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Abstract: Odor intensity (OI) indicates the perceived intensity of an odor by the human 

nose, and it is usually rated by specialized assessors. In order to avoid restrictions on 

assessor participation in OI evaluations, the Vector Model which calculates the OI of a 

mixture as the vector sum of its unmixed components’ odor intensities was modified. 

Based on a detected linear relation between the OI and the logarithm of odor activity value 

(OAV—a ratio between chemical concentration and odor threshold) of individual odorants, 

OI of the unmixed component was replaced with its corresponding logarithm of OAV. The 

interaction coefficient (cosα) which represented the degree of interaction between two 

constituents was also measured in a simplified way. Through a series of odor intensity 

matching tests for binary, ternary and quaternary odor mixtures, the modified Vector 

Model provided an effective way of relating the OI of an odor mixture with the lnOAV 

values of its constituents. Thus, OI of an odor mixture could be directly predicted by 

employing the modified Vector Model after usual quantitative analysis. Besides, it was 

considered that the modified Vector Model was applicable for odor mixtures which consisted 

of odorants with the same chemical functional groups and similar molecular structures. 

Keywords: air quality; aromatic compounds; odor intensity; odor interaction; sensory 

evaluation; vector model 
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1. Introduction 

Volatile organic compounds (VOCs) are typical air pollutants in indoor/outdoor environments, and 

they usually account for a substantial proportion of total pollutant concentrations [1,2]. Most VOCs 

which have very low odor thresholds (the lowest concentration of an odorant that is perceivable by 

human nose) can easily cause pungent odors at low concentration levels [3,4]. Because of the 

interaction between these odorants, mixtures of many negligible odor pollutants will generate a 

stronger odor [5]. The odor pollution caused by these VOCs not only causes serious threats to human 

health, but it also lowers the quality of life. Thus, odor pollution has caused wide public concerns. 

Normally, chemical concentrations of some targeted compounds are measured through instrumental 

analysis methods. However, the overall air quality is easily overlooked [6], thus it is urgent to employ 

some more comprehensive and intuitive methods for air quality evaluation. 

The sensory evaluation method has been widely employed in the assessment of odor pollution [7,8]. 

As one of the most important evaluation criteria, odor intensity (OI) judges the degree of odor 

pollution in a more quantitative way [9–11]. For instance, the intensities of odor are classified into 

eight or twelve levels in an odor intensity referencing scale (OIRS) in the American Society for 

Testing Material (ASTM) standards [12]. Usually, OI is rated by a panel of specialized assessors in an 

odor-free testing room. Accordingly, the measurement of OI is mainly performed as laboratory 

research because of its specific measuring condition requirements. In order to promote the application 

of OI evaluation, human assessors are supposed to be replaced and predictive OI methods have been 

widely explored. According to the literature, many OI prediction models have been proposed (e.g., 

Vector Model, U Model, Additivity Model, the Strongest Component Model, etc.) [13–15]. Laffort et al. 

performed a series of comparative experiments, and the Vector Model displayed better predictive 

performance and feasibility than other models [16]. The Vector Model was firstly proposed by 

Berglund et al. in 1973, and it suggests that the perceived intensity of mixtures equals the vector sum 

of the perceived intensity of their unmixed components [17]. The participation of human assessors is 

still necessary to use the Vector Model. Because of that, research on the relations between OI and  

the chemical concentrations of odorants has also been extensively reported. For example, Whelton et al. 

proposed a Weber-Fechner model between OI and log concentration of drinking water odorants;  

Liden et al. reported the relation between OI and concentration of pyridine by means of intermodal 

power functions [18,19]. However, the research on the relationships between OI and chemical 

concentrations is still mainly focused on individual odorants rather than odor mixtures. 

In this paper, a series of laboratory tests have been performed to measure the OI and chemical 

concentrations of odor samples which contained both individual aromatic compounds and their 

mixtures. The experimental results derived from individual odorants were used to relate the perceptual 

measure (i.e., OI) with the corresponding chemical concentration. Furthermore, the relation between 

OI of a binary odor mixture and the odor intensities of its unmixed components was investigated. 

Based on the above results, the Vector Model was modified by relating the OI of a mixture with the 

logarithm of odor activity value (lnOAV) values of its components. After measuring the chemical 

concentrations of some new odor samples, their corresponding OI values were predicted by employing 

the modified Vector Model, which thus provided a new method for OI evaluation that will probably 

help extend its application to more related fields. 
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2. Experimental Section  

2.1. Odor Sample and Assessors 

As a group of typical air pollutants found in indoor environments, the aromatic compounds were 

chosen as the target substances in this study. As listed in Table 1, benzene (B, 99.5%), toluene  

(T, 99.5%), ethylbenzene (E, 98.5%), n-propylbenzene (P, 98.5%), o-xylene (O, 98%), m-xylene  

(M, 98%) and styrene (S, 98%) were employed. All the stimuli were purchased from the J&K 

Scientific (Beijing, China). Each odorant was individually injected into a specialized plastic bag for 

odor tests (Sinodour, Tianjin, China), and used as a gas standard after the odorant had completely 

evaporated. Odor samples were prepared by transferring a certain amount of standard gas into a new 

plastic bag filled with purified air (bag volume = 3 L). 

A sensory panel (nine assessors, five males and four females) were recruited from the University of 

Science and Technology Beijing. Their ages ranged from 21 to 29 years (mean = 25 years), and all of 

them had participated in several experiments using similar olfactory methods. 

Table 1. List of odorants used for Vector Model modification. 

Order Odorant Abbreviation CAS# ChemicalStructure Odor Threshold/(mg/m3) 

1 Benzene B 71-43-2 2.53 

2 Toluene T 108-88-3 1.43 

3 Ethylbenzene E 100-41-4 0.45 

4 n-Propylbenzene P 103-65-7 0.57 

5 o-Xylene O 95-47-6 1.37 

6 m-Xylene M 108-38-3 1.55 

7 Styrene S 100-42-5 0.19 

2.2. The Vector Model Methodology 

The Vector Model can be seen as adjacent sides of a parallelogram where the lengths of the sides 

represent the perceived intensities of the unmixed components and the length of a diagonal through the 

figure represents the perceived intensity of the mixture [14]. Thus, the OI of a binary mixture is 

successfully related with the odor intensities of its unmixed constituents as the following equation [16]: OΙୟୠଶ ൌ OΙୟଶ ൅ OΙୠଶ ൅ 2 ൈ cos αୟୠ ൈ OΙୟ ∙ OΙୠ (1)

where a and b indicates two different substances and OIab is the OI of their mixture. The interaction 

coefficient cosα (α is the angle between the two sides of a parallelogram) represents the degree of 

interaction between two unmixed components of a binary odor mixture. Normally, cosα is determined 

empirically for components of equal perceived intensities, and serves to predict the OI of remaining 

mixtures in a set. The corresponding equation for calculating cosα was as described below: 
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cos αୟୠ ൌ OΙab2 െ OΙa2 െ OΙb22OΙa ∙ OΙb  (2)

Usually, the cosα values differed among different odor mixtures. Besides, olfactory tests were still 

required to measure the cosα value before the corresponding application of the Vector Model. Thus, 

the Vector Model is barely used in actual OI prediction. For ternary and quaternary odor mixture, their 

corresponding Vector Models were as reported below [16]: OΙୟୠୡଶ ൌ OΙୟଶ ൅ OΙୠଶ ൅ OΙୡଶ ൅ 2 ൈ cos αୟୠ ൈ OΙୟ ∙ OΙୠ ൅2 ൈ cos αୟୡ ൈ OΙୟ ∙ OΙୡ ൅2 ൈ cos αୠୡ ൈ OΙୠ ∙ OΙୡ (3)

OΙୟୠୡୢଶ ൌ OΙୟଶ ൅ OΙୠଶ ൅ OΙୡଶ ൅ OΙଶୢ ൅ 2 ൈ cos αୟୠ ൈ OΙୟ ∙ OΙୠ ൅2 ൈ cos αୟୡ ൈ OΙୟ ∙ OΙୡ ൅2 ൈ cos αୟୢ ൈ OΙୟ ∙ OΙୢ ൅2 ൈ cos αୠୡ ൈ OΙୠ ∙ OΙୡ ൅2 ൈ cos αୠୢ ൈ OΙୠ ∙ OΙୢ ൅2 ൈ cos αୡୢ ൈ OΙୡ ∙ OΙୢ 

(4)

As above mentioned, the OI of a mixture was only calculated as the vector sum of its  

unmixed components’ odor intensities, however, the OI values (e.g., OIa, OIb) in the Vector Model 

were not real vectors. 

2.3. Experimental Procedure 

The experimental scheme of this study is presented in Figure 1, and it can mainly be divided into 

two sections. In the first section, the relation between OI and lnOAV was firstly investigated by using 

a series of individual odor samples. The odor activity value (OAV) indirectly represented the 

concentration level of an odor sample and it was calculated as the ratio between the concentration of 

individual substance in a sample and the threshold concentration of this substance (i.e., OAV = Ci/CThr.). 

Based on that, the OI of an unmixed component in the Vector Model (e.g., OIa, OIb in Equation (1)) 

was replaced with its corresponding lnOAV value. Simultaneously, the relationship between the OI of 

a binary odor mixture and the odor intensities of its constituents was explored. Based on the obtained 

results, the determination method of cosα was suitably simplified. Then, a modified Vector Model was 

established. In the second section, several odor mixtures were prepared in the form of a series of 

different odor samples. The OI of each odor sample was rated by a sensory panel (OImea.) and chemical 

concentrations of its constituents were also measured by gas chromatography. Through plugging the 

measured chemical concentrations in the modified Vector Model, the predicted OI (OIpre.) of each odor 

sample was also obtained. Then, the predictive performance of the modified Vector Model was 

identified through odor intensity matching tests between OImea. and OIpre.. 
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Figure 1. Experimental scheme of the Vector Model modification and its application in 

odor intensity prediction of odor mixtures. 

2.4. Olfactory and Chemical Analysis 

The odor threshold (CThr.) of each odorant was determined by employing a dynamic olfactometer 

(AC’SCENT, St. Croix Sensory, Inc., Stillwater, MN, USA). An odorant (chemical concentration = Ci) 

was delivered by the dynamic olfactometer in an ascending dilution series, and the sensory panel 

measured the averaged dilution multiple (n) when the odorant became odorless. Then, odor threshold 

was calculated as: CThr. = Ci/n. The OI of an odor sample was rated by referencing to the odor intensity 

referencing scale (OIRS) [12]. Water solutions of 1-butanol were respectively prepared at eight  

500 mL Erlenmeyer flasks (room temperature was 25 ± 1 °C) from solution concentration of 12 ppm to 

1550 ppm with a geometric progression of two. Assessors compared the olfactory stimulations 

between odor sample and the OIRS, and then a best match point on the OIRS was determined. For 

each odor sample, its odor intensity was calculated as the average of all the scores rated by assessors in 

the sensory panel. The chemical concentrations of odor samples were measured by gas 

chromatography (GC-2014, Shimadzu, Kyoto, Japan) with a flame ionization detector (GC-FID). The 

Rtx-5 capillary column (30 m × 0.25 mm ID, 0.5 μm film thickness) was employed and the carrier gas 

was nitrogen (≥99.999%) at 1.0 mL/min. The injection port of gas chromatography was 200 °C. The 

column oven temperature was set to 50 °C for 1 min and up to 200 °C at 10 °C·min−1 and held for 5 min. 

3. Results and Discussion 

3.1. The Linear OI-lnOAV Relation of Individual Odorants 

The odor threshold (CThr.) of each odorant (i.e., B, T, E, P, O, M and S) was firstly measured by the 

sensory panel, and the results were listed in Table 1. After that, each odorant was prepared in the form 

of four odor samples with different chemical concentrations. In addition to measuring the OI of each 

odor sample, its chemical concentration (Ci) was also measured by gas chromatography. Then, the 

OAV of each odor sample was calculated (OAV = Ci/CThr.). The OI of each odor sample was rated by 

nine assessors in the sensory panel, and their averaged value was calculated as the measured OI. As 

depicted in Figure 2, the results of all seven of these aromatic compounds followed a linear relation 

between OI and lnOAV. Previous study also had reported the same linear relation of individual 
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benzene, toluene, ethylbenzene and o-xylene samples [20]. Besides, Kim et al. also reported a similar 

linear relationship between OI and dilution-to-threshold ratio (D/T ratio, which was similar to the 

implication of OAV) among individual aldehydes and reduced sulfur compounds [21,22]. According 

to the literature, the observed linear relation of odorants within a same category was mainly 

contributed to by their same chemical functional groups and similar molecular structures [23]. The 

specific fitting equation of tested individual aromatic compounds was OI = 1.07lnOAV (Figure 2). 

Thus, each lnOAV unit of these aromatic compounds always generated the same strength of olfactory 

stimulation when it existed individually. Because the olfactory evaluation was easily influenced by 

many factors including age, gender of assessor and other environmental conditions, the fluctuation of 

testing results has been widely recognized. If the linear relation was individually performed for each 

individual odorant, the fitting effect would be better (Figure 2), but it was considered to be a 

simplification of the Vector Model when all these aromatic compounds were fitted to one line. Thus, 

the difference of an individual odorant’s fitting precision was neglected. The odor thresholds were 

usually employed as constants and many related experimental results have been reported. Thus, the 

OAV of an odorant was easily calculated on the basis of its measured chemical concentration. Based 

on the obtained linear relation between OI and lnOAV of these aromatic compounds (Figure 2), the OI 

of an unmixed component in the Vector Model (e.g., OIa, OIb in Equation (1)) could be replaced with 

its corresponding lnOAV value. 

 

Figure 2. Relationship between odor intensity (OI) and logarithm of odor activity value 

(lnOAV) of individual aromatic compounds. 

3.2. The Modification of Vector Model for Binary Odor Mixture 

Four binary odor mixtures of aromatic compounds (e.g., odor mixtures of B and T; B and E; T and 

E; E and O) were individually prepared as eight different odor samples. The OI of each odor sample 

and the odor intensities of its unmixed constituents were all measured through sensory evaluation by 

the sensory panel. As depicted in Figure 3, the measured OI of a binary odor mixture (OImea.) and the 
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summation of its unmixed constituents’ odor intensities (OIsum.) showed a linear relationship (i.e., 

OImea. = 0.66OIsum.). Based on the obtained linear equation, it could be concluded that a distinct 

counteraction existed in the components’ odor interaction [24]. Furthermore, all these four binary odor 

mixtures could be fitted into a same linear equation, thus probably indicating a similarity of the odor 

interactions among these binary odor mixtures. 

 

Figure 3. Relationship between OI of a binary odor mixture (OImea.) and the summation of 

its unmixed constituents’ odor intensities (OIsum.). 

Because the OIab in Equation (2) represents the perceived OI of a binary mixture, it could be 

replaced with the summation of the constituents’ odor intensities (i.e., OIsum.) on the basis of the 

obtained linear relation between OImea. and OIsum. (Figure 3, OImea. = 0.66OIsum. = 0.66(OIa + OIb)). 

According to the determination method of cosα in the Vector Model, the two constituents should be 

prepared with equal perceived intensities (OIa = OIb) [16]. Thus, Equation (2) could be recalculated 

following Equation (5): 

cos αୟୠ ൌ ൫0.66 ∙ ሺOIୟ ൅ OIୠሻ൯ଶ െ OΙୟଶ െ OΙୠଶ2 ∙ OIୟ ∙ OIୠ ൌ ሺ0.66 ൈ 2 ൈ OIୟሻଶ െ 2OΙୟଶ2OΙୟଶ ൌ 1.74OΙୟଶ െ 2OΙୟଶ2OΙୟଶൌ െ0.129 
(5)

Because several different binary odor mixtures of aromatic compounds followed the same linear 

relation (Figure 3), the cosα values were proved to be a constant (Equation (5)). Therefore, fitting all 

the binary odor mixtures to a same line actually made an important simplification to the determination 

method of cosα. Then, Equation (1) would be transformed into the following equation: OΙୟୠଶ ൌ OΙୟଶ ൅ OΙୠଶ െ 0.258OΙୟ ∙ OΙୠ (6)

In order to predict the OI of an odor mixture directly by means of instrumental analysis, the linear 

relation between OI and lnOAV of individual aromatic compounds was also employed. By replacing 
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the OIa and OIb in Equation (6) with their corresponding lnOAV values (Figure 2, OI = 1.07lnOAV), 

the OI of a binary odor mixture of aromatic compounds was calculated as Equation (7): OIୟୠ ൌ 1.07ටlnOAVୟଶ ൅ lnOAVୠଶ െ 0.258lnOAVୟlnOAVୠ (7)

The interaction coefficient cosα between any two constituents of a mixture was always calculated 

following Equation (2). Thus, the cosα values in Equations (3) and (4) were also identified to be the 

same (i.e., cosα = −0.129) according to the Equation (5), and the Vector Models of ternary and 

quaternary odor mixtures (Equations (3) and (4)) of aromatic compounds could also be modified the 

same as the binary mixture one (Equation (5)). The specific calculation equations for ternary and 

quaternary odor mixtures were are described below: OIୟୠୡ ൌ 1.07ටlnOAVୟଶ ൅ lnOAVୠଶ ൅ lnOAVୡଶ െ 0.258 ൈ lnOAVୟlnOAVୠ െ0.258 ൈ lnOAVୟlnOAVୡ െ0.258 ൈ lnOAVୠlnOAVୡ (8)

OIୟୠୡୢ ൌ 1.07ටlnOAVୟଶ ൅ lnOAVୠଶ ൅ lnOAVୡଶ ൅ lnOAVୢଶ െ 0.258 ൈ lnOAVୟlnOAVୠ െ0.258 ൈ lnOAVୟlnOAVୡ െ0.258 ൈ lnOAVୟlnOAVୢ  െ0.258 ൈ lnOAVୠlnOAVୡ െ0.258 ൈ lnOAVୠlnOAVୢ െ0.258 ൈ lnOAVୡlnOAVୢ 

(9)

After measuring the constituents’ chemical concentrations by means of instrumental analysis,  

the OI of an odor mixture would be directly calculated through the modified Vector Models  

(Equations (7)–(9)).  

3.3. The Identification of Modified Vector Model in OI Prediction 

As shown in Figure 4, predictive performance of the modified Vector Model was performed by 

comparison between the measured OI and predicted OI of different odor mixtures. In the above odor 

intensity matching tests, eight different binary odor mixtures of aromatic compounds were used. Each 

odor mixture was prepared in the form of five odor samples with various chemical concentration 

levels. The OI of each odor sample (OImea.) was rated by the sensory panel. Besides, the OI of each 

odor sample (OIpre.) was also predicted on the basis of its measured chemical concentrations and the 

modified Vector Model (Equation (5)). The obtained results were depicted by plotting OIpre. on the 

vertical axis and OImea. on the horizontal axis. As shown in Figure 4, the modified Vector Model made 

predictions that lay close to the diagonal (dashed line) which meant a perfect prediction (OImea. = OIpre.). 

In sensory methods utilizing human assessors, fluctuation of the evaluation results in repeated tests 

(e.g., 0.5 of the OIRS) is normally observed and acknowledged. Thus, random error might be one of 

the reasons causing the low predictive accuracy of several odor samples in Figure 4.  
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Figure 4. The comparison between measured OI (OImea.) and predicted OI (OIpre.) of eight 

different binary odor mixtures of aromatic compounds. 

However, compared with the simple summation of constituents’ odor intensities (Figure 3), the 

predictive accuracy of modified Vector Model was distinctly better and should contribute to the 

consideration of odor interactions in the modified Vector Model (i.e., cosα). Although the cosα term 

was no longer individually calculated for each specific binary odor mixture, the predictive accuracy 

was still maintained well among all these mixtures. Thus, the simplification of the cosα value 

(Equation (5)) barely influenced its predictive effect. In contrast, the Vector Model was effectively 

simplified. After measuring the chemical concentration of an odor mixture’s constituents, its OI could 

be directly predicted by employing the proposed modified Vector Model and then the evaluation of OI 

could thus be applied in more fields without the participation of human assessors. 

Because odor interactions generally exist between any two constituents of an odor mixture, the 

degree of odor interaction would be more complex for odor mixtures with greater numbers of 

components. Thus, the predictive performance of modified Vector Model was also examined for more 
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complex odor mixtures. As listed in Table 2, odor samples of binary, ternary and quaternary odor 

mixtures were prepared to test the predictive performance of the modified Vector Model. The OI of 

each odor sample was rated (i.e., OImea.) by the sensory panel. Besides, the lnOAV values of each odor 

sample’s components were also calculated. Based on these lnOAV values, the OI of each odor sample 

was predicted (i.e., OIpre.) according to the modified Vector Model (Equations (7)–(9)).  

Table 2. Comparison of odor intensity between measured values (OImea.) and 

corresponding predicted values (OIpre.). 

Odor Mixture 
Concentration of Each Component 

OImea. 
OIpre. 

lnOAVa lnOAVb lnOAVc lnOAVd MVMI SCMII

T (a) + E (b) 

3.36 3.54 - - 5.4 4.9 3.8 

3.03 2.44 - - 4.0 3.9 3.2 

2.67 2.44 - - 3.3 3.6 2.9 

T (a) + S (b) 

1.65 2.04 - - 2.7 2.6 2.2 

3.36 2.04 - - 4.5 4.0 3.6 

2.34 4.53 - - 6.2 5.2 4.8 

T (a) + E (b) + M (c) 

2.34 3.54 2.80 - 3.8 4.7 3.8 

2.34 2.44 3.49 - 5.0 4.5 3.7 

1.65 1.78 2.15 - 3.5 3.0 2.3 

E (a) + P (b) + S (c) 

3.54 2.20 3.83 - 5.4 5.3 4.1 

4.24 2.20 4.53 - 6.8 6.2 4.8 

2.82 2.20 2.65 - 4.5 4.1 3.0 

T (a) + E (b) + M (c) + S (d) 

4.24 2.20 3.83 2.15 4.8 5.5 4.5 

2.20 3.15 2.20 2.15 4.5 4.1 3.4 

1.85 1.77 2.20 2.15 3.5 3.3 2.4 

Average of OIpre./OImea.  0.96 0.78 

IMVM: modified Vector Model; II SCM: Strongest Component Model. 

Besides, the strongest component model (SCM) was also employed to compare with the modified 

Vector Model. The SCM usually calculates the OI of an odor mixture as the biggest value of its 

unmixed components’ odor intensities. In this study, the component with a higher lnOAV value was 

firstly selected for each odor sample. Then, the OI of an odor sample (OIpre.) was calculated on the 

basis of the selected lnOAV and the fitting formula in Figure 2 (OI = 1.07lnOAV). For instance, the 

biggest lnOAV value of a ternary mixture E + P + S (e.g., lnOAV of E, P and S were respectively 3.54, 

2.20 and 3.83) was 3.83. By employing the SCM, the OIpre. of this odor sample was calculated as: 

OIpre. = 1.07 × 3.83 = 4.1. In order to compare the predictive performance between the SCM and 

modified Vector Model, the average of all the samples’ predictive coefficients (ratio of OIpre. and 

OImea.) was calculated for each model, respectively. When the predictive coefficient was 1.0, the 

predicted OI and measured OI were considered to be the same. As shown in Table 2, the averaged 

predictive coefficient was 0.96 for the modified Vector Model and 0.78 for the SCM, thus proving that 

the modified Vector Model was effective for complex odor mixtures and its predictive accuracy was 

distinctly better than that of the SCM. 

In this study, the interaction of odorants was observed to be similar among odorants with the same 

functional groups and similar molecular structures (Figure 3). Actually, this phenomenon was also 
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observed in other categories of odorants [20,25]. Based on that, the observed linear OI-lnOAV relation 

(Figure 2) and linear OImea.-OIsum. relation (Figure 3) also possibly exist among other categories of 

odorants. Even if both the fitting formula of OI-lnOAV relation and the cosα value were different from 

this study, the Vector Model modification method is still applicable for other odorants. Usually, 

olfactory evaluation is carried out together with some form of instrumental analysis, and it provides a 

more intuitive description to the degree of air pollution. Although sometimes the predictive results of 

OI were not close enough to the real OI perceived by a human assessor, it was still valuable as a 

reference for the instrumental analysis. Thus, the modified Vector Model could provide a convenient and 

more feasible method for sensory evaluation in general indoor and outdoor air pollution assessments. 

4. Conclusions 

In this paper, a modified Vector Model for odor mixtures of aromatic compounds was proposed. 

Based on the similarity between the measured OI and the summation of constituents’ odor intensities 

between binary odor mixtures, the determination method of Vector Model’s interaction constant (cosα) 

was effectively simplified. Besides, the OI of mixture’s unmixed constituents were also replaced by 

their corresponding lnOAV values on the basis of the linear relation between OI and lnOAV of 

individual aromatic compounds. Then, the OI of an odor mixture was successfully related with the 

lnOAV values of its components. For other compounds with similar molecular structures and 

functional groups, similar modified Vector models produced by employing the methods proposed in 

this study are also feasible. After a series of odor intensity matching tests for binary, ternary and 

quaternary odor mixtures, the predictive performance and feasibility of the modified Vector Model 

were identified to be good. In certain indoor/outdoor air pollution environments, the chemical 

concentrations of each pollutant could be easily measured by instrumental analysis. Then, the OI of an 

odor mixture could be directly calculated by employing the corresponding modified Vector Model. 

Besides the quantitative analysis for targeted compounds, the predicted OI also provided valuable 

reference for the evaluation of air pollution, and then the modified Vector Model was thus considered 

helpful in normal air quality assessments. 
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