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O
ver thepast decade, newclinical definitions anddiagnos-

tic criteria, facilitated by a specific biomarker, aquapo-

rin-4 (AQP4)–reactive autoantibodies (AQP4-IgG), led to

the recognition that there is a broader clinical spectrum of syn-

dromes reasonably classified as being related to neuromyelitis op-

tica (NMO); these are now referred to asNMOspectrumdisorders.

Serum IgG1 antibodies against the water channel AQP4 are highly

specific for NMO spectrumdisorders, the clinical features of which

include inflammation of the optic nerve, spinal cord, and specific

brain areas, which frequently are sites of high AQP4 expression.1-5

Magnetic resonance imaging (MRI) represents themost important

nonserological paraclinical parameter to facilitate the diagnosis of

NMOspectrumdisorder.During theacutediseasephase,MRIof the

affected optic nerve and spinal cord may reveal swelling and con-

trastenhancementcausedbyblood-brainbarrierbreakdown.These

features are hypothesized to be triggered by damage to astrocytic

end-feet at the glia limitans of the blood-brain barrier.

The spinal cord lesions in patients with multiple sclerosis (MS)

usually span less than 1 vertebral segment and are commonly

peripherally located within the white matter (WM) of the cervical

spinal cord. By comparison, the spinal cord lesions in patients with

NMO spectrum disorder are typically centrally located in the cross

section, extend longitudinally over 3 or more contiguous vertebral

segments, and occasionally span most of the length of the spinal

cord.6 Cerebral lesions in patients with NMO spectrum disorder

detected by use of conventional MRI are most commonly clinically

silent and nonspecific in appearance; however, lesions of the dien-

cephalon, periaqueductal region, and brainstem are more specific

for NMO. The clinical features of hypersomnolence, anorexia, amen-

orrhea, or intractable hiccups prompt consideration of NMO. Hence,

amore comprehensive description of brain parenchymal abnormali-

ties is needed for NMO spectrum disorder and may provide

enhanced metrics for distinguishing NMO spectrum disorder from

otherWMdisorders.

Multiple studies7-15 have focused on spinal cord and brain MRI

findings regarding NMO spectrum disorders using conventional

MRI techniques. During the last decade, several groups have

evaluated the use of nonconventional brain and spinal cord MRI

techniques, including ultrahigh-field strength MRI, proton MR

spectroscopy (1H-MRS), diffusion and diffusion tensor imaging,

magnetization transfer imaging (MTI), and functional MRI

(fMRI).16,17 Although all of these techniques are currently applied in

neurological diseases such asMS, they are still exclusive to research

and not widely used in daily clinical practice. Nevertheless, these

advancedMRI techniques may help distinguish NMO spectrum dis-

orders from MS and elucidate the pathophysiology of NMO spec-

Brain parenchymal lesions are frequently observed on conventional magnetic resonance

imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the

specific morphological and temporal patterns distinguishing them unequivocally from lesions

caused by other disorders have not been identified. This literature review summarizes the

literature on advanced quantitative imagingmeasures reported for patients with NMO

spectrum disorder, including protonMR spectroscopy, diffusion tensor imaging,

magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strengthMRI.

It was undertaken to consider the advancedMRI techniques used for patients with NMO by

different specialists in the field. Although quantitative measures such as protonMR

spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain

injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate

greater white matter than gray matter degradation. These findings could be confirmed by

ultrahigh-field MRI. The use of nonconventional MRI techniques may further our

understanding of the pathogenic processes in NMO spectrum disorders andmay help us

identify the distinct radiographic features corresponding to specific phenotypic

manifestations of this disease.
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trum disorders. Herein, we review the current status of advanced

MRI techniques for patients with NMO spectrum disorder.

Exploration of Normal-AppearingWM
and Normal-Appearing Gray Matter

ProtonMR Spectroscopy

Metabolic parameters quantified by use of 1H-MRS (eg, ratios of

N-acetylaspartate to creatine and choline to creatine, and absolute

concentrations of the metabolites) have been reported to be unal-

tered in the normal-appearing cerebral WM and normal-appearing

cerebral gray matter (GM) of patients with NMO spectrum disor-

der compared with patients with MS.18-20 However, a recent case

study of NMO spectrum disorders by Ciccarelli et al21 demon-

strated lower myo-inositol levels normalized to creatine levels in

the lesional cervical spinal cords of patients with NMO spectrum

disorder in comparison with patients with MS and matched

healthy controls. Myo-inositol is a molecule located in astrocytes;

low levels of myo-inositol estimated by use of 1H-MRS are there-

fore believed to indicate astrocytic damage.21 Ciccarelli et al21

hypothesize that this lesional pathology is distinctive among

patients with MS. Nevertheless, this finding needs confirmation by

a larger study and preferably also additional data on brain lesions.

So far, there is insufficient evidence that 1H-MRS is specifically sen-

sitive to NMO spectrum disorder–related brain parenchymal

alterations and may thus facilitate the distinction of these altera-

tions fromMS.

Diffusion Tensor Imaging

Diffusion tensor imaging indirectly characterizes the tissue’s integ-

rity and structure in vivo by probing the microscopic diffusion of

water molecules in the tissue (Figure 1).22 The 2 most commonly

quoted coefficients are the mean diffusivity and the fractional

anisotropy. The mean diffusivity measures the average diffusivity

of water molecules. It is therefore affected by the cell size and tis-

sue integrity. Fractional anisotropy measures the degree of direc-

tional anisotropy of the diffusion process and is useful for assessing

the structural integrity of WM and the degree of structural align-

ment within fiber tracts. Studies of animal models have shown that

2 other coefficients, parallel diffusivity and perpendicular diffusiv-

ity, provide additional information on WM structures that is more

specific to underlying histological processes than fractional anisot-

ropy or mean diffusivity.23 Parallel diffusivity may reflect diffusiv-

ity along the axon (ie, axonal integrity), whereas perpendicular dif-

fusivity represents diffusivity perpendicular to the axon (ie,

myelination).

In the brain and spinal cord tissues of patients with NMO spec-

trum disorder, both a decrease24 and an increase inmean diffusivity

and perpendicular diffusivity have been reported in different stud-

ies. Furthermore, a heightened variance of parallel diffusivity and a

decrease in fractional anisotropy were stated in a comparison with

healthy controls,25,26 potentially reflecting both axonal and myelin

damage.24,25,27-31 The normal-appearing WM abnormalities

described thus far seem to predominate in optic radiations and cor-

ticospinal tracts (spinal cord and posterior limb of the internal

capsule),27 although more widespread normal-appearing WM

abnormalities in the brain and spinal cord were also detected by use

of diffusion tensor imaging.25,26,28 Confirmation from larger studies

will be necessary. Normal-appearing GM abnormalities have been

observed in the thalamus and putamen.31 Normal-appearing WM

and GM abnormalities may be the consequence of both Wallerian

degeneration and focal demyelination in the brain. With regard to

spinal cord lesions, higher radial diffusivity within spinal cord tracts

was present in patients with NMO spectrum disorder compared

with patients with MS, which is consistent with the more pro-

nounced tissue destruction observed in patients with NMO spec-

trum disorder.24 An association betweenWMdiffusion changes and

clinical parameters (the Expanded Disability Status Scale and dis-

ease duration) has been reported for patients with NMO spectrum

disorder.25,32

In summary, radiological and pathological correlation studies

are needed to clarify the precise relationship between the altera-

tions within diffusion tensor imaging–derived measures and the

underlying histopathological processes. Although not yet estab-

lished in routine clinical application, diffusion tensor imaging may

have the potential to serve as an imaging surrogate marker in

emerging NMO clinical trials (as a secondary or exploratory end

point).

Magnetization Transfer Imaging

Magnetization transfer imaging applies an additional off-

resonance pulse to saturate protons associated with macromol-

ecules. Saturated protons may enter the pool of free (water) pro-

tons and transfer their magnetization, causing a signal decrease in

macromolecule-rich areas such as the brain parenchyma. By com-

parison, thesignalofmore fluidcomponents ispreserved.Thus,MTI

may reveal tissue damage due to demyelination.

Twoof3 small studiesusingMTI toevaluatepatientswithNMO

spectrum disorder have observed no differences between af-

fected individuals and healthy controls.17,33However, Rocca et al34

Figure 1. Diffusion Tensor Imaging
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A, Fiber bundles are composed of axons with myelinated sheaths. B, The

corresponding diffusion tensor is modeled by an ellipsoid. Parallel diffusivity

(Dpar) corresponds to the diffusivity in themain direction of the fiber bundle

(reflecting axonal integrity), and perpendicular diffusivity (Dper) is related to the

diffusivity orthogonal to this direction (reflecting themyelination).
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found lower magnetization transfer ratio histogram–derived met-

rics forpatientswithNMOcomparedwithhealthy controls, and the

changeswereexclusive tonormal-appearingGMandcorrelatedwith

increased mean diffusivity. Unfortunately, this study34 was con-

ducted prior to the availability of AQP4 antibody testing. Conse-

quently, diagnosticmisclassificationmayhavebiased the results. In

summary, owing to the very limitednumberof studies andpatients

included, a conclusive answer to the value of MTI for patients with

NMOspectrumdisorder remainsopenand requires largerprospec-

tive studies.

Volumetric Evaluation

For patients with MS, MRI-detected abnormalities are typically

accompanied by decreased brain volume of the WM and GM.35

This atrophy correlates with the level of physical disability and

cognitive impairment.35 Several studies36-39 have investigated

changes in the WM and/or GM volume in patients with NMO.

Analyses of global volumetric atrophy demonstrated a markedly

decreased WM volume in patients with NMO spectrum disorder

compared with healthy participants.36,37 Blanc et al36 demon-

strated correlations between WM focal atrophy and cognitive

impairment in 28 patients with NMO. Focal WM atrophy included

the optic chiasm, pons, cerebellum, corpus callosum, and parts of

the frontal, temporal and parietal lobes, including the superior lon-

gitudinal fasciculus.

Inanother study,38 theExpandedDisabilityStatusScaleanddis-

ease duration were not significantly correlated with brain volume

for30patientswithNMO.AlthoughglobalGMatrophyhasnotbeen

described for patientswithNMOspectrumdisorder, focal thalamic

andprefrontalGMatrophywas identified in this small study38ofpa-

tients with NMO, although it was less severe than in patients with

MS.37,39 Moreover, the anatomical regional distribution of the de-

scribed focal GM and/or WM atrophy seems to differ between pa-

tientswithNMOspectrumdisorderandpatientswithMS.39This find-

ing is consistent with the study by Saji et al,40 who showed that

cognitive decline candevelopearly in patientswithNMOspectrum

disorder.

In aggregate, the data suggest the presence of diffuse WM

and focal GM atrophy in patients with NMO spectrum disorder,

even in those patients without cerebral T2-weighted hyperintense

lesions. Although technically feasible, atrophy measurements

have not become part of the clinical practice for patients with MS

or NMO. As with MS, for which numerous clinical trials with new

therapeutic compounds have applied atrophy measurements

mostly as secondary or exploratory end points, the effect of new

NMO therapies on brain atrophy could be assessed in upcoming

clinical trials.

Functional MRI

Functional MRI is a neuroimaging procedure that measures neural

activity based on changes in deoxyhemoglobin levels (blood oxy-

gen level–dependent [BOLD] signal). Two general approaches are

used: (1) activation fMRI, which measures the deoxyhemoglobin

signal modification during specified tasks, and (2) resting-state

fMRI, which correlates the synchrony of low-frequency fluctua-

tions of the BOLD signal in various regions while the brain is at rest

(Figure 2). The latter technique can be used to determine the

functional connectivity of neural networks.41 While both fMRI

techniques have been applied to patients with MS,42,43 there has

been only one study44 to date on the use of activation fMRI for

patients with NMO spectrum disorder. The study44 showed an

abnormal pattern of movement-associated cortical activation in

patients with NMO spectrum disorder (similar to that in patients

with MS) that extended beyond the “classical” sensorimotor net-

work and involved visual areas devoted to motion processing. The

correlation between fMRI changes and the extent of spinal cord

damage suggests that such functional cortical changes might play

an adaptive role in limiting the clinical outcome of the pathology of

NMO spectrum disorder.43

In patients with NMO spectrum disorder, the regions of func-

tional impairment and adaptation have been described by

resting-state fMRI studies despite the otherwise preserved global

brain integrity.42,44 Liu et al42 showed that patients with NMO

spectrum disorder had a reduced amplitude of low-frequency

Figure 2. Resting-State Functional Magnetic Resonance Imaging
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Axial and sagittal views of the brain funtional networkA

Expanded disability status scaleB

A, Axial (left) and sagittal (right) views of the brain functional network. Nodes

are located toward the coordinates of the regional centroids of the automated

anatomical labeling template. Short-distance connections corresponding to the

red edges are predominantly in the posterior cortex, whereas the long-distance

connections shown in blue are between the frontal cortex and the regions of

the parietal and temporal association cortex. B, Expanded Disability Status

Scale (EDSS) as a function of the hub disruption index. A hub disruption index of

0 corresponds to a normal network. The farther the index deviates from 0, the

more significant the reorganization of the network (in terms of topology). A

correlation score highlights the fact that the reorganization of the brain network

is a marker of the severity of the disease. The solid line represents the linear

regression fit across all participants.
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fluctuation in the precuneus, posterior cingulate cortex, and lin-

gual gyrus and increased amplitude of low-frequency fluctuation

in the middle frontal gyrus, caudate nucleus, and thalamus com-

pared with normal controls. Moreover, a moderate negative cor-

relation was observed between the Expanded Disability Status

Scale and the amplitude of low-frequency fluctuation in the left

middle frontal gyrus.42

From resting-state fMRI data, it is possible to model large-

scale human brain networks of regional cortical and subcortical

nodes with models such as the graph theory.45 Hemmert et al46

hypothesized that global network properties were conserved in

patients with NMO but that regional networks were reorganized.

This reorganization could be a marker of disease severity because

the authors found a reasonable correlation between disability and

the hub disruption index.46 These results indicate that functional

connectivity is modified in patients with NMO spectrum disorder

and that resting-state graph analysis may highlight brain plasticity

associated with network reorganization. Besides fair evidence of

alterations in brain functional networks, further longitudinal stud-

ies are needed to determine the role of fMRI in NMO spectrum

disorders.

Ultrahigh-Field and High-Field MRI

Striking advances in in vivobrain lesion imaginghavebeenmadeby

the application of ultrahigh-field strength MRI. The use of 7-T MRI

enables an unprecedented view of brain structures and pathology

onasubmillimeter scaleowing toahighsignal tonoise ratio.46White

matter lesionsarepresent innearly70%ofpatientswithNMOspec-

trum disorder who have a longstanding disease. The pattern of le-

sion distributionmay conform to brain regions known to have high

AQP4 expression, but inmany patients, the lesion pattern remains

nonspecific.47 In MS, no target antigen has been identified, so the

distribution of the lesions relative to the target antigen cannot be

addressed.Brain lesions inpatientswithMSarecharacteristically lo-

cated in perivenular regions, whereas this is not the case in pa-

tientswithNMOspectrumdisorder (Figure3); thisobservationmay

be helpful in differentiating NMO- fromMS brain lesions.48,49

In one 7-T MRI study of NMO spectrum disorders,50 the veins

coursing through the lesions were rare, and the central intra-

lesional veins were absent (with only few exceptions). Further-

more, a hypointense rim surroundingWM lesions, hypothesized to

represent iron-loadedmacrophages and activatedmicroglia, was a

commonfinding inpatientswithMS,but itwasnotdetectable inpa-

tientswithNMOspectrumdisorder (Figure4).47Themajority of le-

sions (>85%) in patients with NMO spectrum disorder were

subcortical,46 and no periventricular lesions or “Dawson’s fingers,”

acharacteristic featureofMS,51wereobserved.52 Interestingly,none

of these studies described the macroscopic cortical pathology of

NMOspectrumdisorders,53despite thedescription ofmicroscopic

meningeal inflammation, cortical demyelination, andneuronal loss

in histological analyses.54,55

Noevidenceof a specific cortical pathologyorof a specificmor-

phologyordistributionofbrainparenchymal lesions couldbe found

usingultrahigh-fieldMRI.Nevertheless, thecharacterizationofnear-

microscopic lesions facilitates distinguishing NMO spectrumdisor-

ders fromMS.

Conclusions

In contrast to studies of MS using advancedMRI techniques, stud-

ies of NMO spectrum disorders are still scarce, with often a limited

number of patients included (Table 1). Moreover, previous cohorts

werehighlyheterogeneouswith respect to theproportionofAQP4

antibody–seropositive and –seronegative patients, which pre-

cludes definite conclusions on distinct imaging features in these 2

subgroups.Avariety of advancedMRImeasures arediscussedwith

regard to their capacity todetectnonovert tissuedamageand to fa-

cilitate thedistinctionofNMOspectrumdisorders fromMS(Table2).

Althoughquantitativemeasures suchas 1H-MRSorMTIhavenot re-

producibly revealeddiffusebrain injury,diffusion-weighted imaging

and brain tissue volumetry indicate more WM injury than GM in-

jury. These findings were confirmed by use of ultrahigh-field MRI.

Withhighly resolving7-TMRI, nonspecific cerebralWMlesionswere

detectable, but GM pathology was absent.

The discrepancy between themacroscopic GM findings on ul-

trahigh-fieldMRI scans and themicroscopic pathology found inpa-

tientswithNMOspectrumdisordersuggests thatsomefMRIchanges

may result from an occult microscopic brain pathology. The dis-

ease specificity of these changes, however, is not yet clear. Future

longitudinal studies using age-matched and disease-matched con-

trols are warranted to elucidate the specificity of the cerebral MRI

findings regarding NMO spectrum disorders. However, because

these types of studies have not yet been conducted, patients with

definiteor suspectedNMOshouldnotbe routinely subjected toad-

vanced imaging techniques outside observational studies; instead,

inunclear casesof centralnervoussystemdemyelination, testing for

Figure 3. Optic Radiations

Optic radiation tractography was performed using a diffusion tensor

imaging/magnetic resonance imaging (MRI) scan (Siemens Avanto 1.5-T MRI

scanner, with 30 directions). Two seed points (the brightly colored fiber

bundles) have been defined, the first one in the lateral geniculate body and the

second one in the white matter at the posterior part of the occipital horn of the

lateral ventricle. The fiber bundles are color coded according to their directions

of impulse transmission.
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Figure 4. Magnetic Resonance Imaging Scans of Neuromyelitis Optica (NMO) andMultiple Sclerosis (MS)

Lesions at 7 T

Patient with MSA Patient with NMO spectrum disorderB

Multiple sclerosis lesions are

characteristically centered on a small

vein in T2*-weighted sequences (blue

arrowheads pointing to lesion surface

and yellow arrowheads pointing to

central intralesional vein) (A), a

finding not present in 7-T magnetic

resonance imaging scans of patients

with NMO spectrum disorder who

have brain parenchymal lesions (blue

arrowheads) (B).

Table 1. Survey of NMOSD Studies That Used AdvancedMRI Techniquesa

Study, Year

Patients With NMSOD

Healthy Controls, No.Total No. No. Tested for AQP4-IgG

Pichiecchio et al,17 2012 8 6b 7

Aboul-Enein et al,18 2010 8 8 8

Bichuetti et al,19 2008 16 NA 16

de Seze et al,20 2010 24 17 12

Ciccarelli et l,21 2013 5 5 11

Klawiter et al,24 2012 10 7 10

Liu et al,25 2012 27 NA 27

Rueda Lopes et al,26 2012 17 NA 17

Jeantroux et al,27 2012 20 NA 25

Liu et al,28 2012 26 18c 26

Yu et al,29 2008 19 NA 19

Yu et al,30 2006 16 NA 16

Zhao et al,31 2012 24 NA 24

Qian et al,32 2011 10 NA 12

Filippi et al,33 1999 8 NA 9

Rocca et al,34 2004 10 NA 15

Blanc et al,36 2012 28 18 28

Chanson et al,37 2013 30 17 30

Duan et al,38 2013 20 NA 20

Duan et al,39 2012 26 NA 26

Saji et al,40 2013 14 14 37

Liu et al,42 2011 17 NA 17

Liang et al,45 2011 17 NA 17

Hemmert et al,46 2013 12 NA 20

Kister et al,47 2013 10 10 0

Sinnecker et al,48 2012 10 9 0

Matthews et al,52 2013 44 44 0

Abbreviations: AQP4, aquaporin 4;

MRI, magnetic resonance imaging;

NA, not available; NMOSD,

neuromyelitis optica spectrum

disorder.

a To our knowledge, no longitudinal

studies on the use of advancedMRI

techniques for patients with

NMSOD have been published.

bFour patients tested positive.

c Sixteen patients tested positive.
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AQP4antibodies inhighly sensitive andspecific assays andconven-

tional MR imaging of the brain and the entire spinal cord should be

initiated to help establish or rule out a diagnosis of NMO spectrum

disorder.56Futureobservational trials should strive formorehomo-

geneous patient cohorts in order to investigate possible differ-

ences in imaging features between seropositive and seronegative

patients. Emerging interventional trials of NMO with strict inclu-

sion and exclusion criteria could provide an excellent opportunity

to enhance our understanding of the association between disease

pathology and advanced imaging findings.
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