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Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to
investigate the reproducibility and stability in the bacterial community structure of laboratory-scale sequenc-
ing batch bioreactors (SBR) and to assess the impact of solids retention time (SRT) on bacterial diversity. Two
experiments were performed. In each experiment two sets of replicate SBRs were operated for a periods of three
times the SRT. One set was operated at an SRT of 2 days and another set was operated at an SRT of 8 days.
Samples for T-RFLP analysis were collected from the two sets of replicate reactors. HhaI, MspI, and RsaI
T-RFLP profiles were analyzed using cluster analysis and diversity statistics. Cluster analysis with Ward’s
method using Jaccard distance and Hellinger distance showed that the bacterial community structure in both
sets of reactors from both experimental runs was dynamic and that replicate reactors were clustered together
and evolved similarly from startup. Richness (S), evenness (E), the Shannon-Weaver index (H), and the
reciprocal of Simpson’s index (1/D) were calculated, and the values were compared between the two sets of
reactors. Evenness values were higher for reactors operated at an SRT of 2 days. Statistically significant
differences in diversity (H and D) between the two sets of reactors were tested using a randomization procedure,
and the results showed that reactors from both experimental runs that were operated at an SRT of 2 days had
higher diversity (H and D) at the 5% level. T-RFLP analysis with diversity indices proved to be a powerful tool
to analyze changes in the bacterial community diversity in response to changes in the operational parameters
of activated-sludge systems.

Studies of biodiversity (species richness and evenness) are
important for macro- and microecology due to its potential
correlation to ecosystem function (27, 33, 39). Increasingly,
microbial biodiversity has become a research theme for under-
standing engineered ecosystems such as bioreactors. Several
studies have reported the importance of measuring diversity in
bioreactors to test the efficacy of bioaugmentation (12), to
assess site and temporal variations in microbial diversity (5, 7,
14, 38), to assess microbial diversity in laboratory bioreactors
(3, 15, 24), to provide insight on the correlation between di-
versity and operational parameters of treatment plants (4), and
to link biodiversity to bioreactor stability (41).

Activated-sludge sewage treatment systems are engineered
bioreactors used to remove organic substances and nutrients
(nitrogen and phosphorous) from municipal wastewater. A
consortium of bacterial species is required to achieve the de-
sired biological conversions, and the performance of these
reactors largely depends on the bacterial diversity present. The
vast majority of bacteria present in activated sludge cannot be
isolated using traditional culture-dependent techniques (1).
However, with the advent of small-subunit rRNA-based mo-
lecular fingerprinting techniques, including ribosomal DNA
restriction analysis (36), denaturing gradient gel electrophore-

sis (28), thermal gradient gel electrophoresis (12), length het-
erogeneity PCR (31), automated ribosomal intergenic spacer
analysis (13), and terminal restriction fragment length poly-
morphism (T-RFLP) (25), it became possible for environmen-
tal engineers and scientists to assess bacterial diversity in acti-
vated-sludge systems.

Most of these methods use PCR to amplify small-subunit
rRNA genes, in particular the 16S rRNA gene, and then PCR
amplicons are separated based on differences in DNA se-
quences of the 16S rRNA genes. Although sequence analysis
of 16S rRNA gene clone libraries provides the most detailed
information on the microbial community structure, this meth-
od is time-consuming and costly, especially when many samples
are to be analyzed. T-RFLP is popular for its rapid produc-
tion and analysis of data, and it has been shown to be
an effective method for discriminating microbial communities
in a wide range of environmental samples (11, 21). T-RFLP
provides several advantages over other fingerprinting methods,
as it is highly reproducible (30) and has greater resolution
and sensitivity than denaturing gradient gel electrophoresis
(25, 26).

In T-RFLP, one of the primers, usually the forward primer,
used for PCR has a fluorescent molecule attached to it. The
PCR amplicons, which are of equal size, are then subjected to
enzymatic digestion with restriction endonucleases. The di-
gested fragments are then separated by polyacrylamide gel or
capillary gel electrophoresis and visualized by an automated
DNA sequencer, which can only detect the fluorescently
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labeled fragments or terminal restriction fragments (T-RFs).
The unique T-RFs or operational taxonomic units is used as
the measured unit of diversity in a community. Given the
widespread use of T-RFLP, it is anticipated that this method
will be applied more frequently for community analysis of
activated sludge.

Despite the importance of activated-sludge systems, knowl-
edge of the correlation of operational parameters or plant
configuration with the degree of bacterial diversity is scarce.
Most of the experimental studies using molecular fingerprint-
ing of bacterial community structure in activated-sludge system
have focused on studying the spatial and temporal changes in
microbial diversity (4, 7, 14, 20), assessing microbial diversity in
activated sludge (3), studying the impact of certain toxins on
microbial diversity (5), and studying the efficacy of bioaugmen-
tation (12). Recently, Saikaly and Oerther (32) developed an
ecology-based mechanistic model predicting the impact of bio-
reactor operating conditions on the diversity of bacterial spe-
cies in activated-sludge system. The study reported a system-
atic examination of the usefulness of varying the solids
retention time (SRT) to enhance the biodiversity of the bac-
terial community. The model results suggested that bioreactors
operated at an intermediate SRT (2.28 to 5.66 days) contained
a greater number of different bacteria than bioreactors oper-
ated at an SRT of �5.66 days.

The main objective of the current study was to use T-RFLP
to investigate the reproducibility and stability of the bacterial
community structure in a laboratory-scale activated-sludge sys-
tem and to experimentally test model predictions that SRT
impacts bacterial diversity.

MATERIALS AND METHODS

Laboratory-scale bioreactors. Two experiments, referred to as experiments 1
and 2 throughout the text, were designed to (i) investigate the reproducibility and
stability in the bacterial community structure of replicate laboratory-scale acti-
vated-sludge sequencing batch reactor operated under steady environmental
conditions and seeded with the same inocula and (ii) assess the impact of SRT
on bacterial diversity in activated-sludge systems. In experiment 1, two sets of six
laboratory-scale activated-sludge sequencing batch bioreactors were operated for
a period of three SRTs (Fig. 1). The inocula for each bioreactor were obtained
from the municipal Mill Creek activated-sludge wastewater treatment plant in
Cincinnati, OH. Six bioreactors were operated with an SRT of 2 days (reactors
A1 to A6), and six bioreactors were operated with an SRT of 8 days (reactors B1
to B6). Reactors A1 and B1 had working volumes of 5 liters, while reactors A2

through A6 and B2 through B6 had working volumes of 1 liter each. After three
SRTs, the contents of reactors A2 to A6 and B2 to B6 were emptied.

In experiment 2, two sets of five laboratory-scale activated-sludge sequencing
batch bioreactors were operated for a period of three SRTs. Five bioreactors
were operated with an SRT of 2 days (reactors a2 to a6), and five bioreactors
were operated with an SRT of 8 days (reactors b2 to b6) (Fig. 1). Reactors a2
through a6 and b2 through b6 had working volumes of 1 liter each. The inocula
for reactors a2 through a6 were obtained from reactor A1 (three times the SRT),
and the inocula for reactors b2 through b6 were obtained from reactor B1 (three
times the SRT). All reactors (experiments 1 and 2) were operated with a hy-
draulic retention time of 12 h with three cycles per day. Each cycle consisted of
a fill phase of 10 min, a reaction phase of 7 h, and a settling and decanting phase
of 1 h. The bioreactors treated a synthetic wastewater containing (per liter of
water) 512 mg NaCH3COO, 166 mg NaHCO3, 107 mg NH4Cl, 75.5 mg
NaH2PO4·2H2O, 90 mg MgSO4·7H2O, 36 mg KCl, 14 mg CaCl2·2H2O, 18 mg
EDTA, 1 mg yeast extract, 1.5 mg FeSO4·7H2O, 0.0015 mg H3BO3, 0.48 mg
CuSO4·5H2O, 0.003 mg KI, 1.5 mg MnCl2·4H2O, 0.33 mg (NH4)6Mo7O24·4H2O,
0.66 mg ZnSO4·7H2O, and 0.015 mg CoCl2·6H2O.

Analytical methods. Grab samples of mixed liquor were collected after each
SRT. Performance measures included determination of total and soluble chem-
ical oxygen demand, nitrite-nitrogen, nitrate-nitrogen, and orthophosphate using
Hach Test �N Tube reagents (catalog numbers 2415815, 26083-45, 26053-45, and
21060-46, respectively). An ion-specific electrode was used to measure ammonia-
nitrogen and pH. The levels of mixed liquor suspended solids and volatile
suspended solids were determined according to Standard Methods for the Ex-
amination of Water and Wastewater (2). Sludge settling was measured using a
modified 30-minute sludge volume index where the standard 1-liter graduated
cylinder was replaced with a 100-ml graduated cylinder and quiescent settling was
allowed to occur for 30 min.

DNA extraction and PCR conditions. For bacterial community analysis, sam-
ples of mixed liquor from each bioreactor were collected after each SRT in 2-ml
centrifuge tubes and centrifuged at 10,000 � g for 10 min, the supernatant was
decanted, and the samples were stored in �80°C for later analysis by T-RFLP.
Genomic DNA was extracted from each sample of mixed liquor using the
Ultraclean soil DNA extraction kit (Mo Bio Laboratories, Inc.) according to the
manufacturer’s instructions. The genomic DNA isolated was used as template
material for the PCR.

PCR was performed in 50-�l reaction volume using a reaction mixture of 1X
PCR buffer, 200 �M each deoxynucleoside triphosphate, 2 mM MgCl2, 0.025U
of Taq DNA polymerase/�l (QIAGEN), and 0.3 �M of each primer. The primers
used were specific for conserved bacterial 16S rDNA sequences, 8-27f
(AGAGTTTGATCCTGGCTCAG) and 906-926r (CCGTCAATTCCTTTR
AGTTT) (24) (manufactured by the University of Cincinnati DNA Core labo-
ratory). The forward primer was labeled at the 5� end with 6-carboxyfluorescein.

Optimization of PCR was done by adjusting the volume of DNA (0.8 to 2 �l)
for each sample used in the PCR to obtain a single strong band of equal
concentration of DNA on an agarose gel. This method was shown to be more
efficient than quantification of DNA using a spectrophotometer. Amplification of
DNA was performed in a GeneAmp PCR system 2700 (Perkin Elmer) by using
the following program: an initial denaturing step at 94°C for 3 min, followed by
35 cycles of denaturation at 94°C for 45 s, annealing at 65°C for 1 min, extension

FIG. 1. Schematic of reactor setup.
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at 72°C for 1.5 min, and final extension at 72°C for 10 min. PCR tubes were
placed in the thermocycler when the block temperature reached 94°C. Three
replicate PCRs were performed for each sample and the products were pooled
and verified visually (5 �l) using 1% agarose gel electrophoresis in 1X Tris-
borate-EDTA and SYBR Green I staining (Molecular Probes).

T-RFLP. Amplicons (145 �l) were purified using Wizard PCR Preps DNA
purification system (Promega, Madison, Wis.) as directed by the supplier, and
eluted with 50 �l sterile water. Purified PCR products (approximately 200 ng)
were digested separately with 5 U of tetrameric restriction endonucleases HhaI,
MspI, and RsaI (Promega, Madison, Wis.) in a 20-�l reaction volume. Restric-
tion digests were incubated at 37°C for 4 h. Aliquots (8 �l) of restriction digests
were examined by 2.5% agarose gel electrophoresis using SYBR Green I stain-
ing. To analyze the terminal restriction fragments (T-RF), 1 �l of digested
samples was mixed with 1 �l of formamide (contains loading buffer and DNA
fragment length standard [Rox 2500, ABI]). The mixture was denatured at 94°C
for 5 min and snap-cooled on ice before electrophoresis on 7% polyacrylamide
gel for 10 h at 2,250 V on an ABI 377 automated DNA sequencer (Applied
Biosystems Instruments). T-RFLP profiles were analyzed using Genescan soft-
ware (version 3.7, Applied Biosystems).

Analysis of T-RFLP profiles from activated-sludge bioreactors. T-RFLP pro-
files were analyzed as follows. First, only profiles with a cumulative peak height
�5,000 fluorescence units were used in the analysis. Second, peaks with peak
height �50 fluorescent units were excluded from the analysis. Third, profiles
from different environmental samples were manually aligned by visual inspection
of the size of peaks in bases. Fourth, T-RFLP profiles were standardized based
on peak height to account for variations in DNA loading between samples using
the procedure suggested by Dunbar et al. (11). Simply, total fluorescent units in
each profile was calculated after excluding peaks with peak height �50 fluores-
cent units. T-RF profiles were then compared and standardized to the profile
with the smallest total fluorescent units. The range of total fluorescent unit in the
collection of samples was between 5,097 and 7,471 fluorescent units. This pro-
cedure was repeated until the cumulative peak height in all the samples was the
same. After standardization, T-RFLP profiles were normalized so that the cu-
mulative peak height in each profile was 10,000 fluorescent units. This allowed
for comparison of profiles based on relative peak heights (peak height divided by
the cumulative peak height for a profile). Normalized data were then subjected
to statistical analysis.

Two distance metrics were used to analyze T-RFLP profiles based on pres-
ence/absence of T-RFs and their relative abundance. These include the Jaccard
distance (1 � Jaccard coefficient) and the Hellinger distance. The Jaccard coef-
ficient considers the presence/absence of T-RFs and is equal to the ratio of the
number of T-RFs in common between two profiles to the total number of T-RFs
present in both profiles. Hellinger distance is equal to the Euclidean distance
after taking the square root of the relative peak heights (23). The agglomerative
hierarchical clustering Ward (43) was applied to obtain a dendrograms for each
distance metrics using the Community Analysis Package software 3.0 (Pisces
Conservation Ltd.).

To evaluate structural diversity between samples, the Shannon-Weaver diver-
sity index (H), richness (S), evenness (E), and the reciprocal of Simson’s index
(1/D) were used. The Shannon-Weaver diversity index (34) was calculated as
follows: H � �	(pi) (log2 pi), where the summation is over all unique fragments
i and pi is the relative abundance of fragment i. The abundance of a particular
fragment can be determined by using the peak height intensity in fluorescent
units. Evenness was measured as follows: E � H/(log2[S]). The reciprocal of
Simpson’s index of diversity (1/D) was calculated as follows: 1/D � 1/(	pi

2) (35).
Richness (S) was defined as the number of unique T-RFs or operational taxo-
nomic units in a profile. Statistically significant difference in H and D among the
two sets of reactors was tested by a randomization procedure as described by
Solow (37) using the Species Diversity and Richness software 3.0 (Pisces Con-
servation Ltd.).

RESULTS AND DISCUSSION

Reactor performance. The effluent chemical oxygen demand
from the reactors in experiments 1 and 2 was measured after
each SRT. The chemical oxygen demand removed was be-
tween 90.02 and 96.55% for reactors that were operated at an
SRT of 8 days and between 91.60 and 97.12% for reactors that
were operated at an SRT of 2 days. Variability in the effluent
chemical oxygen demand after each SRT for the two sets of
reactors (SRT of 2 days and 8 days) was minimal in both

experiments. This suggests that the bacterial community was
functionally stable and has acclimated to the new operational
changes (adapting domestic sludge to synthetic wastewater [ex-
periment 1], and reactor subsampling after the sludge had
acclimated to synthetic wastewater [experiment 2]).

Reproducibility and stability of the bacterial community of
activated sludge. To investigate the reproducibility and stabil-
ity in the bacterial community structure of replicate sequencing
batch bioreactors operated under steady environmental condi-
tions and seeded with the same inocula (replicate reactors in
experiment 1 were seeded with sludge from a municipal acti-
vated-sludge wastewater treatment plant, while replicate reac-
tors in experiment 2 were seeded with sludge from a labora-
tory-scale activated-sludge sequencing batch bioreactor that
was acclimated to synthetic wastewater [see Fig. 1]), samples of
activated sludge from experiments 1 and 2 were collected from
each reactor at start-up and after each SRT and analyzed with
T-RFLP. T-RFLP profiles from three separate restriction di-
gests, HhaI, MspI, and RsaI, were processed using two dis-
tance metrics, the Jaccard distance and the Hellinger distance.
A dendrogram was constructed from these distance metrics
using Ward’s method.

Figure 2 presents the dendrogram constructed for HhaI
digestion. The dendrogram clearly shows that samples from
replicate reactors were clustered together and evolved simi-
larly from start-up in both experiments. This reproducibility in
the bacterial community structure was also shown using the
average similarity and dissimilarity (distance) between samples
digested with HhaI from replicate sequencing batch bioreac-
tors after each SRT. The average similarity between replicate
reactors ranged between 72 and 90% for SRT of 8 days and
between 75 and 87% for SRT of 2 days when using the Jaccard
coefficient, but when comparison was done using the Hellinger
distance, replicate reactors were less similar (data not shown).

Several studies showed that despite the fact that replicate
laboratory-scale reactors were operated under identical condi-
tions, the bacterial community structure was not reproducible
and might diverge over time (5, 14, 20). In the current study,
we could not tell whether the bacterial community structure of
replicate sequencing batch bioreactors would continue to
evolve similarly or diverge with time because both experiments
were terminated after three SRTs. A possible explanation for
the difference in the bacterial community structure of replicate
laboratory-scale reactors was offered by Kaewpipat and Grady
(20) and Curtis et al. (9). Kaewpipat and Grady (20) specu-
lated that the structure of the bacterial community structure
might display characteristics of chaotic systems and thus might
respond differently to perturbations, like exposing the bacterial
community of laboratory-scale activated-sludge reactors to
new operating conditions (feed composition, SRT, hydraulic
retention time, etc.) that are different from that present in the
actual wastewater treatment plants. The authors also suggest
adapting the biomass to the new operational conditions before
running replicate reactors. Curtis et al. (9) also attributed the
difference in the bacterial community structure of replicate
reactors to the presence of chaotic dynamics in the bacterial
community and that these dynamics in the bacterial community
are present in small-scale biological treatment plants but are
not seen in large-scale biological treatment plants. This differ-
ence between laboratory-scale reactors and full-scale biologi-
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cal treatment plants could be explained by the equilibrium
model of island biogeography, which predicts that larger is-
lands, such as full-scale wastewater treatment plants, have
higher biodiversity and stabler community structure (8).

Another significant finding that can be concluded from the
dendrogram in Fig. 2 is that at each sampling event the bac-

terial community structure was more closely related to the
previous sampling event but more distinct from the seeding
sludge. This suggests that the bacterial community structure
was dynamic and constantly changing despite the fact that
operating conditions and reactor performance as measured by
chemical oxygen demand were constant. Several investigators

FIG. 2. (a to d) Dendrogram constructed with Ward’s method for samples collected from replicate reactors operated at an SRT of 8 days using
(a) Jaccard distance (experiment 1); (b) Jaccard distance (experiment 2); (c) Hellinger distance (experiment 1); and (d) Hellinger distance
(experiment 2). (e to h) Dendrogram constructed for samples collected from replicate reactors operated at an SRT of 2 days using (e) Jaccard
distance (experiment 1); (f) Jaccard distance (experiment 2); (g) Hellinger distance (experiment 1); and (h) Hellinger distance (experiment 2).
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(5, 12, 14, 20) have reported that the bacterial community
structure of laboratory-scale activated-sludge reactors seeded
with sludge from domestic wastewater treatment plants was
not static but constantly changing. Interestingly, this dynamic
behavior in the bacterial community structure that was ob-
served in laboratory-scale bioreactors operated under constant
conditions was not observed in full-scale biological treatment
plants.

LaPara and colleagues (22) examined the bacterial commu-
nity structure of seven full-scale biological treatment plants
treating pharmaceutical wastewater and their results showed
that the bacterial community structure was stable under nor-
mal operating conditions. As mentioned above, a stabler com-
munity structure in full-scale biological treatment plants com-
pared to laboratory-scale activated-sludge reactors could be
explained by the equilibrium model of island biogeography (8).

This dynamic behavior in the bacterial community structure
in laboratory-scale activated-sludge reactors could be attrib-
uted to several biotic and abiotic factors such as resource
competition (17, 18), predation, and new selective pressure
imposed on domestic sludge (14). It is already recognized in
ecology that competition for three or more growth-limiting
resources may generate oscillations and chaotic fluctuations in
species abundances (17–19).

Recently, Saikaly and Oerther (32) developed an ecology-
based mathematical model describing the mechanism behind
these chaotic dynamics in the bacterial community in activated-
sludge system. The model describes the competition of six
aerobic heterotrophic bacterial species on three essential re-
sources using the continuous stirred tank reactor with biomass
capture as the model activated-sludge system. Essential re-
sources fulfill metabolically independent requirement for
growth. For example, ammonia and orthophosphate are exam-
ples of essential resources because they meet the requirement
for nitrogen and phosphorous.

In developing the model, the following assumptions were
made: (i) readily biodegradable substrates (i.e., sources of car-
bon and energy) are not limiting; (ii) oxygen is present in
excess; (iii) the limiting resources are consumed by all of the

different heterotrophic bacteria; (iv) competition is exploit-
ative; (v) the hydraulic retention time is kept constant at 0.6
days; and (vi) an ideal clarifier with assumed zero volume is
present. It is to be noted that in the current study, the main
sources of carbon and energy (acetate) and oxygen were not
limiting. Also, nitrogen, phosphorus, and sulfur that were
present in the synthetic wastewater could be considered three
essential resources since they are required for growth by the
bacteria and have different metabolic routes.

The model simulations showed that for a certain range of
SRTs (2.28 to 5.66 days) the competition of six species on three
essential resources produces oscillations within the structure of
the bacterial community and these oscillations in species abun-
dances allowed the coexistence of more species than there are
limiting resources (17, 18, 32). This outcome is a direct con-
tradiction of an existing activated-sludge steady-state compe-
tition theory, the principle of competitive exclusion, which
states that the competition process proceeds to equilibrium.
The model also predicts that at higher values of SRT (e.g.,
greater than 5.66 days), the bacterial community structure
reached a steady state where competitive exclusion occurred,
resulting in reduced diversity. For more details on the model,
refer to Saikaly and Oerther (32).

For the sake of comparison only, a dendrogram was con-
structed using the biological data (relative abundance of each
species) from the model predictions at 0, 1, 2, 3, 4, 5, and 6
times the SRT for SRTs of 8 and 2.5 days (Fig. 3). The data in
Fig. 3 were not presented in the original paper. The conclusion
from Fig. 3 is that the bacterial community is dynamic and
constantly changing. It is to be noted that this dynamic in the
bacterial community persists indefinitely for SRT of 2.5 days,
whereas for the SRT of 8 days competitive exclusion domi-
nated after a period of 600 days.

In the current study, the two experimental runs were termi-
nated after three SRTs. Therefore we could not predict if the
dynamics in the bacterial community structure would persist
for longer periods or if the constant operating conditions of
laboratory-scale bioreactors would eventually lead to stable
community structure for reactors operated at an SRT of 8 days.

FIG. 3. (A) Dendrogram constructed using the algorithm of Ward and Hellinger distance for model predictions at an SRT of 8 days.
(B) Dendrogram constructed using the algorithm of Ward and Hellinger distance for model predictions at an SRT of 2.5 days.
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Despite this limitation, the experimental design in the current
study is unique since it involves many replicate reactors (a total
of 12 reactors in experiment 1 and a total of 10 reactors in
experiment 2), whereas similar studies of stability and repro-
ducibility of bacterial community in laboratory-scale bioreac-
tors were performed using only two reactors (5, 12, 14, 20).
Another unique aspect of the experimental design is that ex-
periments 1 and 2 could be considered two separate studies
that aim to investigate the same concepts in activated-sludge
systems, mainly stability, reproducibility, and the impact of
SRT on diversity. The only difference between the two exper-
imental runs is that experiment 1 was started with a seed that
was not acclimated to synthetic wastewater, while experiment 2
was started with a seed that was already acclimated to synthetic
wastewater.

The theoretical results of the model developed by Saikaly
and Oerther (32) and the results from the current experiment
using T-RFLP and the experimental studies discussed above
collectively show that the bacterial community structure of
activated-sludge system is dynamic. This suggests that the bac-
terial community in these systems could be innately dynamic
and that the process of competition for essential resources
could be responsible for generating these dynamics. Despite
the similarity between the model and the experiment, the re-
sults should not be used to generalize or formulate a hypoth-
esis on the dynamics and stability of bacterial communities in
laboratory-scale activated-sludge reactors since several limita-
tions exist in the model and the experiment that further hinder
the generalization of the results. These observations, however,
should be taken as a platform for further research. It is to be
noted here that in the current study, analysis of T-RFLP pro-
files using MspI or RsaI gave similar results to analysis with
HhaI (data not shown).

Impact of solid retention time on diversity indices. Micro-
bial diversity is an important concept in ecology (27). Its cal-
culation reflects key phenomena such as competition, succes-
sion, predation, ecosystem stability, response to perturbations,
and, in the current study, to assess the impact of operational
parameters of activated-sludge systems, in particular the im-
pact of SRT on microbial diversity. While it is simple to de-
termine diversity (richness and evenness) in macroecology, the
situation is complicated in microecology because of limitations
in the methods available to assess diversity. Microbial diversity
in environmental samples is normally determined using PCR-
based molecular fingerprinting of small-subunit rRNA, e.g.,
ribosomal DNA restriction analysis, denaturing gradient gel
electrophoresis/thermal gradient gel electrophoresis, length
heterogeneity PCR, automated ribosomal intergenic spacer
analysis, and T-RFLP. Thus, T-RFLP, like other molecular
fingerprinting techniques, is subject to the caveats of PCR-
based techniques (e.g., differential cell lyses, PCR amplifica-
tion biases, and formation of PCR artifacts such as chimeric
sequences and heteroduplex fragments) (42).

In addition, some organisms may produce more than one
T-RF because of rrn operon copy number heterogeneity (6).
On the other hand, multiple phylogenetically related organ-
isms could be represented by a single T-RF and therefore may
not represent a true operational taxonomic unit (24). Addi-
tionally, current molecular fingerprinting techniques are un-
able to detect populations that are present in low abundance

and hence T-RFLP profiles reflect the most abundant species
(40). Because of these shortcomings, diversity measures using
T-RFLP should be interpreted as a reflection of the PCR
product pool rather than the absolute bacterial community
diversity. Nonetheless, T-RFLP profiles do provide some
means of assessing apparent diversity and in the current study
the number and peak heights of T-RFs were used to determine
diversity indices.

Diversity indices have been used in microbial ecology for
various purposes that are of theoretical and practical nature. In
a theoretical context, diversity indices have been used to com-
pare different communities (10), to compare the same commu-
nity at different times (38), and to determine if there is a
correlation between operational parameters of wastewater
treatment plants and diversity (4). In a more practical sense,
diversity indices have been used to test the efficiency of bio-
augmentation for bioprotection from pollutant shocks (12). In
the current study, diversity indices were used to assess the
effect of SRT on the bacterial diversity of laboratory-scale
activated-sludge reactors.

Bacterial community diversity of samples taken from the two
sets of reactors in experiments 1 and 2 was assessed using the
Shannon-Weaver index of diversity (H), evenness (E), richness
(S), and the reciprocal of Simpson’s index of diversity (1/D).
Diversity indices summarize both species richness and relative
abundance using a single number and thus they are useful as a
first approach to estimate the diversity of bacterial species. For
example, communities with more species and even distribution
of abundance will have higher values of H than communities
with fewer species or uneven distribution of abundance. Stan-
dardized T-RFLP data from replicate reactors were combined
at one, two, and three times the SRT and the combined data
were used to determine richness and diversity indices values.

Diversity indices values for the three restriction enzymes
HhaI, MspI, and RsaI are presented in Table 1. The choice of
the restriction enzymes used in this study was based on rec-
ommendations found in the literature using primers 8-27f and
906-926r (16, 24). No trend was observed in richness values for
the three restriction enzymes used in this study. For example,
the richness value at two times the SRT (experiment 1) was
higher for an SRT of 2 days (S � 14) than an SRT of 8 days
(S � 11) using MspI but lower when HhaI was used (S � 16
versus S � 19). Similarly, the richness value at two times the
SRT (experiment 2) was higher for an SRT of 2 days (S � 22)
than an SRT of 8 days (S � 18) using HhaI but lower when
RsaI was used (S � 16 versus S � 17).

Because of the high variability in the results, we could not
determine which enzyme gave the best resolution (e.g., the
greatest number of T-RFs). This inconsistency in the richness
results obtained in the current study was not unique. Two other
studies using T-RFLP to assess microbial diversity in soil sam-
ples (10) and marine samples (26) have reported variability in
richness values between different restriction endonucleases.
Combined, these findings show the high degree of variability in
the resolving power of restriction endonucleases to reveal
small-subunit rRNA gene sequence variants, especially in com-
plex microbial communities such as those found in soil, marine
environments, and activated sludge. Dunbar et al. (10) re-
vealed that comparison of richness in complex communities
such as soil using T-RFLP was ineffective and recommended
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that the method be used to assess richness from simple com-
munities. The authors also recommended using group- or sub-
group-specific primers to better assess differences in richness
of complex communities.

Contrary to what was found for richness, there was a trend
in the results obtained using the Shannon-Weaver index, even-
ness, and the reciprocal of Simpson’s index. For the three
enzymes, community evenness were higher for reactors oper-
ated at an SRT of 2 days than reactors operated at an SRT of
8 days for samples collected from experiment 1 at one, two,
and three times the SRT and from experiment 2 at two and
three times the SRT (Table 1). These results suggest that bac-
terial communities in the reactors operated at an SRT of 2 days
have a more even distribution of abundance than the bacterial
community in reactors operated at an SRT of 8 days. Similar
results were observed with the Shannon-Weaver index and the
reciprocal of Simpson’s index, where diversity index values
were higher for reactors operated at an SRT of 2 days than
reactors operated at an SRT of 8 days for samples collected
from experiment 1 at one, two, and three times the SRT and
from experiment 2 at two and three times the SRT. The only

time where we observed a higher diversity for reactors oper-
ated at an SRT of 8 days was at one times the SRT (exper-
iment 2).

A somewhat greater difference in diversity between the two
sets of reactors was observed when the reciprocal of Simpson’s
index was used. This may be due to the fact that Simpson’s
index is more sensitive to abundant species than rare species
and hence is more reflective of predominant species (37). In
the current study, plotting rank-abundance curves for the two
sets of reactors revealed that dominance was higher in reactors
operated at an SRT of 2 days than SRT of 8 days (data not
shown).

To assess if the differences in the observed diversity indices
between the two sets of reactors were significant we applied a
randomization test as described by Solow (37) using the Spe-
cies Diversity and Richness software 3.0 (Pisces Conservation
Ltd.). This test resamples 10,000 times from a distribution of
species abundances produced by a summation of the two sam-
ples. The estimated P values for a one-sided test (against the
alternative that sample [SRT � 2 days] is more diverse than
sample [SRT � 8 days]) were calculated for the Shannon-

TABLE 1. Comparison of richness, evenness, and diversity values for reactors operated at SRTs of 2 days and 8 days

Endonuclease Expt and SRT
SRT � 8 days SRT � 2 days

S H E 1/D S H E 1/D

HhaI Expt 1
1XSRT 21 1.723a 0.566 2.725a 24 2.535a 0.798 8.098a

2XSRT 19 1.812a 0.615 2.905a 16 1.983a 0.715 4.836a

3XSRT 16 1.907a 0.688 3.514a 16 2.004a 0.723 4.869a

Expt 2
1XSRT 26 2.889b 0.887 12.320b 20 2.186b 0.730 6.083b

2XSRT 22 2.514b 0.814 9.063b 18 2.434b 0.812 8.320b

3XSRT 20 1.923a 0.642 3.535a 22 2.114a 0.684 4.144a

MspI Expt 1
1XSRT 14 1.248a 0.473 1.978a 15 1.696a 0.626 3.523a

2XSRT 11 1.159a 0.483 1.860a 14 1.824a 0.691 4.211a

3XSRT 23 1.614a 0.515 2.388a 19 2.006a 0.682 4.731a

Expt 2
1XSRT 22 2.631b 0.851 9.538b 16 1.889b 0.681 4.618b

2XSRT 23 2.333c 0.744 5.896a 21 2.330c 0.765 7.123a

3XSRT 23 1.630a 0.520 2.341a 21 2.332a 0.766 6.444a

RsaI Expt 1
1XSRT 14 1.774a 0.672 4.246a 20 2.149a 0.717 5.065a

2XSRT 15 1.912a 0.706 4.613a 17 2.191a 0.773 6.848a

3XSRT 24 2.003a 0.630 4.053a 26 2.134a 0.655 4.713a

Expt 2
1XSRT 19 2.498b 0.849 8.864b 17 2.044b 0.721 5.730b

2XSRT 16 2.058a 0.742 5.448a 17 2.367a 0.835 8.261a

3XSRT 27 1.992a 0.604 3.278a 21 2.132a 0.700 4.386a

Model predictions 1XSRT 6 1.772 0.989 6.066 6 1.783 0.995 6.195
2XSRT 6 1.489 0.831 3.452 6 1.775 0.991 6.089
3XSRT 6 1.432 0.799 3.220 6 1.768 0.987 6.000
1XSRT 6 1.464 0.817 3.365 6 1.753 0.979 5.817
2XSRT 6 1.525 0.851 3.702 6 1.746 0.975 5.732
3XSRT 6 1.558 0.869 3.919 6 1.740 0.971 5.667

a Randomization test using the Shannon-Weaver and the reciprocal of Simson’s index with 10,000 random partitions. Sample SRT � 2 is more diverse than sample
SRT � 8 at the 5% level.

b Randomization test using the Shannon-Weaver and the reciprocal of Simson’s index with 10,000 random partitions. Sample SRT � 8 is more diverse than sample
SRT � 2 at the 5% level.

c Randomization test using the Shannon-Weaver and the reciprocal of Simson’s index with 10,000 random partitions. Sample SRT � 8 has the same diversity as
sample SRT � 2 at the 5% level. 1XSRT, 2XSRT, and 3XSRT, one, two, and three times the SRT, respectively.
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Weaver index and the reciprocal of Simpson’s index. The test
results showed that reactors from experiments 1 and 2 that
were operated at an SRT of 2 days were more diverse than
reactors operated at an SRT of 8 days at the 5% level
(Table 1). The above results were further independently sup-
ported using the biological data obtained from the ecology-
based mechanistic model developed by Saikaly and Oerther
(32). Diversity indices from model predictions are presented in
Table 1. The model results showed higher diversity values at
an SRT of 2.5 days than an SRT of 8 days at one, two, three,
four, five, and six times the SRT (data not shown in the original
paper).

Collectively, the results from T-RFLP analysis and model
predictions show that SRT impacts species diversity. However,
it is still unclear what causes reactors operated at an SRT of 2
days to have higher diversity than reactors operated at an SRT
of 8 days. Several biotic (predation) or abiotic (competition)
factors (17, 18, 32) could be responsible for the differences in
diversity. It is already recognized in ecology that nonequilib-
rium dynamics and oscillations in species abundances favor
species coexistence (17, 18). Saikaly and Oerther (32) showed
theoretically that in activated-sludge systems, resource compe-
tition at intermediate SRT (2.28 to 5.66 days) resulted in os-
cillations in species abundances and that these oscillations
enhanced species diversity. However, at an SRT of �5.66 days
competitive exclusion dominated and diversity was reduced.
The above model results could be a potential mechanism to
explain the observed difference in diversity between the two
sets of reactors.

In the current study, T-RFLP analysis with diversity indices
proved to be a sensitive tool to analyze changes in the bacterial
community diversity in response to changes in operational
parameters of activated-sludge systems. A significant practical
application of the above results is that environmental engi-
neers could use SRT as a design tool to enhance bacterial
diversity in activated-sludge systems. This is important because
both laboratory and field studies showed that diversity is pos-
itively related to ecosystem stability (29, 39). Stability can refer
to resistance to disturbance and resilience (rate of recovery
after disturbance) (39).

If the diversity-stability hypothesis developed in these stud-
ies of macroecological systems applies to activated-sludge sys-
tems, then we expect systems with higher diversity to better
maintain performance when exposed to environmental pertur-
bations (e.g., toxic shock loads). The importance of species
diversity was shown in a recent study examining toxic loads of
mercury in bioreactors (41). The results of the study showed
that diverse biofilm communities demonstrated enhanced re-
sistance to mercury toxicity compared to monoculture biofilms.
Thus, an increase in species diversity may increase the chance
of obtaining species with different complementary physiologi-
cal traits that are better adapted to handle specific environ-
mental perturbations. Therefore, future work will focus on
investigating the relationship between diversity and ecosystem
stability of activated-sludge systems.
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