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*e process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the
water quality parameters and their temporal and spatial variability. *e empirical, conceptual, and physical distributed models for
the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality
prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality
monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the
simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the
contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs)
including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as
the basin land-use and land-cover (LULC) percentages. *e performance of the FNN model is compared with the multiple linear
regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO
prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP,
TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both
models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of
LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.

1. Introduction

Increased surface water pollution due to urbanization, ex-
cessive water consumptions, population growth, industrial
wastewater discharge, and agricultural activities results in
low dissolved oxygen (DO) levels and worsens the existence
conditions in aquatic systems [1–4]. Quantification of dis-
solved oxygen is thus important for evaluating surface water
quality because of its representation of the level of pollution
and the state of aquatic ecosystem [5–7]. For near-hypoxic
river systems, like Nyando River in Kenya, the accurate
prediction of DO levels remains a challenge due to lack of
sufficient and accurate water quality monitoring networks.

*e process of predicting water quality over a catchment
is complex and nonlinear and exhibits both temporal and
spatial variability [8, 9]. *e models developed to simulate
the process can be categorized as empirical, conceptual, and
physically based distributed models. Although parametric
statistical and deterministic models have been the traditional
approaches for modeling water quality, these models require
vast information and data on various hydrological sub-
processes in order to arrive at the end results [10–12].
Moreover, these models require precisely determined rate
constants and coefficients pertaining to various hydrological,
chemical, physical, and biological processes, which are
largely time and space specific in nature. Additionally,
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though these models have analytical solutions, they have
boundary conditions as limitations [13–15].

In order to overcome these limitations, the use of
knowledge-based systems, genetic algorithms, artificial
neural networks, and fuzzy inference systems for modeling
water quality parameters has been proposed [16, 17]. Be-
cause of the ability to learn the temporal dynamics of a
system with less input data and efficiency in solving non-
linear problems, different artificial neural networks (ANNs)
have been tested for water quality prediction [17]. Several
studies have used different ANN architectures for the pre-
diction of DO in different case studies using varied esti-
mation parameters. For example, to simulate the DO
concentrations in Surma River in Bangladesh, Ahmed [18]
used BOD and COD data collected over a period of 3 years.
*e study presented and compared the simulation models
based on feedforward neural network (FFNN) and radial
basis function neural network (RBFNN), with RBFNN
outperforming the FFNNwith Person correlation coefficient
R values of 0.96, as compared to 0.904 for model testing and
validation, respectively. Singh et al. [10] and Dogan et al. [19]
also used feedforward NN models for the computation of
dissolved oxygen and BOD and dissolved oxygen, respec-
tively, for river waters. Palani et al. [20] demonstrated the
application of neural network models for the prediction and
forecasting of selected water quality variables.

Abba et al. [21] used monthly data for the period of
1999–2005 to predict DO in downstream of Yamuna River
in Agra city in India using the input variables of DO, pH,
BOD, and water temperature. *e study compared exper-
imental multilinear regression (MLR), adaptive neuro fuzzy
inference system (ANFIS), and ANN models for the pre-
diction of DO. By varying the input parameters, ANN was a
better predictor for the DO with up to 94% accuracy as
compared to ANFIS andMLR with average of 81% accuracy.
In Nzoia River in Lake Victoria basin (Kenya), Kanda et al.
[22] used monthly data from 2003 to 2013 comprising of pH,
turbidity, temperature, and electrical conductivity to predict
DO using multilayer perception (MLP), a form of feed-
forward backpropagation ANN. *e number of input
neurons varied from 1 to 4 representing input parameters
that affect DO, and the number of neurons in hidden layer
varied from 22 to 28. In contrast to the results in [21], the
exclusion of pH exhibited acceptable results in the predic-
tion of DO. Sarkar and Pandey [23], using the feedforward
back propagation network architecture, predicted the DO
using discharge, temperature, pH, BOD, and COD as the
input variables for River Yamuna in India. *e study
concluded that the performance of the ANN model is the
best with optimum input variables, and the values above the
optimumwould cause the model to overfit data, while values
below the optimum would result in inaccurate prediction.
Several other studies (e.g., [24] and [25]) also used different
water quality parameters with different ANN architecture
models to simulate and predict DO. Because of lack of water
quality monitoring data and the nonlinear and complex
nature of interactions between water quality parameters,
ANN has been proposed for the simulation of water quality
parameters [26–29].

While several studies have used different ANN archi-
tectures to model different water quality parameters within
river catchment systems (e.g., [10, 30–33]), land-use and
land-cover (LULC) information, which directly affects river
water quality by altering sediment, chemical loads, and
watershed hydrology, has been largely omitted in the
modeling process [34]. *e effects of LULC on water quality
and quantity can be explored through various techniques
varying from regression-based methods such as linear and
multilinear regression to watershed models. In under-
standing the relationship between LULC and river water
quality, several studies have been carried out. For example,
Bonansea et al. [1] considered the water quality parameters
such as temperature, pH, DO, discharge, total phosphorus,
and total nitrogen and the influence of LULC categories
including bare land, gravels, bare ground, and bare rocks,
natural forest including natural shrub, thicket and herb, and
timber plantation, agriculture including agricultural and
livestock developments, and urban including rivers, reser-
voirs, wetland, and sandy beach on the water quality in Rio
Tercero, Argentina.*e study indicated significant influence
of land use on the water quality parameters. Overall, the
increase in agricultural activities and urban developments
was observed to be responsible for decline in water quality.

Kalin and Isik [35] conducted studies on the impacts of
LULC on water quality in 18 watersheds in West Georgia.
Using a three-layer feedforward ANN with input variables
comprising of LULC percentages, streamflow, and tem-
perature, the study concluded that LULC affects water
quality by altering sediment, watershed hydrology, and
chemical loads. Ahearn et al. [36] used linear mixed effects
(LME) to establish the relationship between LULC and the
water quality parameters and concluded that agricultural
coverage had the most significant effect on water quality
within the Cosumnes watershed, particularly on total sus-
pended solids (TSSs) and nitrate concentration. From
previous research, very few studies have tried to incorporate
water quality parameters and LULC in the prediction of the
variability of DO in river water systems [37].

*eNyando River is a major river system across the rural
parts of western Kenya. *e water quality of the river is
continuously degrading due to the amounts of effluents
discharged into the river system from industrial and agri-
cultural wastewater. Because of this, several portions of the
river are considered as near-hypoxic systems. *ere is thus
the need to develop a case-study model for the basin to
inform on identification of efficient management strategies.
Because of the limited water quality data and to overcome
the difficulties in DO prediction in near-hypoxic river
systems, this study proposes the use of feedforward neural
network (FNN) for the prediction of DO in the Nyando
River basin. *e advantage of FNN is that even with a single
hidden layer and arbitrary bounded and smooth activation
function, the network is capable of approximating a con-
tinuous nonlinear function. Further, FNN has no a priori
assumptions about the relationships between the indepen-
dent and dependent variables. *e performance of the
nonparametric ANNmodel is compared with the parametric
multiple linear regression (MLR) models. MLR is an
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established statistical method suitable for the establishment
of the linear relationships between input-output data vari-
ables for intercomparison of models.

*e aim of this study is to design a feedforward neural
network model for the prediction of dissolved oxygen
concentrations in river waters within the Nyando River
basin and to demonstrate its application in identifying the
complex nonlinear relationships between input water quality
parameters and LULC. *e water quality data used in the
study include temperature, pH, discharge, turbidity, total
suspended solids (TSSs), electrical conductivity (EC), total
phosphates (TPs), and total nitrates (TNs). *e data were
collected from 2006–2011. It is expected that the proposed
approach for dissolved oxygen prediction enables (a) the
selection of optimal water quality variables for predicting
DO; (b) integration of water quality variables with LULC;
and (c) prediction of DO concentrations from sparsely
available data.

2. Materials and Methods

2.1. Characterization of the Study Area. Nyando River basin
is one of the seven major river basins in Kenya, and it covers
an area of approximately 3,550 km2. It is bounded by lati-
tudes 0°7′48″N and 0°24′36″S and longitudes 34°24′36″E
and 35°43′12″ (Figure 1). Nyando River drains into Lake
Victoria, at altitudes of about 1,300m above mean sea level.
*e regional climate is influenced by the Equatorial Con-
vergence Zone (ITCZ) and modified by orographic effects.
Land-use and land-cover types vary from forests in uplands
to mixed-type subsistent agriculture in the mid to lowland
parts. *e human population is about 800,000 people, and it
is greatly responsible for the LULC changes within the basin.
*e climate of Nyando basin varies from subhumid to
humid, due to the variation in altitude from the highlands to
the shores of Lake Victoria. *e mean annual rainfall of the
basin varies from 1,000mm in regions near Lake Victoria to
1,600mm in the highlands, and the basin is characterized by
ferralsols, nitisols, cambisols, and acrisols as the main soil
types [38].

*e slope inclination of the highlands is 14–30%, 7–13%
for the midlands, and 0–6% for the lowlands. 58% of the
Nyando catchment is lowland areas, 18% highland area, and
23% for the midland area. Due to the steep topography of the
basin, there is occurrence of erosion at various locations of
the Nyando River. In Figure 1, the sub-basins are identified
with numbers from 1 to 13. Notably, the quality of river
waters within catchments is influenced by anthropogenic
activities and natural processes as they interfere with water
quality and impair their use for domestic, industrial, agri-
cultural, or other purposes. Nyando River basin, like most
river catchments in several developing countries, hardly has
continuous and integrated river water quality monitoring
networks.

2.2.WaterQualityParameters. *ewater quality parameters
were obtained from Lake Victoria South Water Service
Board (LVSWSB, Kisumu), for eight stations from

2006–2011 with their spatial location distributions shown in
Figure 1.*e water sampling and testing are carried out on a
monthly frequency. In this study, the mean annual water
quality parameters were used. *e parameters analyzed in
this paper are based on variables that reflect the water quality
and are divided into the following categories: water quality
variables indicative of stratification comprising of temper-
ature, dissolved oxygen, and pH; water quality variables that
indicate the trophic status characterized by TP, turbidity,
and TN; and mineral budget which comprised of electrical
conductivity (EC), TSS, and flow characterized by discharge.
*e annual averages for the temporal variations of the water
quality parameters as measured from 2006–2011 are pre-
sented in Figure 2.

Apart from the variability of the water quality param-
eters and the river discharge (Figure 2(a)–2(h)), the dis-
solved oxygen is observed to vary consistently from station
to station during the study period of 2006–2011 (Figure 2(i)).
*e spatial distribution of the DO concentration within the
basin as interpolated using ordinary Kriging is presented in
Figure 2(j). Regions with higher DO concentrations are
around the intensive agricultural activities. *e variability in
DO is dependent on the input parameters including the
water quality parameters and land use/land cover. In this
study, WQP and LULC are considered as independent
parameters since they are derived from the hydrologically
independent sub-basins.

In Figures 1 and 2, the station IDs and the corresponding
stations names are as follows: 1GBO3—Ainamutua at Kibigori;
1GB11—Ainapsiwa; 1GD03—Nyando; 1GE01—Awach Kano;
1HA11—Nyamasaria; 1GC03—Kipchorian; 1GC01—Namut-
ing; and 1GD07—Nyando at Muhoroni.

2.3. Land Use and Land Cover (LULC) within the Nyando
River Basin. Using maximum-likelihood supervised clas-
sification of 30-meter spatial resolution Landsat ETM+, the
LULC of the basin was derived. By classifying and com-
paring the LULC changes from 2006–2008, 2008–2011, and
2006–2011, it was observed that there was insignificant
difference between the LULC for the 5 years from
2006–2011. *e LULC for the year 2008 was chosen as it
was midway between 2006 and 2011. Figure 3 presents the
LULC and the stream network within the Nyando River
basin. *e basin was divided into eight sub-basins
according to the pour points, which correspond to the
sampling stations as spatially represented in Figure 1. *e
rationale for the division of the basin into its sub-basins is
to be able to model and understand the impacts of LULC
activities and the water quality parameters on the DO
within the independent sub-basins. *e derived LULC in
percentages for the eight sub-basins are presented in
Table 1, and the classification results show that the entire
basin comprised of forest (16.8%), wetlands (0.5%), shrubs
(2%), and agricultural land (80.7%). *e classification re-
sults show that most of the studied stations are located in
agricultural land areas, though the upstream areas are
mostly characterized by forests and light vegetation cover
(Figure 3).
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Figure 1: Location map of Nyando River basin [38], the sub-basins (1–13), and study sampling stations.
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2.4. Multiple Linear Regression Model. Regression models
are suitable for investigating the existing relationships be-
tween dependent and independent variables especially in
small sample sizes [39], based on least squares fitting. In this
study, the parametric MLR model is used to model the
relationship between DO, the water quality variables, and
LULC parameters as a linear function [40]. MLR as a
parametric statistical model assumes that the variable
components are independent and may not match the actual
situation. *e best MLR formulation is based on the highest
multiple correlation coefficient (R), the lowest standard
deviation, and the magnitude of the F-ratio and can also
reveal the statistically significant variables of the system [41].
*e general MLR model is expressed as follows:

yi � β0 + β1x1i + β2x2i + · · · + βqxqi + si, (1)

where yi is the dependent variable observed values; n is the
sample size and i� 1, . . ., n; x1, x2, . . . , xq are the explan-
atory or independent variables; x1i, x2i, . . . , xqi are the de-
scriptors of observed values; si is the residual or error for
individual i; β0 is a constant; and β1, β2, . . . , βq are the
multiple regression coefficients [42].

In equation (1), Y represents the concentration of dis-
solved oxygen (DO) as the dependent variable, and
(x1, x2, . . .xp) is the set of predictor p variables comprising
of temperature, pH, discharge, electrical conductivity, total
phosphorus, total nitrogen, and turbidity. In the imple-
mentation of stepwise regression model, MLR analysis was
performed to estimate the DO and to yield variable F-sig-
nificance probability. *e optimal model through regression
statistical feature value (P, R2) was validated using the
standard value 0.05 and excluded value 0.10.

2.5. ANNandTrainingAlgorithm. Artificial neural networks
are made up of a set of simple elements; the artificial neurons
are motivated by the biological nervous systems. *ere are
different architectures and models for ANN, namely, mul-
tilayer perceptron (MLP), adaptive neuro fuzzy inference
system (ANFIS), recurrent neural network (RNN), gener-
alized regression neural network (GRNN), and radial basis
function network (RBFN). *ese ANN models can be cat-
egorized into feedforward neural networks and recurrent
neural networks. MLP neural networks, trained with a
backpropagation learning algorithm, are the most popular
feedforward neural networks (FNNs) and have been widely

used in hydrologic forecasting models (e.g., [43–47]). *e
advantage of FNN is that with as few as a single hidden layer
and arbitrary bounded and smooth activation functions, the
system can approximate a continuous nonlinear function.
*e adopted model of the neuron system is represented in
Figure 4.

*e input data in the input layer are transferred to each
neuron in the hidden layer through a linear sum operation,
and the result of inputting the linear sum to the activation
function is the result of the hidden layer neuron. *e output
of a neuron can be functionally expressed as equation (2),
which is represented in Figure 4.

out � f(n), (2)

where n � ∑Rj�1 ωjxj + b; x1, x2, . . ., xR are the input signals;
ω1, ω2, . . .,ωR are the weights of neuron; b is bias value; and
f(·) is the network activation function.

*e most common activation functions are the linear
and sigmoid functions and are given according to the
function f(n) � n [48]. In this study, the three-layer neural
network shown in Figure 3 with hyperbolic tangent neurons
in the hidden layer and linear neuron in the output layer is
used to simulate and approximate the dissolved oxygen. *e
inputs x1, x2, . . ., xR are multiplied by weights ωi,j(1) and
summed at each hidden neuron i. *en, the summed signal
ni(1) � ∑Rj�1 ωi,j(1)xj + b1(1) at a node activates a nonlinear
function f1.*e output y�DOt as a linear output node three-
layered FNN is calculated according to equation (3) and
generalized as shown in equation (4):

y �∑z
i�1

ω1,i(2) ×
1 − e

− ∑R

j�1
xjωi,j(1)+bi(1)( )

1 + e
− ∑R

j�1
xjωi,j(1)+bi(1)( )  + b1(2), (3)

yk � fo ∑M
j�1

wjk × fh ∑N
i�1

wijxi + bj  + bk , (4)

where R� total number of inputs; z� hidden neurons;
ωi.j(1)�weight of first layer between the input j and the ith
hidden neuron; ωi.j(2)�weight of second layer between the
ith hidden neuron and output neuron; bi(1)� bias weight for
the ith hidden neuron; and b1(2)� bias weight for the output
neuron.

Introduced by Rumelhart et al. [49], the back-
propagation learning algorithm is the most used training
algorithm for updating the weights and biases of a neural
network. *e network was trained on the backpropagation,

Table 1: LULC in percent for the eight (8) sub-basins corresponding to the studied stations.

Watershed ID (pourpoint) Forest (%) Wetlands (%) Low vegetation (shrubs) (%) Agricultural land (%)

1GE01 16.18 0.86 1.67 81.29
1GC01 16.22 0.83 1.78 81.50
1GD01 8.50 0.17 3.16 88.17
1GD03 14.97 0.66 2.10 82.27
1GB03 9.88 0.22 0.93 88.97
1GB11 24.23 0.46 0.53 74.78
1GB05 21.06 0.30 4.74 73.91
1GC06 23.07 1.22 0.69 75.03
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which is based on a gradient scheme for weighting ad-
justment to reduce the error between predicted and observed
data. Several variants of the backpropagation training
scheme have been developed [50]; among these, the Lev-
enberg–Marquardt algorithm is applied in this study.
According to the Levenberg–Marquardt algorithm, the
weights are adjusted as follows [51]:

E(ω) �
1

2
∑N
i�1

ymi − yi( )2 � 1

2
ym − y( )T ym − y( ), (5)

where yi and ymi are the network output and the observed value
from the ith element; N is the number of training set elements;
and ω is an n-element (n�R · z+2 · z+1) vector that contains
the neural networkweights and biases and is expressed as follows:

ω � ω1,1(1),ω1,2(1), . . . ,ωz,R(1), b1(1), b2(1), . . . , bz(1),[
ω1,1(2),ω1,2(2), . . . ,ω1,z(2), b1(2)]T. (6)

With the Levenberg–Marquardt method, for back-
propagation, the increment Δω, by minimization of E with
respect to the weightω parameter vector, is expressed as follows:

Δω � − JTJ + μI( )−1· JT ym − y( ), (7)

where J is the Jacobianmatrix, I is the identitymatrix, and μ is an
adaptive factor. When the scalar μ is zero, this is just Newton’s
method. When μ is large, this becomes gradient descent with a
small step size, and the Jacobian matrix is calculated as follows:

J(ω) �

zy1

zω1,1(1)

· · ·
zy1

zω1(2).
⋮ ⋮ ⋮

.
zyN

zω1,1(1)

· · ·
zyN
zω1(2)




. (8)

*e input data were preprocessed through standardi-
zation within the range [0–1]. *e confinement or stan-
dardization of data between limits minimizes biases and
ensures all the input data receive the same attention. *e
data are divided into three sets, which are the training set
(70%), the validation set (15%), and the test set (15%). In the
determination of the ANN input data structure, different
scenarios of input data were tested individually and through
combinations. To avoid the selection of input data on a trial-
and-error basis, cross correlation was used to determine the
significant input water quality parameters.

2.6. Model Evaluation. Various methods have been used
determine the relative importance and contribution of the
input variables to the model output [46, 52]. In this paper,
the sensitivity analysis, based on Pearson correlation coef-
ficient, is used to determine the influence of input variables
on the dependent variable [19]. Pearson correlation coeffi-
cient is defined as the degree of correlation between the
experimental and modeled values:

r �
∑Ni�1 yi − y( ) ymi − ym( )��������������������������∑Ni�1 yi − y( )2∑Ni�1 ymi − ym( )2√ , (9)

where yi and ymi denote the network output and measured
value from the ith element; y and ym denote network and
observed averages; and N represents the number of
observations.

To quantify the reliability and accuracy of the two
models, FNN and MLR, the coefficient of determination
(R2), root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) were
also used [53], as defined in equations (10)–(12). Addi-
tionally, the t-test method was applied to compare the
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Figure 4: Architecture of the adopted feedforward backpropagation neural network (FNN).
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predicted value (DOpred) fromMLR and BPNNmodels, with
the observed value DOobs.

R2
�

∑ni�1 yi − y( ) yi′ − y′( )( )2
∑ni�1 yi − y( )2∑Ni�1 yi′ − y′( )2, (10)

RMSE �

������������∑ni�1 yi − yi′( )2
n

√
, (11)

MAE �
∑ni�1 yi′ − yi( )

n
, (12)

where yi′� predicted DO by the model; yi � target DO at
time i; and y and y′ denote average observed and simulated
DO at time i for n data point numbers.

Figure 5 presents a summary of the methodological
approach in this study.

3. Results and Discussion

3.1. Correlation Analysis between Water Quality Parameters.
Table 2 presents the results of the correlational analysis of the
water quality parameters. It is observed that all the water
quality parameters have a negative correlation with dissolved
oxygen, except for the TSS with a weak positive correlation
coefficient of 0.0504.*e observed correlations are discussed
below.

(a) Discharge: it is a fundamental stream property that
affects most parameters from temperature to dis-
solved oxygen. Discharge being a function of both
stream volume and speed affects DO two-fold. First,
an increase in stream volume results in a decrease in
the DO values since less water volume is exposed to
the surface for aeration. However, an increase in
stream volume also implies that a comparatively
smaller surface will be exposed to the weather
conditions such as temperature, and hence the
stream temperature will not increase significantly
leading to a relatively low DO concentration within
the channel. Secondly, the speed of the streamflow
significantly affects the DO concentrations in that an
increase in speed results in rapid turbulence and
small hydraulic jumps that facilitates the aeration
process, resulting in high DO concentrations. Low
flowing streams have low DO concentrations since
the effects of aeration are not significantly pro-
nounced. In the case of Nyando basin, discharge has
a net negative correlation (effect) with DO (weak)
meaning that an increase in stream discharge results
in lower DO concentrations.

(b) Temperature: it has a negative correlation (inverse
relationship) with DO implying that an increase in
temperature results in a corresponding decrease in
dissolved oxygen concentrations. More dissolved
oxygen is present in water with lower temperature
than in warmer water. *is is because the solubility
of gases in liquids is an equilibrium phenomenon.

(c) pH: the inverse correlation between DO and pH
could be attributed to the fact that pH indicates the
concentration of H+ and OH− ions in water. *e H+

ions form hydrogen bonds with water to form H3O
+

meaning more H+ ions result in more hydrogen
bonding, thus leading to a stable structure and ul-
timately little free dissolved oxygen (DO).

(d) Turbidity and total suspended solids: these are the
conditions resulting from suspended solids in the
water including silts and clay industrial wastes
among other particles. *ese particles absorb heat
during sunny days, thus raising the overall water
temperature, which in turn lowers the dissolved
oxygen levels.

(e) Electrical conductivity: as a measure for the ability of
the water to conduct electricity, EC is majorly affected
by the dissolved solids that aid the transfer of electric
current. Amajor indicator of conduction is the salinity.
Salinity is important in that it affects the dissolved
oxygen solubility. *e higher the salinity or EC levels,
the lower the dissolved oxygen concentration.

(f ) Total phosphates and total nitrates: it is observed that
TP has the highest correlation with DO. *ere is a
significant inverse correlation between phosphates
and DO. Too much algae leads to a reduction of
dissolved oxygen in the water since they are used up
for photosynthesis. Phosphates are present in fer-
tilizers and normally enter the water bodies through
agricultural runoff or as sewage discharge. An in-
crease in the amount of phosphates present in water
results in a corresponding decrease in the amount of
DO. *e presence of nitrates in natural waters has
the same effects as those of phosphates.

3.2. Correlation between LULC and Dissolved Oxygen.
Table 3 presents the results of the correlation analysis be-
tween LULC classes and average concentration of the DO
values, and it is observed that the LULC within the wa-
tershed has significant impact on the DOwater quality of the
streams. *e stream water quality fluctuates with changes in
the LULC parameters within the contributing watershed.
Notably, changes in the land cover and land management
practices have been regarded as the key influencing factors
behind the alteration of the hydrological system, which leads
to change in runoff as well as water quality. From the results,
forest cover, light vegetation, and agricultural lands have
significantly stronger correlation with water quality (DO),
positively or negatively. Negative correlation implies, for
example, as agricultural land increases, the forest cover
decreases strongly with a correlation factor of −0.97552.
Similarly, positive correlation means that as forest cover
increases, concentration of DO increases in the rivers by a
correlation factor of +0.83559.

3.2.1. Forest and Light Vegetation Cover. With up to 83.56%
correlation between DO and forest cover, it is inferred that
increase in vegetation cover results in increased DO
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concentrations within the basin. Vegetation cover redis-
tributes rainfall into three components (i.e., canopy inter-
ception, streamflow, and throughfall), thereby weakening

rainfall, limiting runoff occurrence, and controlling soil
erosion. In general, runoff and sediment yields decrease with
coverage rates as a linear or exponential function. With
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increase in vegetation cover, runoff and soil erosion are
controlled and other water quality parameters such as TS,
EC, and nutrient load (phosphates and nitrates) discharged
into streams are reduced.

3.2.2. Agricultural Land and Activities. *e strong negative
correlation between agricultural land cover and dissolved
oxygen concentration observed in the Nyando basin streams
implies that an increase in the percentage of land under
agriculture leads to a significant decrease in the DO con-
centrations. *is is majorly due to the nonpoint source
pollution due to the runoff from agricultural lands. Fertil-
izers, rich in phosphates, nitrates, and other nutrients, and
other farm chemicals such as pesticides and herbicides are
washed off by runoff into receiving water bodies within the
watershed. Increased nutrients’ concentration into streams
has its adverse effects on the water quality in the streams as
presented in the WQP correlational analysis in Table 2.

3.3. Dissolved Oxygen Prediction Results Using the MLR
Model. *e results for the prediction of DO using the water
quality parameters in the basin using MLR are presented in
Table 4, with the results showing that the combination of EC,
TP, TN, and pH water quality variables being the four best
performing water quality parameters in the prediction of
dissolved oxygen concentrations. It is observed that that the
optimal prediction of DO using MLR was obtained by in-
corporating all the input parameters, resulting in R of
61.99%, which is not significantly higher than 57.03% when
only four parameters are used.

*e best results for the prediction of DO using MLR
based on the water quality parameters and LULC are, re-
spectively, represented in equations (13) and (14), with the
water quality predicting the DO concentration with
R� 0.6199, while LULC was a more accurate predictor with
R� 0.9917 (Table 4). *e total degrees of freedom dftotal for

the regressionmodels numbered 1–4 in Table 4 were 56, with
the residual dfres being equivalent to dftotal − dfreg − 1, and
regression dfreg is equivalent to the number of model input
parameters for each estimation. For the LULC-based re-
gression (equation (14)), dftotal � 16, dfreg � 4, and dfres �

11 for the eight sub-basins including the main basin.

DO � 12.22 − 0.023Discharge − 0.032Temp − 0.342pH

− 0.002Turb − 0.0003EC − 0.847TP − 0.244TN

+ 0.002TSS,

(13)

DO � 2.6192 + 0.0909Forest − 0.2372Wetlands

+ 0.0909Light Veg + 0.0449Agric Land.
(14)

*e results in Table 4 show that the combination of
temperature, pH, electrical conductivity, total nitrates, and
total phosphates predicted DO with an accuracy of 57.03%,
while the discharge, turbidity, and TSS have insignificant
influence on the prediction of DO with only 4% contribu-
tion. For LULC, agricultural land and forest land cover had
the highest impacts on DO prediction.

Figure 6 shows the simulation of DO concentrations
based on the different input parameters in comparison to
the actual observed DO for all the sampling stations used
in the study. For all the input stations, the simulation
trend is observed to follow the observed trend. However,
for some stations, the magnitudes of the observed DO
concentrations tend to be higher than that for the sim-
ulated, even when all the available water quality variables
are used. *is could imply that not all the water quality
parameters that are required for the simulation and
prediction of DO were available, hence the observed
trend with best R � 0.6199. From the moving average
trend line in Figure 6, there is an indication that the
general trend in the DO concentration within the basin is
decreasing.

Table 2: Correlational analysis between DO and the WQ parameters.

Discharge Temp pH Turbidity EC TP TN TSS DO

Discharge 1
Temp 0.271748 1
pH −0.22542 0.069421 1
Turbidity 0.53972 0.287929 −0.28211 1
EC 0.190513 0.282863 0.352155 −0.14834 1
TP 0.133385 0.194775 0.114777 0.185624 0.237535 1
TN 0.034775 −0.00622 −0.03917 0.016368 0.283277 0.231251 1
TSS 0.689712 0.260862 −0.34453 0.818282 −0.02368 0.119882 −0.03906 1
DO −0.13954 −0.20597 −0.24034 −0.09428 −0.27706 −0.4543 −0.34444 0.05042 1

Table 3: Correlation between LULC and DO in the Nyando River basin.

Forest Wetlands Light veg Agric land DO (mg/l)

Forest 1
Wetlands 0.495085 1
Light veg −0.16694 −0.45426 1
Agric land −0.97552 −0.43501 −0.04913 1
DO (mg/l) 0.835591 −0.00072 0.277317 −0.89189 1
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*e stream dissolved oxygen concentration is a complex
phenomenon affected by factors that are ever changing,
some of which may not entirely be captured by traditional
laboratory measurement techniques. *e DO concentration
in streams is never constant even under the most stable
atmospheric conditions such as temperature, rainfall, and
wind velocity among others. Increasing the parameters
under consideration improves the model performance by
bringing into view other factors that may not have been
considered before.

By using the LULC percentages in the prediction of DO
using MLR, the results in Table 4 indicate that LULC is a
perfect predictor of the DO concentrations within the
Nyando River, with R2� 0.9915 and negligible RMSE, MSE,
and MAE. For the eight sub-basins, the comparison between
the predicted and actual DO concentrations is presented in
Figure 7. While there is an indication of marginal DO
concentration decreasing with time as depicted in Figure 6,
the overall trend in Figure 7 shows the DO concentration in
the respective sub-basins is cumulatively increasing from
upstream to downstream. *e observed increase in the DO
concentrations is attributed to lower chemical flows into the
streams in the upstream, and this accumulates as there are
intensified agricultural, industrial, and human settlements
downstream. In this region, there is minimal control of the
effluent into the river, and this results in observed trend,
indicating that the critical areas are situated in the down-
stream sections of the basin.

By combining LULC percent and the average of the sub-
basin water quality parameters (EC, TP, and TN), DO was
predicted with an accuracy of R� 0.9924, which is equivalent
to predicting the DO in the river using LULC only.

*e LULC affects more parameters contributing to
stream DO concentrations within the basin. Land practices
have direct impacts on the velocity and amount of runoff
flowing into receiving streams, nutrients, total solids, and
pH of the streams, and these factors have direct impacts on
the DO concentrations and hence the improved model
performance. Compared to the WQ parameters, it is

conclusive that LULC is a better predictor of DO in river
basins with inadequate and unreliable water quality moni-
toring networks. *e combined results of the LULC and
three WQ parameters show the same trend as the actual and
LULC predicted DO.

3.4. Prediction of Dissolved Oxygen Using the FNN Model

3.4.1. Optimum Neuron Determination. By varying the in-
put water quality variables through using trial-and-error and
also varying the neurons between 10 and 50, 25 neurons
were found to be optimum as depicted in Figure 8. When the
neurons are too few, e.g., 1–10 neurons, the network lacks
the capacity to sufficiently learn the underlying data patterns
and to detect signals in the dataset, and this resulted in
underfitting with higher RMS error values. When the
neurons are increased to 50, the network performance does
not significantly increase. As depicted in Figure 8, the op-
timal prediction based on 3-data combination input is at 25
neurons. Using the Levenberg–Marquardt training function,
the performance of the network’s weights and biases in
terms of mean square error was set at 8 epochs, with a
learning rate of 0.1 (Figure 9).

3.4.2. DO Prediction Using FNN with Varying Water Quality
Parameters. To model the influence and correlation of the
different WQ parameters on the concentration of DO within
the river, different combinations of water quality parameters
were used as inputs in the FNN prediction model. By first
using EC, TP, and TN, the DOwas predicted with R values of
0.7203 for training and 0.8097 for validation, which further
increased to 0.9132 for the testing datasets and an overall
average R value of 0.7660 (Figure 10(a)). With the inclusion
of pH together with the three parameters, the DO prediction
improved by about 18% according to the correlation coef-
ficient; however, R reduced to 0.6013 after validation and
increased to 0.9395 during testing (Figure 10(b)). Using the
four WQPs, the overall average R value of 0.8141 was
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obtained, which increased approximately by 5% in the DO
prediction accuracy compared to the three WQPs.

By successively increasing the number of the input WQ
parameters in predicting the DO concentration, the re-
sults progressively improved as shown in Figure 10, with a
maximum prediction accuracy of R � 0.8546 being ob-
tained by inputting all the eight water quality variables
(Figure 10(d)). A graphical representation of the corre-
lations between the predictions of DO using ANN and the

observed DO concentrations is given in Figure 11. It is
observed that as the number of input water quality pa-
rameters increases, the accuracy of prediction of the
ANN also increases. Comparing the model results in
Figures 11, 6, and 7, it is observed that the optimized FNN
simulation model follows the pattern of the observed data,
with very few outliers when the input variables are few,
confirming the FNNmodels yield better results with fewer
input variables.
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In Figure 11, the average trend line also shows that there
is a general decrease in the concentration of DO within the
basin with time. *e same phenomenon is observed in

Figure 6, where the moving average is generally decreasing.
*is observed decrease during the study period is however
within the acceptable range but with negative magnitude.
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Figure 10: FNN-based predictions of DO with (a) EC, TP, and TN; (b) EC, TP, TN, and pH; (c) EC, TP, TN, pH, and temperature; and
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Causes thereof need to be further investigated, through
continuous monitoring and predictions of water quality
within the basin.

By introducing the LULC percentages in the prediction
of the DO within the basin, the results in Figure 12(a) show
that LULC has a higher predictive ability of dissolved
oxygen with as much as 99.5% accuracy. Similarly, the
combination of LULC and WQPs yields equally satisfac-
tory correlation results with R2

� 0.997 (Figure 12(b)),
implying that in the absence of adequate water quality
parameters, LULC can sufficiently be used to predict and
estimate the concentrations of DO within a basin with low
water quality monitoring networks. For the prediction of
DO using LULC and combined LULC with the WQPs, the
MSEs were, respectively, as low as 0.0665mgL−1 and
0.0005mgL−1, while for the same combination, the RMSEs
were, respectively, at 0.2578mgL−1 and 0.0218mgL−1. Also
the MAE for the two input models is, respectively, ob-
served as 0.1847mgL−1 and 0.1878mgL−1. *e FNN results
in Figure 12(a) are same as using the MLR model in DO
prediction presented in Figure 5. *is means that in the
absence of water quality parameters, LULC can satisfac-
torily predict DO concentrations. However, with scarce
WQPs, it is preferable to use the ANN model. For FNN, it
can also be deduced that few input parameters, say five,
produce considerably acceptable results, provided the
parameters used have a strong correlation with DO. *e
difference is more conspicuous in the MSE, which displays
a value of 0.0665mgL−1 for when only LULC is used,
versus 0.0005mgL−1 for when both LULC and WQ pa-
rameters are used.

3.5. Further Discussion. *e statistical MLR, by relating the
dependent variable to independent variables, has the
weakness that the transformations include a priori as-
sumptions about the type and consistency of the relation

between two parameters which may not be met completely
[54]. *is could contribute to its inferior performance in the
prediction of DO concentrations, as compared to the FNN
model. For both FNN and MLR models, LULC presented
superior results as compared to the water quality parameters.
*is means that the use of LULC may be more significant
indicator in DO prediction and as such watershed models
may rely on the effects of LULC on water quality.

Despite a number of data-driven models being proposed
for DO prediction, little attention has been paid to devel-
oping systematic ways for the selection of appropriate model
inputs [55]. Sarkar and Pandey [23], for example, combined
datasets from three different monitoring stations and used
them as input to the ANN model, without any feature se-
lection strategy. Shi et al. [56], on the other hand, input seven
surface water quality variables, without any a priori variable
analysis. For optimized neural network modeling, the in-
clusion of all available variables may contain redundant
input parameters, which can decrease the performance of the
model. To take into consideration the linear dependencies,
simple evaluations of inputs through trial-and-error need to
assess all possible groups of inputs by building a number of
predictive models, which can be inefficient when dealing
with large input water quality variables.

Comparatively, satisfactory DO simulation and predic-
tion results have been obtained in this study. For example, it
is observed that as the input parameters increase, the ac-
curacy of the outputs of the models increases at all the stages
of training, testing, and validation. *e trend depicts satu-
ration in the prediction accuracy as the correlated water
quality variables are introduced into the model. *e lower
performance of the water quality parameters in the pre-
diction DOmay be attributed to the nonhomogenous nature
of the water quality variables and also due to the fact the
input parameters in this study may not include all the
relevant variables suited for DO prediction, and the models
also required high spatially distributed and long-temporal
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observation water quality data. By introducing LULC, the
current study significantly improves on the DO prediction as
the results depict perfect simulation and prediction. *is
however may be improved and investigated further by
comparing different temporal seasons for LULC data. For
practical applications, such models need to be calibrated or
fine-tuned with in situ observations [57, 58].

Compared to previous studies in [1, 18, 21–23, 35, 36], it
is recognized that only the study by Kanda et al. [22] was in
the same geographic region and used nearly similar input
model parameters in the prediction of DO. *e results
obtained in the current study are however superior to those
obtained by Kanda et al. [22] in terms of the accuracy of DO
prediction and because of the incorporation of LULC var-
iability as proposed by Kalin and Isik [35] and Ahearn et al.
[36]. *is implies that while most studies rely on BOD and
COD for prediction of DO, in poorly monitored river basins,
LULC and other water quality parameters as used in this
study can be incorporated into FNNmodels for the accurate
prediction of DO.

*e proposed FNNmodel shows efficiency in forecasting
the dissolved oxygen profiles in eutrophic river water bodies
as the Nyando River basin. *e FNNmodel can thus be used
for forecasting, so as to capture long-term trends observed
for the tedious water quality variables such as dissolved
oxygen [10, 33]. However, because water quality predictions
can be easily affected with high uncertainty and specific
phenomena, such as climatological and ecoregional condi-
tions, the predictions should be applied with care as they can
exhibit certain deviations. In the implementation of the

model, the selection of the optimum number of hidden
neurons to be used in the ANNmodel is a significant step as
it either causes improvement in performance or a decrease in
the same, that is, underfitting or overfitting.

4. Conclusions

Modeling water quality variables is significant in the analysis
of aquatic systems. However, the chemical, physical, and
biological components of aquatic ecosystems vary and are
complex and nonlinear in the relationship. *e study results
showed that the application of feedforward backpropagation
neural networks (FNNs) is an effective approach in the
identification and modeling of nonlinear interacting water
quality parameters for the prediction of dissolved oxygen in
scarcely monitored basins, as compared with the statistical
multiple linear regression (MLR).

Correlational analysis for the optimization of the input
parameters and minimization of the redundancies in the
input water quality parameters into the prediction models
showed that the parameters that have stronger relationships
with DO are the most significant in its prediction for both
theMLR and FNNmodels.*e study results show that in the
prediction of DO using water quality parameters, optimal
results were obtained by combining temperature, electric
conductivity, total phosphorus, pH, and total nitrates as the
predictor variables for both FNN and MLR models, with
correlation coefficients R= 0.8425 and R= 0.5703, respec-
tively. By including all the available water quality parame-
ters, both models improved marginally in the DO
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Figure 12: FNN model prediction of DO concentrations using (a) LULC and (b) combination of LULC and the eight (8) WQ parameters.
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concentration predictions with R= 0.8564 using FNN and
R= 0.6200 using the statistical MLR.*e results showed that
FNN outperformed MLR by 24% using water quality pa-
rameters only.

By using LULC to predict the DO concentration in the
river, the modeling results show that both the models
performed at 99% prediction accuracy. A combination of
LULC and water quality only showed insignificant im-
provement in the DO prediction. *e results show that the
proposed optimized FNN is an efficient alternative for the
modeling of the variability of water quality parameters in
basins which are scarcely monitored. While it is agreed that
unmonitored watersheds are faced with the problem of
inadequate data, for the modeling systems to work, it is
important to improve on the development of the models
using long-term data as this will improve the reliability and
accuracy of the model output. With more data over long-
term temporal observations, deep learning neural networks
can then be employed in the development of the artificial
intelligence model.
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“Modelling of dissolved oxygen in the Danube River using
artificial neural networks and Monte Carlo Simulation un-
certainty analysis,” Journal of Hydrology, vol. 519, pp. 1895–
1907, 2014.

[28] K. Sinha and P. D. Saha, “Assessment of water quality index
using cluster analysis and artificial neural networkmodeling: a
case study of the Hooghly River basin, West Bengal, India,”
Desalination and Water Treatment, vol. 54, no. 1, pp. 28–36,
2015.

[29] P. H. Dimberg and A. C. Bryhn, “Predicting total nitrogen,
total phosphorus, total organic carbon, dissolved oxygen and
iron in deep waters of Swedish lakes,” Environmental Mod-
eling & Assessment, vol. 20, no. 5, pp. 411–423, 2015.

[30] S. Soyupak, F. Karaer, H. Gürbüz, E. Kivrak, E. Sentürk, and
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[51] J. J. Moré, “*e Levenberg-Marquardt Algorithm: imple-
mentation and theory,” in Numerical Analysis, pp. 105–116,
Springer, New York, NY, USA, 1978.

[52] R. J. May, H. R. Maier, G. C. Dandy, and T. M. Fernando,
“Non-linear variable selection for artificial neural networks

22 Complexity



using partial mutual information,” Environmental Modeling
and Software, vol. 23, no. 10-11, pp. 1312–1326, 2008.

[53] S. Huang, B. Ming, Q. Huang, G. Leng, and B. Hou, “A case
study on a combination NDVI forecasting model based on the
entropy weight method,” Water Resources Management,
vol. 31, no. 11, pp. 3667–3681, 2017.

[54] T. Brey, A. Jarre-Teichmann, and O. Borlich, “Artificial neural
network versus multiple linear regression:predicting P/B ra-
tios from empirical data,” Marine Ecology Progress Series,
vol. 140, pp. 251–256, 1996.

[55] J. Wu, Z. Li, L. Zhu, G. Li, B. Niu, and F. Peng, “Optimized BP
neural network for Dissolved Oxygen prediction,” IFAC-
PapersOnLine, vol. 51, no. 17, pp. 596–601, 2018.

[56] B. Shi, P.Wang, J. Jiang, and R. Liu, “Applying high-frequency
surrogate measurements and a wavelet-ANN model to pro-
vide early warnings of rapid surface water quality anomalies,”
Science of the Total Environment, vol. 610-611, pp. 1390–1399,
2018.

[57] N. Fohrer, S. Haverkamp, K. Eckhardt, and H.-G. Frede,
“Hydrologic response to land use changes on the catchment
scale,” Physics and Chemistry of the Earth, Part B: Hydrology,
Oceans and Atmosphere, vol. 26, no. 7-8, pp. 577–582, 2001.

[58] M. Luzio, R. Srinivasan, and J. G. Arnold, “Integration of
watershed tools and SWAT model into BASINS,” Journal of
the American Water Resources Association, vol. 38, no. 4,
pp. 1127–1141, 2002.

Complexity 23


