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Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer
(400–2450 nm, ∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content,
particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS)
regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted
with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math
preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were
exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a
3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation
associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability.
High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

1. Introduction

Spatial assessment of soil properties is important for
understanding the dynamics of agricultural ecosystems. Site
specific data can provide information that is critical to main-
taining healthy soils and adequate nutrient supply for crop
production, preventing losses of nutrients and sediments to
the environment, and evaluating the transfer of elements
such as carbon between land and atmosphere. Research has
demonstrated that soil properties such as carbon content
are correlated with field topography, soil texture, electrical
conductivity, and soil reflectance [1–4]. A study by Venteris
et al. [5] documented accumulation of carbon in low areas
of fields following soil translocation from higher areas, with

resulting carbon loss and soil degradation in elevated areas,
and Thompson et al. [6] used soil-landscape modeling tech-
niques to evaluate topographic distribution of soil texture
and carbon content. These geographic approaches accounted
for 28% to 68% of variation in measured carbon and demon-
strated the complexity of environmental and management
practices that affect soil characteristics. Recent research into
soil health and sustainable cropping systems has demon-
strated the potential of improved systems management based
on knowledge of distributed soil properties [7]. Contempo-
rary farm management relies on moderate resolution soil
maps derived from photo and topographic interpretation.
Accurate mapping of soil properties is made difficult due
to high spatial variability observed within agricultural fields,
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errors in spatial assessment of soil properties can result from
inadequate or biased sampling of the landscape, and the high
cost associated with collecting and analyzing soil samples
often limits the amount information available to farmers
and land managers. However, advances in remote sensing
technology are now providing tools to support geospatial
mapping of soil properties, with applications in agricultural
and environmental management.

Diffuse reflectance spectroscopy offers a rapid and non-
destructive means for measurement of soil properties based
on the reflectance spectra of illuminated soil [8–10]. A
growing body of literature supports the use of spectral
reflectance to determine soil properties, mostly using lab-
oratory instrumentation to measure soil reflectance in the
visible (400–700 nm) near infrared (700–2500 nm) and mid-
infrared (2500–25,000 nm) wavelengths. Partial least squares
(PLS) regression has emerged as a successful chemometric
method for extracting predictive information from spectral
reflectance datasets [10–12]. The PLS method, characterizes
high leverage orthogonal factors within observed spectral
variance and matches them to similar factors that describe
observed variance within measurements of a corresponding
dependant variable. It has been successfully used to predict
the results of soil laboratory analysis for carbon content
[13, 14], particle size distribution [13, 15, 16] and elemen-
tal nutrient content [14, 17, 18], with results sometimes
approaching the analytical accuracy of laboratory tests [12,
19]. A review of 44 studies [20] documented R2 associated
with prediction of soil carbon that ranged from 0.45 to
0.98, with a median of 0.86. Prediction accuracy depends
on the signal : noise associated with the spectral data, and,
like most analytical calibrations, is also highly influenced
by the distribution of values in the measured dataset.
The PLS-derived predictive equations, like most analytical
calibrations, are most effective when the unknowns fall
with the range of observations used to create the predictive
equation, and the best success is obtained when an adequate
number of locally obtained samples are included in the
calibration data set [12, 21].

Advances in sensor technology have enabled satellite and
airborne collection of hyperspectral imagery, allowing the
acquisition of spectrally detailed geospatial reflectance data
at field and landscape scales. By combining PLS regression of
soil properties with reflectance data derived from airborne
imagery, high-resolution maps of soil properties can be
developed, thus overcoming the inaccuracies associated with
geospatial interpolation of soil test data. Reports in the
literature, for example, [16, 19, 22], indicate great potential
for remote sensing approaches to map surface soil properties.
However, additional research is needed to optimize data
analysis procedures and improve prediction ability [19].
Separation of signal from noise is an important part of
spectral data processing. Geometric and atmospheric adjust-
ments are first required to derive a geospatially representative
map of soil reflectance spectra. The imagery can then be
smoothed spatially by averaging adjacent pixels, for example
using a 3 × 3 low-pass filter. This can reduce the noise that
results from random signal variability within the detector
array while increasing the signal associated with number of

observations. It is also common to smooth the spectra in
various ways, often by averaging adjacent wavebands or by
calculation of first and second derivatives. Numerous math
pretreatments have been evaluated for application of PLS
to spectral reflectance data obtained from agricultural soils
[8, 14, 23, 24].

In this paper, we have three objectives: (1) to evaluate 30
combinations of spectral math pretreatments and imagery
smoothing techniques to identify most effective methods
of preparing remote sensing data for partial least squares
(PLS) analysis of soil properties (2) to develop and validate
PLS predictions of soil concentrations for 19 laboratory
analytes based on data extracted from airborne hyperspectral
imagery and (3) to export resulting PLS vectors to geospatial
imagery processing software and calculate high-resolution
raster maps of predicted soil characteristics. Six recently
tilled agricultural fields were intensively sampled to provide
the calibration data set.

2. Materials and Methods

2.1. Field Sampling. On 10 April, 2007, we collected 315 soil
samples from six fields (Figure 1) located on working grain
farms on the Eastern Shore of the Chesapeake Bay (Delmarva
Peninsula, near Easton, MD). Each of the fields (Temple 1S,
7.3 ha; Temple 1N, 7.1 ha; Temple 2, 8.9 ha; Temple 3, 18.1 ha;
Mason, 14.6 ha; Schrader 9.8 ha) was chosen to provide
uniform, smooth, bare-soil conditions, had been recently
tilled (moldboard plow, field cultivator, and disk), and had
little to no vegetation or plant residue. Soil conditions were
moderately dry at the time of sampling, with six days of
warm spring weather since the previous substantial rainfall
(25 mm on 04 April, 2007). All fields were relatively flat (0%
to 5% slope). Soil types included moderately well-drained silt
loams (Pineyneck PiA, Mattapex-Butlertown MtA), poorly
drained silt loams (Othello Ot), and well-drained sandy
loams (Indleside IgB). Although the majority of Eastern
Shore farms are managed using no-till practices, the tilled
fields were otherwise typical of regional cash grain crop
management strategies.

Sampling locations (315 total) were established at appro-
ximately 40 m intervals in transects across each field. Tran-
sects were established by using a tractor to pull a chisel
plow shank through the soil at 20 cm depth. All sampling
occurred on 10 April, 2007, during one long day of fieldwork
with a large sampling crew. The soil was already well mixed
from moldboard plowing, and this fresh tillage created an
area of lightly disturbed soil behind the chisel plow shank
from which surface soil samples (∼400 g) were collected at
each location. Because the chisel plow shank did not invert
the soil, this sampling method approximated conditions at
the bare soil surface that were observed by the imaging
spectrophotometer. Number of samples ranged from 30 to
86 per field. Global positioning system (GPS) points were
established for each sampling location using a handheld
Trimble Geo-XT unit with submeter accuracy, calculated as
the average of >20 sequential coordinate readings.

Soil samples were air dried (>48 hr) and ground to pass
through a 2 mm sieve. Sand, silt, and clay content were
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Figure 1: Field sites with soil sampling locations (black points) and SSURGO soil boundaries. See Materials and Methods for soil type
designations.

determined using the hydrometer method of particle size
analysis [25]. Standard soil nutrient analysis was performed
at the University of Delaware Soil Testing Laboratory
(http://ag.udel.edu/other websites/DSTP/), using Mehlich
III analysis [26] for potassium (K), calcium (Ca), magnesium
(Mg), manganese (Mn), zinc (Zn), iron (Fe), nitrogen (N),
phosphorus (P), copper (Cu), boron (B), sulfur (S), and alu-
minum (Al). Percent phosphorus saturation was calculated
as a ratio of phosphorus to iron and aluminum content.
Organic matter content (OM) was determined by loss on
ignition. Subsamples were roller-milled for 12 hours prior to
elemental analysis for carbon (C) and nitrogen (N) content
by dry combustion using a TruSpec CN analyzer (Leco
Corp, St. Joesph Mich, USA). None of the samples contained
significant inorganic carbon. On the same day as field sam-
pling for soils, airborne spectral imagery was acquired.

2.2. Imagery Collection. The airborne hyperspectral imaging
spectrometer (HyperSpecTIR) used in this study was a
push broom sensor developed by the SpecTIR Corporation
(Reno Nevada, USA). It measured irradiance in 178 spectral

channels between 400 and 2450 nm with approximately
10-nm resolution [27]. Orthorectification was established
to within one pixel (<2.5 m) tolerance. An upward facing
radiation sensor measured incoming solar radiation which
was used to calibrate imagery to ground reflectance and limit
atmospheric effects to the space beneath the aircraft.

The plane was flown at 1800 m altitude with a ground
speed of 210 km hr−1, between 10 : 00 and 14 : 00 hrs, on
10 April, 2007. At this altitude, the imagery covered a
swath 800 m wide (320 adjacent 2.5 m pixels). Flight paths
were flown parallel to the principle plane of the sun. A
correction for cross-track illumination was tested but did not
improve results and was therefore not adopted. A number of
sensor errors were identified where faulty detector elements
produced erroneous results within particular wavebands,
resulting in along-track striping in the field maps of pre-
dicted analyte concentrations. The 15 most obvious of these
errors were corrected with spatial smoothing by replacing
each faulty reflectance value with the average value of the two
neighboring detector elements within the particular faulty
waveband. While it was clear from visual inspection of the



4 Applied and Environmental Soil Science

predicted imagery that bad detector elements remained, only
the 15 most obvious errors were corrected.

Soil spectra associated with each sampling location were
extracted from the imagery by overlaying GPS point shape-
files (<1 m geopositioning error) of sampling locations and
selecting the data associated with each underlying pixel. This
was done for both the original imagery (1-pixel extraction)
and spatially smoothed imagery to which a 3 × 3 low-pass
filter had been applied (9-pixel extraction). Imagery pro-
cessing was conducted using ENVI 4.7. Elevation data for
each pixel were derived from a 3-m LIDAR digital elevation
map that was resampled at 2.5 m resolution, with a vertical
accuracy of 0.20 m. A 2.5 m resolution wetness index was
also calculated from the LIDAR data, using SAGA software
to apply two consecutive iterations of an enhanced lee 3 × 3
filter. This measure approximates the cumulative influence of
upslope contributing area. Near infrared reflectance spectra
for each of the 315 dried, ground soil samples were also
obtained in the laboratory using a bench spectrometer
and controlled light source, with methods and PLS results
reported in McCarty et al. [28].

2.3. Spectral Data Processing. Fifteen spectral math pre-
treatments were evaluated using a SAS Ver. 9.12 program
modified for hyperspectral data processing [23]. These
included untransformed spectra, first derivatives with gap
ranging from 1 to 64, and second derivatives with gap
ranging from 1 to 64. Each of these math pretreatments
was applied separately to the smoothed and unsmoothed
spectra, resulting in a total of 30 data combinations that were
used independently to calculate PLS predictions for each
laboratory analyte using all 315 samples. Both the spectral
data and the analyte values were mean centered prior to PLS
analysis. The number of factors used in each PLS regression
was chosen by the PRESS algorithm [24] within SAS Proc
PLS and ranged from four to ten. Testing for outliers was
not performed, and all observed values were included in
the analysis. Goodness of fit was determined using repeated
leave-one-out cross validation, with results presented as
coefficient of determination (R2). Ranking analysis was
employed to test for significant differences among math
treatments, for all analytes predicted with R2 > 0.50.

Once the best math treatment was chosen, PLS Toolbox
Ver. 4.0 (Eigenvector Research, Wenatchee, Wash, USA),
operating within the Matlab (Ver. 7.0) environment, was
used to perform PLS analysis using mean-centered spectral
and analyte data from five of the six fields (269 samples).
Goodness of fit was determined using repeated leave-one-
out cross validation, with results presented as coefficient of
determination (R2) and residual mean square error (RMSE).
Data from the remaining field (Temple 1S, 46 samples)
were treated as unknown samples and predicted from PLS
coefficients, with prediction accuracy reported as bias (mean
of predicted values minus mean of observed values) divided
by the mean of predicted values (bias/mean(pred)) as well as
standard deviation of validation [24, Section 18.8] divided by
standard error of prediction (sd/se pred).

The use of Matlab allowed the mathematical flattening
of the PLS factors into a 178 band vector of coefficients, and

the scalar product of this vector with each pixel’s imagery-
derived spectrum was used to calculate predicted analyte
concentrations. This calculation was made for each pixel of
the hyperspectral imagery by using IDL code run within
the ENVI 4.7 programming environment to calculate the
appropriate band math. In this manner, geospatial field maps
of predicted analyte concentrations were produced.

3. Results and Discussion

3.1. Soil Test Results. Observed analyte concentrations for the
six sampled fields are described in Table 1. Soils were dry at
the time of sampling, with moisture content ranging from
10% to 23% for the majority (91%) of samples (Table 1).
Overall, the distribution of observed carbon content values
was not large, ranging from 0.6 to 2.0% (Table 1). The
Mason site, which had recently transitioned from long term
conventional grain production to organic grain production,
exhibited low soil carbon (mean 0.7%) content relative
to the other fields (means of 1.2 to 1.4%). The Schrader
site had received long-term applications of dairy manure
and exhibited somewhat increased soil C (mean 1.4%)
relative to the other fields. The remaining four fields
(Table 1: Temple 1S, Temple 1N, Temple 2, and Temple
3) were managed by one farmer, and were under similar
management (conventional corn-wheat/soybean rotation).
Overall, carbon content was low, as is typical of Maryland
Eastern Shore farmland. Concentrations of the remaining
analytes were within the normal range for agricultural soils,
although variability among sites was not great.

3.2. Choice of Math Treatment. A SAS “shotgun approach”
for hyperspectral data processing has previously been used
to provide a factorial comparison of the effects of various
math pretreatments on PLS analysis of soil spectra [23]. This
method was used to compare a total of 15 different spectral
pretreatments including 1st and 2nd derivatives with various
gap widths (Table 2). Results showed that there were no
statistical differences among the majority of the treatments,
with the simplest treatments (no derivative, first derivative
gap 2) often resulting in the best fit. This led to the conclusion
that the PLS data mining techniques are capable of extracting
the majority of signal information from the untransformed
spectral data, without the need for math pretreatment.

There is some argument to be made that different math
treatments are more appropriate for particular analytes, due
to the physical interaction of light with those particular con-
stituents. Some evidence for this was shown for potassium,
for which a first derivative gap 8 increased R2 from 0.514
(first derivative gap 2) to 0.578 (Table 2). However, caution
must be taken to prevent overfitting of datasets, and further
study is needed to justify the selection of a diversity of math
treatments for use with particular analytes. Ultimately, the
first derivative gap 2 was selected as the best math overall
treatment even though it was slightly, but not significantly,
outperformed in several cases (Table 2).

3.3.Partial Least Squares Regression: Calibration Dataset.Once
the best math treatment was decided upon, PLS regression
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Table 2: Partial least squares (PLS) prediction model goodness of fit (R2) associated with each of 15 math treatments, for the 13 analytes that
predicted with R2 > 0.5, calculated using data from all 315 soil sampling locations1. The first derivative gap two (1Dg2, depicted in bold)
was selected as the overall most successful model although it was occasionally outperformed (italic). See Section 2 for analyte descriptions.

Derivative Gap C Sand Silt Clay pH OM K Ca Mg Mn Zn Fe Al average

R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

NON 0 0.578 0.762 0.763 0.585 0.442 0.685 0.555 0.669 0.692 0.642 0.670 0.754 0.777 0.659

1ST 1 0.555 0.770 0.761 0.565 0.517 0.706 0.522 0.654 0.719 0.624 0.606 0.707 0.799 0.654

1ST 2 0.591 0.763 0.763 0.617 0.549 0.717 0.514 0.676 0.708 0.638 0.647 0.740 0.782 0.670

1ST 4 0.595 0.754 0.740 0.596 0.451 0.692 0.513 0.630 0.616 0.565 0.675 0.703 0.773 0.639

1ST 8 0.584 0.748 0.739 0.600 0.413 0.668 0.578 0.635 0.642 0.580 0.636 0.637 0.727 0.630

1ST 16 0.588 0.740 0.744 0.550 0.442 0.672 0.547 0.610 0.619 0.567 0.591 0.666 0.725 0.620

1ST 32 0.525 0.730 0.722 0.554 0.381 0.640 0.520 0.648 0.619 0.542 0.580 0.669 0.765 0.607

1ST 64 0.338 0.623 0.619 0.470 0.317 0.537 0.413 0.519 0.580 0.488 0.568 0.636 0.669 0.521

2ND 1 0.542 0.585 0.597 0.424 0.361 0.526 0.484 0.708 0.705 0.529 0.599 0.665 0.729 0.573

2ND 2 0.507 0.681 0.682 0.372 0.499 0.566 0.493 0.665 0.664 0.566 0.591 0.673 0.769 0.595

2ND 4 0.576 0.714 0.724 0.409 0.449 0.660 0.484 0.672 0.669 0.606 0.613 0.749 0.752 0.621

2ND 8 0.536 0.698 0.689 0.533 0.472 0.602 0.528 0.595 0.631 0.542 0.638 0.743 0.753 0.612

2ND 16 0.580 0.729 0.725 0.573 0.487 0.661 0.498 0.590 0.640 0.598 0.617 0.680 0.712 0.622

2ND 32 0.564 0.715 0.698 0.609 0.432 0.631 0.548 0.622 0.592 0.548 0.606 0.639 0.688 0.607

2ND 64 0.525 0.596 0.589 0.421 0.156 0.599 0.511 0.556 0.464 0.501 0.538 0.602 0.614 0.513
1
Analytes that predicted poorly R2 (<0.5) included: N (<0.303), P (<.355), Cu (<0.358), B (<0.169), S (<0.282), and P saturation (<0.127).

was performed in Matlab using a calibration dataset of 269
samples (all sampling locations from five of the six fields),
with results reported in Table 3. It should be noted that
spectral data for the 315 samples used to calculate the SAS
PLS in Table 2 were extracted from an earlier version of
image processing output in which the 15 band errors had not
yet been corrected and to which cross-track illumination had
been applied. This discrepancy resulted in slightly lower R2

being used in Table 2 than in Table 3, but was not thought
to have affected the relative performance of math treatments.
Using Matlab PLS on 269 samples, 13 of the 19 analytes were
predicted with R2 > 0.50 (Table 3(a)), and the remaining
seven were predicted with R2 < 0.40: N (<0.30), P (<0.36),
Cu (<0.36), B (<0.17), S (<0.28), and P saturation (<0.13). A
comparison of observed and predicted values for a selection
of analytes (carbon, silt, aluminum, and iron) is shown in
Figure 2.

Prediction accuracy for carbon (R2
=0.65) fell well within

the range of results (0.45 to 0.98) found in a survey of
44 studies [20] but was somewhat poor in comparison
with results found in some other studies for example, [11,
14, 15]. The somewhat poor R2 for carbon might lead
to the conclusion that the sensor did not capture a good
reflectance signal due to the increased noise often associ-
ated with airborne sensors that derives from atmospheric
effects and variations in sensor-soil-sun geometry across the
imagery. Indeed, a number of studies have found remote
sensing spectroscopy to have reduced signal : noise relative to
laboratory-based measurements [24]. However, the carbon
PLS results reported in McCarty et al. [28], calculated for
all 315 soil samples in this data set, using repeated leave-

one-out correlation to determine goodness of fit, showed
that spectra from the airborne sensor were as effective
(R2

= 0.67) as spectra from a near-infrared benchtop labora-
tory spectrophotometer (R2

= 0.64) in predicting soil carbon
concentrations. For the remaining 12 analytes under con-
sideration, the airborne sensor exhibited decreased accuracy
relative to the laboratory spectrophotometer in three cases
(change in R2 of −0.03 to −0.08) and exhibited increased
accuracy in nine cases (change in R2 of 0.01 to 0.20).

These observations led to the conclusion that the air-
borne sensor provides a viable option for mapping soil
properties and that the somewhat poor prediction accuracies
observed in this experiment apparently stemmed from
features associated with the local soil environment or the
calibration dataset, rather than the effectiveness of the
airborne sensor. The distribution and range of observed
analyte concentrations within a calibration dataset can have a
substantial impact on prediction accuracy, and the somewhat
low prediction accuracy for carbon content observed in this
study (R2

= 0.65) is likely associated with the limited range
and low values of soil carbon contents found within the
calibration dataset (0.6% to 2.0%).

For the other analytes, prediction accuracies (Table 3(a))
were comparable with those found in other studies [8, 15,
17, 18]. Using principal components regression, Chang et
al. [18] predicted Melich III analyte concentrations, and,
similarly to this study, found Cu and P to have poor
predictions, silt and clay content to predict with R2

∼ 0.8,
and a number of other analytes, including Fe, Mg, Mn, K,
and pH, predicting with R2 > 0.6. It is not always known
whether successful predictions are the direct action of the
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Table 3: Partial least squares (PLS) model accuracy in predicting soil analyte concentrations1 for (a) the 269 calibration samples using
repeated leave-one-out cross validation and (b) 46 validation samples from the field (Temple 1S) that had been left apart from the calibration.
Results were derived using a first derivative gap 2 math pretreatment, using spectra derived from unsmoothed imagery (2.5 m2 pixel size)
or from spatially smoothed imagery to which a 3 × 3 low pass filter had been applied. See Section 2 for analyte descriptions. Units refer to
analyte residual mean squared error (RMSE) values. Bold indicates sd/sepred >1.20.

Factors no.
C% Sand% Silt% Clay% pH OM%

K
mg/kg

Ca
mg/kg

Mg
mg/kg

Mn
mg/kg

Zn
mg/kg

Fe
mg/kg

Al
mg/kg

8 9 10 9 10 10 4 8 9 10 8 10 10

(a) 269 calibration samples collected from five agricultural fields

using unsmoothed imagery

R2 0.65 0.79 0.79 0.66 0.51 0.75 0.59 0.69 0.69 0.62 0.64 0.75 0.76

RMSE 0.19 7.9 6.9 2.2 0.4 0.4 89.5 166.1 50.3 19.6 1.4 49.3 104.7

using smoothed imagery

R2 0.64 0.80 0.80 0.68 0.58 0.77 0.61 0.71 0.71 0.67 0.67 0.78 0.81

RMSE 0.18 7.2 6.2 2.0 0.4 0.3 86.1 151.8 45.5 17.8 1.2 43.8 89.0

(b) 46 validation samples collected from the remaining agricultural field (Temple 1S)

using unsmoothed imagery
2se pred 0.20 9.0 7.3 2.4 0.5 0.4 147.1 178.1 51.4 27.5 1.2 52.9 123.9
3bias 0.10 −2.88 1.42 1.00 0.03 0.34 24.92 40.45 31.84 3.23 0.45 2.12 107.33

bias/mean (pred) 0.08 −0.06 0.03 0.11 0.01 0.15 0.10 0.05 0.22 0.09 0.18 0.01 0.21
4sd/se pred 0.74 0.81 0.86 0.84 0.89 0.63 1.05 0.96 0.76 1.15 0.92 1.41 0.98

using smoothed imagery

se pred 0.15 9.5 7.9 2.9 0.4 0.3 154.9 233.6 58.5 38.3 1.3 98.0 170.4

bias −0.10 −0.87 −0.66 0.95 −0.25 −0.13 −23.06 −2.46 −2.07 −0.38 0.10 −5.26 77.66

bias/mean (pred) −0.08 −0.02 −0.02 0.10 −0.05 −0.06 −0.10 0.00 −0.02 −0.01 0.04 −0.03 0.14

sd/se pred 0.86 1.29 1.26 1.07 0.97 0.74 1.04 1.34 1.41 1.25 0.98 1.91 1.29

1
Analytes that predicted poorly (R2 < 0.5) in the set of 315 samples (N, P, Cu, B, S, and P saturation) are not included here

2se pred: sd(observed-predicted)
3bias: mean(pred)-mean(obs)
4sd: standard deviation.

analyte upon the reflectance signal or instead the covariation
of analyte concentrations with other factors which are influ-
encing the spectral response [29]. Phosphorus, for example,
has no expected reflectance resonance and is generally poorly
predicted (e.g., 0.36 in this study, 0.40 in [18], and as low as
0.10 in other studies [8, 29]), and yet occasionally will be
predicted with considerable accuracy [8, 29], likely due to
covariation with spectrally responsive factors associated with
labile organic matter.

3.4. Validation. Chemometric predictions of soil properties
are typically validated by predicting analyte concentrations
for samples that were not included in the calibration data
set, and comparing the predicted results to observed values.
This can be achieved by calculating repeated leave-one-
out or leave-ten-out predictions, or by selecting a distinct
set of samples either randomly, spatially, or based on even
sample distribution within the range of observed values
[24, Section 18]. We chose to adopt a rigorous validation
by removing an entire agricultural field comprising 46
samples (Temple 1S) from the data set, leaving 269 samples
for calibration. This field was one of four Temple fields
that received similar crop management (corn-soy/wheat
rotation with full tillage and no use of cover crops) and

it exhibited analyte concentrations in the mid-range of the
six fields (Table 1, Figure 2). When predicted values were
calculated for the 46 validation samples and compared to
observed values, bias ranged from 1% to 22% of observed
analyte concentrations (Table 3(b)). Seven of the analytes
exhibited sd/se pred >1.20 (bold text in Table 3(b)) using the
spectra extracted from smoothed imagery, indicating that the
prediction was useful for those elements (sand, silt, Ca, Mg,
Mn, Fe, and Al), while only one analyte (Fe) exhibited sd/se
pred > 1.20 using the spectra extracted from unsmoothed
imagery, indicating that spatial smoothing helped to increase
signal : noise in the spectral data set.

3.5. Prediction Maps. For each analyte, a PLS regression
vector of 178 coefficients was exported from Matlab and
applied to the mean-centered first derivative reflectance spec-
tra associated with each pixel of the hyperspectral imagery
to calculate a 2.5-m raster map of predicted analyte concen-
trations. Prediction maps for a selection of analytes (carbon,
silt, iron, and aluminum) were derived in this manner using
both unsmoothed and smoothed imagery (Figure 3). Ben-
Dor et al. [19] have discussed the need for attention to
imagery processing methods to extract maximum informa-
tion from spectroscopic imagery. In this study, smoothing
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Figure 2: Comparison of observed analyte concentrations with values predicted using partial least squares (PLS) regression on reflectance
spectra extracted from smoothed imagery to which a 3 × 3 low-pass filter had been applied, for (a) soil carbon, (b) silt, (c) iron, and (d)
aluminum content. The field containing 41 sampling points that were left out for validation (Temple 1S) is depicted with solid circles.

the hyperspectral imagery with a 3 × 3 low band filter prior
to spectral data extraction resulted in somewhat improved
prediction accuracies in comparison to unsmoothed imagery
(Table 3(a)). While this result implies that the smoothed
extent of nine adjacent pixels (56.2 m2) provided a better
average representation of soil characteristics at each sampling
point than did individual 6.25 m2 pixels, it is more likely that
the increased accuracy associated with the smoothed imagery
is attributable to improvement of signal and reduction in

sensor detector element variability (noise) that results from
coaddition of the nine adjacent spectra. Smoothing also
generally improved the range and distribution of predicted
analyte values found within each field image (Table 4), likely
due to the correction of aberrations within the detector
elements. However, it should be noted that discontinuities
(striping) along the plant’s flight path were evident in both
smoothed and unsmoothed predicted imagery (Figure 3),
indicating the effects of variable detector element sensitivity
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50 m

(a)

(b)

Figure 3: Maps of predicted soil carbon content calculated from (a) unsmoothed imagery (1-pixel data extraction) and (b) spatially
smoothed imagery (9-pixel data extraction). Two of the six sampled fields are depicted here, with Temple 3 on the left and Schrader on
the right. Predicted values ranged from 0.4% (black) to 2.5% (white).

along the sensor array and the need for continued improve-
ment in sensor technology. Several additional imagery
adjustments were considered, including cross-track illumi-
nation, transformation from reflectance (R) to log(1/R), and
also spectral smoothing (not shown). However, none of these
operations improved results and they were therefore avoided.

3.6. Topographic Analysis. Visual interpretation of field
topographic features relative to the predicted analyte maps
revealed accumulation of carbon, silt, iron, and aluminum in
low areas (Figure 4). This result is in agreement with previ-
ous studies in Iowa that have linked increased soil C carbon
contents in low areas with soil redistribution processes [3],
and with a study by Terra et al. [1] who detected a correlation
of soil properties with topographic indices and electrical con-
ductivity that explained 50% of observed variability in car-

bon content. Other studies have evaluated the links between
topography and soil constituents such as organic carbon at
the landscape scale, showing accumulation at the bottom
of slopes and in valley bottoms [30]. This study’s work was
conducted at the field scale, reflecting microtopographic
soil distribution processes within a relatively flat elevation
gradient (0%–5% slope), as well as the formative effects of
soil moisture distribution and spatially variable biological
processes resulting from soil heterogeneity and the balance of
redoxomorphic status between oxic and anoxic conditions.
Understanding distribution patterns of soil analytes, and the
influence of hydrogeomorphic controls on these patterns,
can provide greater certainty about the influence of soil
erosion and soil ecology on the fate of carbon and nutrients.

To investigate potential causes of spatial distribution in
predicted analyte values, a 2.5 m elevation map (re-sampled
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Table 4: Predicted concentrations of select analytes (C, Silt, Al, Fe) derived from n pixels of near infrared hyperspectral imagery for each of
the six bare soil fields using either unsmoothed (1-pixel) imagery with 2.5 m resolution, or spatially smoothed (9-pixel) imagery to which a
3× 3 low pass filter had been applied1. See Section 2 for analyte descriptions.

C Silt Al Fe

Field 1-pixel% 9-pixel% 1-pixel% 9-pixel%
1-pixel
mg/kg

9-pixel
mg/kg

1-pixel
mg/kg

9-pixel
mg/kg

Temple 1S min 0.97 1.13 14.6 14.4 34 245 40 56

n = 11731 max 1.86 1.94 80.1 58.7 1017 947 474 394

mean 1.41 1.48 42.1 41.1 633 631 194 192

sd 0.10 0.10 5.9 5.0 98 92 46 44

Temple 1N min 0.85 0.96 1.0 5.6 −31 147 37 64

n = 11436 max 1.95 2.04 68.9 59.1 1304 897 452 429

mean 1.23 1.25 43.6 42.1 589 555 200 210

sd 0.11 0.11 5.8 4.9 115 112 60 65

Temple 2 min −0.48 0.81 14.6 8.7 34 −389 40 54

n = 14221 max 2.07 2.92 80.1 75.7 1017 1013 474 529

mean 1.27 1.28 42.1 38.2 633 512 194 226

sd 0.25 0.18 5.9 7.1 98 146 46 63

Temple 3 min 0.39 0.60 0.2 1.2 −137 0 −288 −6

n = 28955 max 2.29 2.48 80.8 74.9 1173 1031 465 474

mean 1.27 1.27 52.3 51.7 632 639 173 170

sd 0.17 0.16 7.9 7.5 154 145 71 63

Mason min 0.41 0.44 −7.6 −7.5 −198 290 0 0

n = 23351 max 2.27 1.94 64.9 48.5 1231 1180 391 391

mean 0.81 0.81 27.7 28.7 755 776 111 108

sd 0.11 0.10 6.4 7.1 96 100 32 27

Schrader min 0.91 0.98 12.3 13.4 255 296 58 66

n = 15684 max 2.08 2.05 61.6 56.9 996 971 346 315

mean 1.45 1.48 38.6 38.3 669 681 177 172

sd 0.13 0.15 6.0 5.8 87 81 35 34

Overall min 0.97 1.13 14.6 14.4 255 296 58 66

n = 105378 max 1.86 1.94 61.6 48.5 996 897 346 315

mean 1.20 1.22 41.3 40.5 660 648 168 171
1
See Table 3 for the accuracy (R2) associated with each analyte prediction model.

Table 5: Correlation between predicted analyte concentrations and topographic indices including (a) relative elevation data derived from
3 m LIDAR DEM, and (b) wetness index calculated from 3 m LIDAR DEM, for one of the six sampled fields (Mason). Predicted values were
calculated for unsmoothed imagery (2.5 m pixel size) and for smoothed imagery to which a 3 × 3 low band filter had been applied. See
Section 2 for analyte descriptions.

C Silt Al Fe

R2 R2 R2 R2

(a) correlation with normalized elevation

unsmoothed 0.100 0.000 0.232 0.013

smoothed 0.051 0.007 0.386 0.000

(b) correlation with wetness index

unsmoothed 0.183 0.008 0.161 0.091

smoothed 0.178 0.021 0.317 0.037
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Figure 4: Map of predicted values for select analytes (C, Silt, Fe, Al), overlaid on a high-resolution digital elevation map, for one of the six
sampled fields (Mason). Predicted values were derived from imagery that had been smoothed with a 3× 3 low pass filter.

from 3-m LIDAR DEM) was used to calculate a normalized
elevation value (observed—field mean elevation) and a
soil wetness index (two consecutive iterations of a SAGA
enhanced lee 3 × 3 filter) for each pixel of the predicted
analyte maps. The normalized elevation variable was some-
what correlated (Table 5(a)) with predicted concentrations of
aluminum (R2

= 0.23, 0.39 for unsmoothed and spatially
smoothed imagery, respectively) and was not well correlated
with predicted concentrations of silt, iron, and carbon. The
wetness index was similarly correlated with predicted alu-
minum concentration (R2

= 0.16, 0.32) and was a better pre-
dictor for soil carbon, explaining 17% of observed variability
(Table 5(b)). In all cases, the topographic variables were
better correlated with spatially smoothed predictions than
those made from unsmoothed imagery. The comparatively
poor correlation with topographic indices observed in this
study might indicate that soil carbon and elemental nutrient
content is more related to variability in field management
and manure application than to elevation and soil redistri-
bution, or that a more complex set of topography-influenced
ecological and physical processes than was measured is at
play. On low relief (<2% slope), ditch drained, Coastal Plain

soils such as were sampled in this study, soil redistribution
due to erosion is likely limited to short distances (<1–10 m),
and prior converted wetland areas within fields can exhibit
retained capacity for redoxomorphic activities that affect iron
and aluminum transformations and increase denitrification
and carbon accumulation. In this landscape, spatial distribu-
tion of soil carbon and nutrient content is likely influenced
by a complex interaction of drainage status and land use
history that is not easily characterized [5], and ultimately it
may be more feasible to map surficial soil parameters using
remote sensing technology than to predict them based on
measurement and understanding of site specific processes.

Soil moisture can become an interfering variable in
remote sensing chemometric analyses, as it mutes the
soil’s reflectance signal in a number of specific wavebands
that are associated with water absorption bands [31]. Soil
moisture for the 315 samples included in this study ranged
between 5% and 42%, with most samples falling near the
mean of 15% moisture. When observed moisture content
was incorporated with the first derivative spectra of soil
samples as a 177th predictor variable (following appropriate
mean centering and variation normalization), the prediction
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accuracies associated with PLS models for C, silt, Al, and
Fe did not improve (change in R2 of <0.02). Similarly,
when silt was included as an additional predictor variable,
to possibly account for interferences between soil particle
size distribution and spectral reflectance, the prediction
accuracies associated with PLS models for C, silt, Al, and Fe
did not improve. These results verify that PLS analysis is a
robust method that can successfully extract predictive infor-
mation from remotely sensed imagery of in situ agricultural
soils.

4. Conclusions

Aircraft-based acquisition of hyperspectral reflectance
imagery can currently provide the necessary data to map
soil properties in an efficient and rapid manner, and future
improvements in sensor technology are expected to improve
the signal : noise and spatial resolution associated with
remote sensing imagery. Results of this remote sensing
study, conducted on relatively flat, moderately well drained,
Coastal Plain silt loam soils, showed that the PLS framework
is robust, and spectral math pretreatments can be kept
simple, with a first derivative gap 2 providing good results for
all analytes. Spatial smoothing of reflectance imagery using
a 3 × 3 low-band filter improved results, likely by reducing
noise inherent to variability within the spectrophotometer’s
detector array. Fifteen of the 19 tested analytes predicted
with R2 > 0.50 (with R2 from 0.51 to 0.79 for C, sand,
silt, clay, pH, OM, K, Ca, Mg, Mn, Zn, Fe, and Al content;
Table 3). Prediction accuracy for carbon was not particularly
good (R2

= 0.64) for this selection of sampled fields, perhaps
owing to the low concentrations and limited range of
observed variability (0.5% to 2%) in the calibration data set,
but prediction accuracies for other analytes were on par with
those found in other studies [8, 15, 18]. Predicted map values
of select analytes, particularly aluminum, were correlated to
field topography, indicating the influence of environmental
processes on soil properties. Further research is needed to
understand the interplay of measurable topographic and
hydrological variation inherent in this relatively flat agricul-
tural landscape with management variables such as tillage,
crop rotation, and additions of manures and fertilizers that
also affect soil chemical and physical properties.

Remote sensing approaches that use multispectral or
hyperspectral imagery to predict soil properties are necessar-
ily limited to analysis of plowed fields with very little crop
residue or vegetation cover (bare soil). As a result, techniques
that extrapolate soil properties data based on correlations
derived from more easily measured parameters, such as
topography, wetness, and cropping pattern may provide.
The fields used in this study were carefully selected to have
negligible amounts of surface residue, green vegetation, or
hydrologically active areas. If this technique were put in
practice on a larger scale, band filtering could be employed
to remove such non-soil areas from analysis based on
thresholding of spectral indices that correlate well with
biomass (e.g., normalized difference vegetation index [32]),
crop residue (e.g., cellulose adsorption index [33]), or soil
moisture (e.g., water adsorption [13, 31]).

As hyperspectral imagery becomes more readily available
and at lower cost, the application of partial least squares
(PLS) regression to soil spectral reflectance data can provide
an effective method for calculating high-resolution raster
maps of important soil properties including texture, pH, and
carbon and nutrient content. This information can then be
used to inform farmer decision making, support precision
environmental management of agricultural fields, increase
sustainable crop production, and help to reduce nutrient,
sediment, and carbon losses from agricultural systems.
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