MUX0 + MUX1, and finally those in the last category as
MUXROM. Using the preceding analysis, the final ROM size in this example is (3 × 4).
The number of necessary MUXes is the number of signals driven by an ROM column
plus the number of columns with constant values computed by MUXROM + MUX1 +
MUX0, which is 4 + 3 + 1 = 8 (MUXROM = {l1, l5, l6, l9}, MUX1 = {l2, l4, l7}, MUX0 =
{l8}, MUXX = {l3, l10}). Clearly, the existence of “don’t care” bits (X) in the vector set
enables ROM compaction towards the column dimension as well as reduction of the
necessary new MUXes.

Hence, the vector generation procedure should aim towards a compacted vector set
to exercise the critical nets which, (a) has a small number of vectors and (b) has a
large number of “don’t care” bits in each vector. Such an approach is described next in
Section 6.3.

6.3. Generation of Exercise Vectors with Large Number of Unspecified Bits

The proposed vector generation algorithm is outlined in Figure 13. As already stated,
the overall goal is to generate a small number of vectors, each with a large number
of unspecified bits, which exercise all nets on the critical path logic. The input to
the algorithm is the critical path logic of the router R and the list of critical nets N

with corresponding duty cycles D. Priority is given to nets with high duty cycle, even
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Fig. 13. Deterministic vector generation algorithm.

though all nets are considered. The output of the algorithm is a set of vectors V and
a list of critical nets exercised Ne. Starting with a vector with all unassigned values
(v j = X), the algorithm iteratively (lines 7–17) attempts to exercise as many critical
nets as possible by justifying values on the current vector v j . After each successful
justification, the vector (v j) is simulated to check for the existence of additional critical
net activations that can also be exercised by v j , which are then deleted from N. When
no more nets can be exercised, the generated vector v j is added to the final vector set
V and the procedure is repeated again (line 5) with a completely new vector (with all
unassigned inputs) until all the critical nets are exercised (N is empty) or are classified
as redundant (Nred). Redundant nets are the nets that cannot be exercised under any
input assignment, and identification of those nets can indicate a possible problem in
the synthesis of the router. We did not have any redundant nets in the extracted critical
path logic circuit, but the proposed algorithm also covers this case for completeness
purposes.

The proposed algorithm has two goals. First, it generates a small number of vectors.
This is achieved because each vector is forced to exercise as many critical nets as
possible by explicitly targeting them and furthermore simulating the vector values for
any other critical nets that may be exercised without explicitly being targeted during
each iteration (lines 7–17). The second goal is to have a large number of unspecified bits
in the generated vectors in order to optimize the hardware overhead via compaction of
exercise data using the techniques discussed in Section 6.2. This is achieved by using
a variant of a powerful in-house PODEM-based ATPG justification procedure [Goel
1981; Neophytou and Michael 2010]. The justification procedure (line 8) is executed
iteratively and specifies only the necessary vector bits during each iteration. In this
manner, the generated vector contains a large number of “don’t care” bits.

6.4. Vectors Generation Results and Underlying Exercise Logic

Figure 14 shows the additional exercise mode logic added to the extracted critical path
logic of the baseline router. The extracted critical path logic circuit consists of 1,435
inputs, 357 outputs connected to flip-flops inside VCs as shown in Figure 9, and 14,653
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Fig. 14. Critical path logic with exercise logic (shown with darker lines), after vector generation.

internal nodes. From the extracted circuit, the critical path logic consists of 732 critical
nets which need to be exercised. Using the deterministic vector generation algorithm
proposed in Section 6.3, eight vectors are generated which exercise all of the 732 critical
nets at least one time (some of them are exercised more than once). After the generation
of the vectors, we follow a similar procedure to that discussed in Section 6.2 in order to
optimize the hardware overhead (ROM size and number of MUXes). From 1,435 inputs
which correspond to possible MUX locations, 730 have “don’t care” values (see MUXX

in Section 6.2) and can be removed from the ROM, while 38 can be set to constant value
‘0’ (MUX0) and 487 can be set to constant value ‘1’ (MUX1). Therefore, the necessary
ROM size is (8 × 180) (= 1,435 − 730 − 38 − 487) with 705 (= 180 + 38 + 487) MUXes
(525 of the MUXes are having a constant value on their input pin) shown in Figure 14.

7. EVALUATION

In this section, we first outline our experimental setup. This is followed by a detailed
exploration of the benefits and costs of our proposed technique.

7.1. Experimental Setup

The baseline router, adapted from RTL code made publicly available by Becker [2012]
contains three pipeline stages. The detailed parameters of the router are listed in
Table I. It is synthesized using the Synopsys Design Compiler mapped to a 45nm
technology library at 1GHz. We note that the added exercise circuit as mentioned in
Section 5 is largely off the critical path. Thus, router synthesis produces the same
clock frequency as the baseline router of 1GHz. The critical paths were extracted using
Synopsys Design Vision. All paths with ≤10% slack were retained and analyzed. The
wire activity along the paths is extracted with Synopsys’ Verilog Compiler Simulator
(VCS) and analyzed offline. The power consumption is evaluated using PrimeTime.

The router is evaluated under both synthetic and realistic workloads. The realistic
workloads are captured as traces from the gem5 simulator [Binkert et al. 2011] emulat-
ing a 64-core system executing multithreaded programs from the PARSEC v2.1 suite.
Table I summarizes the system configuration. We compute the incoming rate of each
router over the entire application execution, in an 8 × 8 mesh network, individually
under X-Y DOR routing. The per-router min, max, and average incoming rates for each
application were calculated. Random traffic is generated at these incoming rates and is
applied to the synthesized router to extract the activity of its wires. This methodology
gives an estimate for realistic workloads, such as those of the PARSEC benchmark
suite. For both synthetic and realistic workloads, we execute the post-synthesis mod-
els of both the baseline and proposed routers, for 100,000 cycles, to measure the wire
activity.
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Fig. 15. Duty cycles of critical path nodes with 2% incoming flit rate, sorted from highest to lowest.

7.2. Experimental Results

Random versus Deterministic Vector Generation. Aging due to NBTI depends on the
duty cycles of nodes along the critical paths. We study the impact of randomly generated
vector sets to exercise the critical path nodes. Here we used a set 16 of 1,435-bit random
vectors to drive the exercise logic. Sixteen vectors were used as more random vectors
did not appear to provide any further reduction in duty cycle. Figure 15 shows the duty
cycles of the nodes on critical paths under different scenarios. Here, all simulations are
performed under synthetic traffic of 0.02 flits/cycle. As Figure 15(a) shows, the duty
cycles for a baseline router are biased towards either “1” or “0.” The nodes with duty
cycle close to 1 significantly affect the aging due to NBTI, as shown in Equation (11).
Figure 15(b) shows that using random vectors to exercise the critical paths produces
improvement, but there are still a number of nodes with duty cycle of ∼1. We note that
here, we must have an exercise vector which is of the same bit-width as the number
of inputs to the critical path logic (1,435 bits), hence requiring 1,435 random bits per
vector in the ROM.

As Figure 15(d) shows, the duty cycles improve greatly when the vectors used during
exercise mode are generated using the deterministic method described in Section 6.
After optimization, just eight vectors—each 180-bit wide—are enough to exercise all
the nodes at least once. The ROM size of 8 × 180 will also be much smaller when
compared to that of 16 × 1,435 for randomly-generated vectors. When the exercise
mode is always on, the maximum duty cycle that a node can have is 0.875 (7/8), which
confirms that all the nodes are exercised at least by one of the generated vectors. In
Figure 15(c), when synthetic traffic of 0.02 flits/cycle is added to the generated vectors,
none of the nodes have a duty cycle of 1, though the results are smoothed somewhat
from Figure 15(d).

Aging under Synthetic Workloads. We now examine the potential gain in router life-
time of the proposed technique versus a baseline for a range of arbitrary incoming
rates. As previously discussed, the per-router incoming rate under PARSEC workloads
varies between 0.0005 (x264) to 0.085 (canneal). Figure 16 shows the normalized ac-
celeration factor (Equation (13)) versus the baseline router at the same incoming rate.
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Fig. 16. Normalized lifetime (acceleration factor) for router under a given synthetic incoming rate ranging
from 0.001 flits/cycle to 0.05 flits/cycle.

As explained in Section 4, the acceleration factor gives the lifetime of the system under
consideration, normalized to the lifetime of the reference system. In Figure 16, the
term “baseline” refers to the lifetime of the baseline router, normalized to 1, while the
term “Random” indicates that the vectors in 16-entry ROM are randomly generated,
while the rest of them indicate cases with deterministic vector generation with differ-
ent vector rotation periods. “Toggle period = X” indicates use of the generated vectors
with a rotation period of X cycles from one vector to the next. The normalized lifetime
is plotted on a logarithmic scale.

Lifetime improves dramatically for the routers with low incoming rates, as Figure 16
shows. Generally, low incoming rates cause a greater bias in the duty cycle and hence
allow more room for the improvement; thus the greatest gains in lifetime occur with
the lowest incoming rates. It is quite evident that the deterministic generation of
vectors gives significantly higher improvement in lifetime when compared to random
generation. The lifetime improvement with random vectors is not a monotonically
decreasing curve as in the case of deterministic vectors. This is because we consider
the worst case path of all paths within 10% slack in our calculations. When random
vectors are used to exercise the paths, the worst-case path differs for each individual
incoming packet rate. This will not happen if deterministic vectors are used, because
an individual node will have the set of values under exercise mode.

Figure 16 shows no significant difference in lifetime between the three different
vector rotation periods. This is because the duty cycle for a particular node on a critical
path will remain the same if the same set of vectors are repeated any number of times.
It has to be noted that the exercise vector is changed only when it is in the exercise
mode for a certain time indicated by a rotation period. For our simulation of 100,000
cycles and an incoming rate of 0.05 flits/cycle, a rotation period of 2,048 is the maximum
that we can have so that each vector is used at least once. Hence, we use a rotation
period of 2,048 for the remainder of this article, as this design point implies the lowest
overhead in terms of activity factor.

Lifetime under PARSEC Workloads. Figure 17 depicts the normalized lifetime of the
network using the proposed technique under the PARSEC workloads. The lifetime of
the network is estimated by computing the acceleration factor of the router with the
minimum incoming rate in the network, as it is the most susceptible to aging effects.
The reference system is the baseline router receiving the same incoming rate.

Deterministic vector generation achieves an average of ∼2300× reduction in wear
rate (bars marked “AVG”) as compared to that of random vector generation which only
gives ∼28× improvement. As expected, the proposed technique performs better when
incoming rate is low. Figure 17 shows “ferret” and “x264” are the applications with
the two lowest incoming rates in the PARSEC suite. Even when the average incoming
rate is as high as 0.05 flits per cycle (canneal), the deterministic vector generation
still achieves the normalized lifetime of 800× due to the extreme spread in per-router
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Fig. 17. Normalized lifetime of the network using the proposed technique under realistic workload.

Fig. 18. Activity factor versus injection rate.

incoming rates from minimal to maximum seen in that application. The random vector
generation does give a little improvement in lifetime, but it is no where close to what
we can achieve with deterministic vector generation. The bars designated as “ALL”
denote a case in which the system executes each of the applications sequentially one
at a time. In this case, the improvement becomes ∼4,000×. We find that the execution
times of “ferret” and “x264” are the longest among the applications, and hence the
incoming rate for “ALL” is dominated by those applications.

Activity Factor. One potential downside of a technique that decreases the duty cycle
along the critical path is that it could increase the activity factor as well, resulting
in potential HCI-induced aging problems. Figure 18 shows the average activity factor
along the critical paths at various flit incoming rates for different router models. For
the “baseline” router, the activity factor is linearly proportional to the incoming rate,
as the incoming flits are the only stimuli to the allocator. In the modified routers,
the activity factor also increases as the incoming rate grows, but it increases slightly
more rapidly than the “baseline” case. The growth of activity factor with respect to
the incoming rate is more rapid at low incoming rates, as the exercise logic has more
opportunities to become active. As the incoming rate increases and the exercise logic
misses opportunities to generate a new random vector, the increase in the activity
factor slows down.

Generally, there is a significant difference in activity factors between baseline and
modified routers, even at high incoming rates. Each time exercise mode is turned on,
many of the critical path nodes in a router switch to a different logic state, leading
to a burst in activity. In Figure 18, the impact of rotation period on activity factor
can be clearly observed. The increase in activity factor decreases with higher rotation
periods. At incoming rates of 0.05 flits/cycle and above, the activity factor of the modified
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Fig. 19. Router power consumption versus injection rate. (Note: the Y-axis is scaled to provide detail.)

router with toggle period of 2,048 reaches a saturation point of ∼5%, implying that the
proposed technique should not significantly impact HCI.

Power Analysis. An increase in activity factor in the allocators should be expected to
lead to additional dynamic power consumption for the router. Further, the additional
“exercise logic” should also require additional static and dynamic power. Thus we
performed a power analysis of the baseline and proposed router designs using Synopsys
PrimeTime. Figure 19 shows the power consumption with respect to varying incoming
rates for the different router models. As expected, router power consumption increases
as the incoming rate increases; however, we find that the router with exercise mode
applied increases the total router power by less than 5% across all incoming rates.
In part, this is because the major contribution for the power consumption in both the
baseline router and the router with exercise mode applied is from sequential circuit
elements (∼90%). During the exercise mode, only combinational circuit elements are
switched, limiting the potential for power to increase. Also the additional exercise mode
logic increases router area by less than 5%.

8. RELATED WORK

Aging models for transistors have been extensively studied since technology crossed the
submicron border, which inherently made the CMOS manufacturing process vulnerable
to runtime faults. NBTI and HCI are dominant wearout effects and have thus been more
intensively studied [Oboril and Tahoori 2012]. Conventionally, aging effects are studied
under DC stress conditions where it is easier to measure transistor parameters [JEDEC
2011; Li et al. 2008b; Maricau and Gielen 2009]. However, AC stress conditions are more
realistic for high-frequency, long-term CMOS operation; hence some works [Karpuzcu
et al. 2009; Tudor et al. 2011; Oboril and Tahoori 2012; Saluja et al. 2008] discuss such
long-term models, while other works introduce the relationship between DC and AC
stress conditions [Wang et al. 2011].

The newly emerging devices, such as multigate field effect transistors MuFETs and
FinFETs [Auth 2012; Saitoh et al. 2012] at 22nm process technology and below, have
gradually become an object for aging effects exploration. Wang et al. [2011] make an
attempt towards presenting a unified aging model for the effects of both HCI and
NBTI. They derive models for double- and triple-gate FinFETs for each of these aging
effects that capture specific FinFET geometry aspects. Mahmoud et al. [2014] presents
a comprehensive framework that assists in designing fortified VLSI gates at 16nm
against BTI-induced aging degradation, while achieving energy savings.

Unfortunately, the vast majority of the reported models lack important details, such
as values for various constants, measurement conditions, detailed explanation of pa-
rameters, etc. Thus, it becomes fairly challenging to employ the existing frameworks in
the context of microarchitecture and to perform meaningful aging effect calculations.
The recent work by Kleeberger et al. [2014] and Fang and Sapatnekar [2014] do propose
combined models for estimating the additional aging-induced delay in combinatorial
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circuits; however, the parameters they obtained are tuned to a particular technology
node different from the one used here and hence cannot be generalized.

Various techniques have been proposed to mitigate the aging effect in processor core
architectures. Among those proposed mechanisms, Gunadi et al. [2010] suggested the
Colt duty cycle equalizer which balances the duty cycle by alternating true and one’s
complement data representations. Abella et al. [2007] introduce the Penelope NBTI-
aware processor architecture where they discuss a number of techniques for combating
NBTI, including a mechanism which writes special values in memory cells in order
to keep the duty cycle at an ideal 50%. Gupta and Sapatnekar [2013] propose gen-
erating idle periods for BTI recovery by power gating most of the components in a
single-core processor system. These idle periods are generated by running the core
at higher-than-nominal frequency. Guo et al. [2014] propose an approach for acceler-
ating NBTI recovery by applying a negative supply voltage during idle periods of a
chip. Kumar et al. [2006] proposed periodic cache flipping so as to provide periods of
relaxation for the influenced pMOSFET, allowing dynamic recovery of the threshold
voltage level. Oboril and Tahoori [2014] proposed reducing aging in microprocessor
pipelines by replacing the traditional design-time time-balancing scheme of pipelines
with MTTF-balanced pipelines also at design time, hence achieving targeted MTTF
values; this technique also allows for higher operational frequencies at reduced energy
expenditures. The same authors target both HCI and BTI effects; however, it is unclear
how they balance between them. Next, Lai et al. [2014] analyzed the effects of BTI on
the clock distribution network in a microprocessor with clock gating features and then
proposed two BTI-Gater cells, similar in function to the exercising mode multiplexers
used in our work, to balance delay degradation on the gated clock branch. Unlike in our
work, their technique requires a software-based sleep scheduling wrapper that works
in conjunction with the BTI-gater cells to reduce aging, an overhead that our work
excludes as it is based on periodic use of deterministically-derived exercise vectors to
achieve NoC aging reduction in multicores. Bild et al. [2012] proposed the Internal
Node Control (INC) scheme to reduce the impact of static NBTI on circuits with fre-
quently idle functional units such as adders, subtractors, and shifters. INC placements
allow outputs of an INC-modified gate to be forced to specific values during sleep mode,
and as in our case, exercise various paths to combat NBTI.

The aforementioned three works bear similarities to the “exercise logic” proposed in
this article, in the context that these techniques periodically insert inverted or random
values to balance the duty cycle. None of the three, however, deals with NoC router
microarchitectures which are critical to the system’s survivability.

Although our approach is similar to the approaches in the aforementioned works,
here we actually handle a different problem. In previous works, the researchers focused
on the duty-cycle bias of the data paths, while we mainly balance the uneven duty cycles
along the control paths. In fact, the sources of the uneven duty cycles are different. In
previous works, they are dominant in biased data contents, while in our work, it is more
evident during the proved extremely low activity seen in NoC routers (see Section 3).
Although the proposed “exercise logic” is also able to resolve the aging problems due to
the skewed data content along the data path of the NoC routers, we utilize it only for
the timing-critical paths where the NBTI impact occurs in its most critical form.

A number of works attempt to develop a reliability model at the architectural level.
Srinivasan et al. [2004] proposed such a model of a processor core, which considers a set
of failure mechanisms. Their assumptions, such as even distribution of failures across
failure mechanisms and uniform failure rate across the design, restrict the accuracy
of the model when extended to the entire chip. Shin et al. [2007] further develop this
concept. They introduce effective defect density and effective stress condition coefficients
that weigh the failure impact across the chip area and runtime, respectively. Shin et al.
illustrated their approach under several failure mechanisms and presented indicative
weight coefficients for a set of abstract architectural structures. By contrast, in this
work, we examine the actual critical path of a particularly failure-sensitive, vital CMP
component—the NoC router. We show that under realistic workloads, this component
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is highly susceptible to NBTI-based wear, and we develop a technique to mitigate this
wear.

Aging has been also examined in the NoC domain. Bhardwaj et al. [2012, 2013]
propose routing algorithms to mitigate multiple aging mechanisms. They also point
out that NBTI plays a major role in NoC router aging, and their routing techniques
balance the traffic load across the network to level out the aging rates among the
routers. Their approach is reasonable in that they force the network traffic to detour
through routers of low utilization which, on the contrary, accelerates NBTI-caused
aging. However, they use these routing techniques for the opposite effect; the routing
algorithms are actually designed to reduce the workload onto the routers which exhibit
high utilization, which as we show here are not actually the routers likely to exhibit
the most stress-related aging. Fu et al. [2010] propose a similar technique to ours in
that it inserts special values to idle arbiters to mitigate NBTI. However, they propose
this technique to make arbiters less frequently utilized so as to give these routers a
chance to recover from the effects of NBTI, which is actually not necessarily applicable
to frequently utilized circuits.

In these previous NoC-oriented studies, it is assumed that the NBTI stress time is
proportional to the router utilization; however, on the contrary, we prove that this is
not the actual case. Through detailed, gate-level analysis not found in earlier works, we
demonstrate that the duty cycle becomes more skewed when the NoC router is actually
underutilized and not when it is highly- or overutilized.

9. CONCLUSIONS

The NoC interconnect is critical to the survival of the CMP system. In this article,
we develope a critical path model for NBTI-induced wearout after analyzing HCI- and
NBTI-induced wear due to stresses caused by realistic workloads and apply them onto
the interconnect microarchitecture. A key finding from this modeling is that, counter
to prevailing wisdom, wearout in the CMP on-chip interconnect is correlated with lack
of load observed in the NoC routers, rather than high load. We then develope a novel
wearout-decelerating scheme in which routers under low load have their wearout-
sensitive components exercised without significantly impacting cycle time, pipeline
depth, power consumption, or area of the overall router. The exercise mode data are
generated deterministically for maximum impact. We subsequently show that the pro-
posed design yields a ∼2,300× decrease in router wear due to NBTI. In our future
work, we plan to further explore degradation due to electromigration in the routers
and links between the routers.
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