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Use of Bayesian Inference in 
Crystallographic Structure 
Refinement via Full Diffraction 
Profile Analysis
Chris M. Fancher1, Zhen Han2, Igor Levin3, Katharine Page4, Brian J. Reich2, Ralph C. Smith5, 

Alyson G. Wilson2 & Jacob L. Jones1

A Bayesian inference method for refining crystallographic structures is presented. The distribution of 
model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability 
distributions are constructed for all model parameters to properly quantify uncertainty by appropriately 
modeling the heteroskedasticity and correlation of the error structure. The proposed method is 
demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference 
material. The results obtained by Bayesian inference are compared with those determined by Rietveld 
refinement. Posterior probability distributions of model parameters provide both estimates and 
uncertainties. The new method better estimates the true uncertainties in the model as compared to the 
Rietveld method.

X-ray di�raction is a powerful technique for characterizing the atomic structure of materials. Di�raction relies 
on scattering of X-rays from planes of atoms resulting in either constructive or destructive interference. Figure 1 
shows example peaks observed in di�raction patterns, and the inset is a schematic of X-ray scattering from planes 
of atoms that results in constructive interferences. �e constructive interference is observed in the di�raction 
pattern as intensity vs scattering angle (2θ). Over the past 100 years a variety of approaches have been developed 
to determine and re�ne the crystallographic structure from single crystal and powder di�raction patterns1,2. 
�e pervasive application of these approaches is evidenced by over 200,000 structures being cataloged in the 
International Centre for Di�raction Data Database. Moving forward, X-ray techniques and analysis methods 
will continue to advance, particularly in the areas of combining data from di�erent experimental or theoretical 
sources3, and in situ measurements during materials’ processing or performance1,2,4. It is also expected that new 
crystallographic structures will be used in global materials databases for property prediction, as articulated by the 
Materials Genome Initiative (MGI)5,6.

In di�raction, observed intensities (Yi) at angle 2θi can be represented as intensities from the material of 
interest (f(2θi | α)), background scattering (b(2θi | γ)), and errors (εi), where i represents the ith data point in the 
measurement range. We write the observed intensity as

θ α θ γ ε= + + .Y f b(2 ) (2 ) (1)i i i i

Here α is a collection of structural, microstructural, and instrumental parameters that determines the scat-
tered intensity from a sample, and γ are parameters used to construct the background scattering. Most current 
approaches in crystallographic re�nement infer the structure by minimizing the di�erence between a calcu-
lated and experimental pattern. �e di�erence is minimized by adjusting model parameters. One example is 
the Rietveld method7,8, in which the structure is re�ned in a least-squares (LSQ) minimization routine using a 
weighted sum of squares residual:
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�is minimization procedure results in estimates for each model parameter α and background parameter γ, and 
large-sample theory can be used to construct standard errors for these estimates.

While immensely powerful and widely applied, the Rietveld method can be subject to errors associated with 
false minima and uncertainty quanti�cation8,9. In recent years, stochastic global optimization methods have 
been developed to improve the likelihood of reaching the global minimum10–16. However, the Rietveld method, 
and more recently developed stochastic methods, do not allow for the extraction of probability distributions of 
model parameters without prior knowledge of the distribution, a limitation that precludes the characterization 
of parameters in which a distribution is expected, e.g., unit cell descriptors (a, b, c, α, β, and γ). It is also well 
known that the Rietveld method handles statistical uncertainties using Hessian propagation9, and accounts for 
systematic errors by multiplying the resulting standard uncertainty in model parameters by the goodness of �t 
(i.e. scaling)17,18. �e practice of scaling the obtained standard uncertainty is an approximation for the e�ect of 
systematic errors on uncertainty in model parameters18. Instead, a more complete model that formally accounts 
for systematic errors may obtain standard uncertainties without scaling.

�e application of alternative statistical approaches can address these de�ciencies. For example, Bayesian sta-
tistical inference19 can be used to compute posterior probability distributions of model parameters. �ough not 
yet widely applied in full pro�le re�nement for atomic structure determination, Bayesian statistical inference has 
been used in related areas of crystallography and measurement science17,20–28. For example, Wiessner and Angerer 
demonstrated the use of Bayesian approaches to determine probability distributions in the phase fractions of 
austenite and martensite during heating and cooling of a steel sample29. Recently, Gagin and Levin developed a 
Bayesian approach to account for unknown systematic errors in Rietveld re�nements. �eir method, paired with 
a least-squares minimization algorithm provided signi�cantly more accurate estimates of structural parameters 
and their uncertainties than the standard analysis17.

In this paper, we introduce and employ an alternative and unique Bayesian statistical approach to solve the 
crystallographic structure re�nement problem. Similar to the Rietveld method, a di�raction pattern is calculated 
from a modeled crystallographic unit cell. However the di�erence between the modeled and measured di�rac-
tion pattern is not minimized to reach single point value estimates of model parameters. Instead, the parameter 
space is explored by sampling multiple combinations of model parameters using a Markov chain Monte Carlo 
(MCMC) algorithm30. �e results of the analysis are the posterior probability distributions of all modeled param-
eters, which yield both estimates of all parameters and quanti�able uncertainty. �is work introduces a formal 
framework to account for unknown systematic errors (e.g. those manifested by correlated residuals), correlated 
and complex error variance patterns to help solve the problem of uncertainty quanti�cation9, and a Monte Carlo 
simulation study that veri�es the statistical validity of this approach. Measures of uncertainty are important for 
formally testing for di�erences between samples, comparing properties of the new sample to a historical value, 
and determining whether more data is required to obtain reliable results. While introduced in the present work 

Figure 1. Example peaks observed in an X-ray di�raction pattern and schematic of X-ray scattering from 
atoms. Constructive interference of X-rays scattered from planes of atoms results in observed peaks at various 
scattering angle (2θ), which is characteristic of the interplanar spacing. �e inset is a schematic illustration of 
X-rays incident at an angle θ that results in constructive interference from a periodic array of atoms at an angle  
θ from the plane of atoms.
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using X-ray di�raction of a National Institute of Standards and Technology (NIST) standard reference material 
(SRM), the present approach can be readily adopted for use with data from other measurement probes and mate-
rials and should serve as a new structure re�nement approach.

Results
Data collection and Rietveld analysis. A high resolution synchrotron di�raction pattern of a NIST 
Silicon standard (SRM 640d) was measured at the state-of-the art beamline 11-BM-B of the Advanced Photon 
Source (APS) at Argonne National Laboratory. �e sample was held at constant temperature (22.5 °C) during 
the measurement. A Rietveld re�nement analysis was �rst performed as a reference for a Bayesian approach. �e 
execution of a Rietveld re�nement also provides starting values for the MCMC algorithm.

�e so�ware package General Structure Analysis So�ware-II (GSAS-II) (version 0.2.0 revision 1466)31 was 
used to complete the Rietveld analysis. Traditionally, estimates are obtained by weighted least-squares minimi-
zation with weights proportional to the inverse of the intensity (Equation 1). �e lattice parameter was �xed to 
the NIST reported value parameter (5.43123(8) Å at 22.5 °C)32,33. �e Finger-Cox-Jephcoat peak pro�le function 
was used to account for axial divergence. Reported instrumental parameters (Caglioti (U =  1.163, V =  − 0.126, 
and W =  0.063) and axial divergence (SH/L =  0.0011)) were used. �e space group and Wyco� positions were 
set to that of diamond cubic, and the isotropic thermal parameter (Uiso) was initially set to be 0.001 (Å2). �e 
parameter re�nement sequence suggested by Young was followed to facilitate optimization and reduce the risk 
for nonconvergence of the least squares routine8. Additionally, Rietveld analyses were completed using various 
background orders (4th, 5th, 10th, and 15th) to con�rm that the use of high order polynomial background does not 
yield an unstable least-squares re�nement. Parameters obtained from all re�nements were within two standard 
uncertainties, demonstrating that the 15th order Chebyshev polynomial used in this work does not inhibit the 
Rietveld re�nement.

A representative �t of the re�nement result is presented in Fig. 2. �e re�ned structural, microstructural, 
and instrumental parameters and goodness of �t indicators obtained from the Rietveld re�nement are summa-
rized in Table 1. A satisfactory �t could not be achieved without re�ning the Caglioti (U, V, and W) parameters. 

Figure 2. Representative Rietveld and Bayesian analysis results. Powder di�raction data of Si is compared 
with results of (top) a Rietveld analysis and (bottom) an average of the �nal 1000 MCMC samples. Insets of 
the 111, 220, 422, and 911/953 re�ections show that the Bayesian inference and Rietveld approaches achieve a 
similar �t to the observed di�raction data.
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Instrumental parameters (Lx and Ly) associated with crystallite size and microstrain broadening were set to 0 and 
not re�ned; instead the crystallite size and microstrain broadening terms introduced in GSAS-II were used. �e 
re�ned crystallite size (1.00006(6) µm) and microstrain (0.0298(2)%) parameters were found to di�er from the 
values reported in the NIST SRM 640D data sheet: 0.6 µm and 0, respectively32,33. �e origin of the discrepancy 
between the re�ned and NIST reported value might arise from a di�erence in resolution of the measured data  
(i.e. synchrotron vs laboratory) or the implementation of methods used to infer crystallite size and strain broad-
ening contributions (i.e. GSAS-II vs TOPAS)34. It should be noted that the previous NIST Si standard (SRM 640c) 
did report a non-zero microstrain.

Simulation study. Before describing a Bayesian analysis of the NIST silicon standard, we present a simu-
lation study to illustrate the importance of properly modeling the variance and correlation of the residuals and 
compare the proposed method with more standard approaches. We performed this study on a face centered cubic 
structure as a model system. We have chosen to study a simple system with idealized data generation mechanisms 
in which we can model gross features of di�raction data to explore the impact of not accounting for correlated 
residuals when estimating parameters and uncertainties.

Our simulation study proceeds by generating synthetic data from a model with known parameter values. We 
then �t the synthetic data using Bayesian inference to obtain estimates and credible intervals for model parame-
ters, and compare the estimated values and intervals with the true values used to generate the data. By repeating 
this process many times we can study the statistical properties of the method, including estimating the accuracy 
and coverage of credible intervals. In particular, we demonstrate that models that do not account for heteroske-
dastic and correlated residuals give poor estimates of model parameters, and that the actual coverage of 90% 
credible intervals can be far less than 90%.

Synthetic data are generated from Equation 1. Observations are indexed by i, with i =  1,..., n =  901 observa-
tions made on a grid of 2θ spanning 10 to 100 degrees 2θ with 0.1 2θ step. An arbitrary background intensity 
(Fig. 3) is simulated to mimic a background that is typically observed in experiment

θ θ π θ= + + .b(2 ) 500 3000/(2 ) 50 sin [2 (2 )/100] (3)

We set f(2θ | α) to be

∑θ α θ λ θ| =  f I SF L G U V W(2 ) (2 ) ( ,2 , , , )
(4)hkl

hkl

where SFhkl and L(2θ) represent the structure factor for the hkl re�ection and Lorentz-polarization correction, 
respectively. Structure factors of gold were utilized. �e vector α is comprised of six parameters: incident X-ray 
intensity ( I ); wavelength (λ); 2θ o�set ( θ2 ); and Caglioti (U, V, and W) parameters. Di�raction peaks were 
modeled as Gaussian distributions with a full width half maximum that follows the Caglioti function35. Synthetic 
data were generated using I  =  100, λ =  1.54 Å, θ2  =  0.10, U =  0.10, V =  − 0.05, W =  0.03. �e errors εi are nor-
mally distributed with variance σ2[f(2θi | α)/10000 +  γ0], where σ2 =  20002 and γ0 =  0.1. Errors on intensity are 
typically approximated using Poisson statistics, though in the limit of high counts this error can be approximated 
using a normal distribution. �e stationary correlation between adjacent errors is set to ρ =  0.9, and autocorrela-
tion between observations at angles 2θi and 2θj is ρ|i−j|. We generate N =  100 data sets from this model. 
Representative true and background intensities are shown in Fig. 3.

For each simulated data set, we �t four models that vary by their treatment of the residuals εi. �e goal of this 
simulation study is to examine the impact of �tting successively more complex models on the accuracy and pre-
cision of parameter estimates, as measured by relative mean squared error (RMSE) and the coverage of our cred-
ible intervals. We �t the model with independent residuals (correlation �xed at ρ =  0) and dependent residuals 
(ρ >  0). We also �t model with equal residual variance Var(εi) =  σ2 (analogous to least-squares minimization) and 
unequal residual variance Var(εi) =  σ2[f(2θi | α)/10000 +  γ0] (analogous to weighted least-squares minimization). 
For all models, we capture the background process using a b-spline basis expansion with 20 degrees of freedom, 
which is su�ciently rich to capture the true background intensity. We use MCMC to generate 5,000 posterior 

a (Å)
Crystal 

size (µm)
microstrain 

(%* 100) λ (Å) Pro�le �t

Rp =  5.85%

5.43123 1.0006(6) 2.98(2) 0.4138490(5) Rw =  8.28%

χ2 =  2.02

Site positions

x y z Uiso(Å2)

Si 0.125 0.125 0.125 0.00551(2)

Peak shape parameters

U V W

0.702(19) − 0.242(6) 0.0322(5)

Table 1.  Summary of re�ned structural parameters, atomic positions and occupancies, and goodness of �t 
for the Rietveld re�nement.
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samples, discarding the �rst 1,000 as burn-in. Additional details about the speci�cation of the models, including 
prior distributions, can be found in the supplementary materials.

For each data set and each of the four models, we compute an estimate of the parameter (speci�cally, the pos-
terior mean) and 90% (equal-tailed) credible interval for each parameter in α. A 90% credible interval should 
have a 90% probability of containing the true parameter. Let αj be the true value of the jth element of α and α̂ j

s  be 
posterior mean for data set s =  1,..., N. Methods are compared using relative mean squared error,

∑
α α

α
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.
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ˆ
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We also compute the empirical coverage of the 90% intervals. �at is, for each data set we compute the poste-
rior 90% interval for each element of α and report the sample proportion of the S intervals that contain the true 
value αj (as illustrated in Fig. 4). Methods with small RMSE for all parameters and coverage at or above 90% are 
preferred.

RMSE and coverage of the 90% credible intervals for each model are summarized in Table 2. �e simplest 
model (independent residuals and constant (homoskedastic) variance) has the largest RMSE and lowest coverage 
of the 90% intervals. Including additional complexity (correlated residuals or variable (heteroskedastic) variance) 
decreases the RMSE and increases the coverage of the 90% interval. �e coverage of the 90% intervals for the full 
model is near or above the nominal 90% level for all parameters while the coverage sinks far below 90% for sim-
pler models. �erefore, we conclude that it is essential to adequately model the residual distribution of ε to obtain 
valid statistical inference. It is noted that the model implemented in Rietveld re�nement method uses independ-
ent residuals and variable (heteroskedastic) variance. �e Bayesian model we propose in the next section uses a 
more complex residual structure that should improve our estimates and credible intervals.

Bayesian Analysis of the NIST silicon standard. Bayesian analyses begin by specifying a prior prob-
ability distribution that captures any knowledge about parameters that we have before the experiment. Based 
on observed data, this knowledge is updated to a posterior probability distribution, which re�ects the resulting 
uncertainty about the model parameters. Figure 5 compares the posterior distributions for select model parame-
ters (wavelength, U, Uiso, and crystallite size) to point estimates and the corresponding standard uncertainty (s.u.) 
determined by Rietveld analysis. Posterior distributions for all model parameters are reported in supplemental 
information (Supplementary Figs 1, 2, 3, 4 and 5).

Figure 5 and Supplementary Figs 1, 2, 3, 4 and 5 demonstrate that model parameters estimated by Bayesian 
inference are in reasonable agreement with point estimates determined by Rietveld. With the exception of Uiso 
and scale, the posterior distributions overlap with the Rietveld point estimates. Figure 5 suggests that, for a NIST 
Si standard measured at 11-BM-B, the uncertainties in model parameters estimated by LSQ minimization are 
comparable to those estimated by Bayesian inference. In the case of the 2θ o�set (zero) the s.u. is signi�cantly 
larger than the uncertainty determined by Bayesian inference (Supplementary Fig. 5).

Figure 3. Synthetic data used for the simulation data. Simulated gold di�raction data and (inset) background 
used in the simulation study.
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Discussion
�e two analysis approaches, Rietveld (non-Bayesian) and Bayesian inference, are fundamentally di�erent. 
�e most important distinction of the Bayesian approach is that prior distributions are created and propagated 

Figure 4. Coverage of the 90% interval. Illustration of the coverage in the simulation study. �e plot shows the 
90% posterior interval for I  for all 100 simulated data sets and the unequal variance models with independent 
(le�) and dependent (right) residuals. �e intervals that exclude the true value (vertical line at I  =  100) are 
show in red. �e coverage percentage reported in Table 2 is the percent of the 100 intervals that include the true 
value.

Parameter Ind-EV Ind-UEV Dep-EV Dep-UEV

(a) Relative mean squared error 

I 0.32 (0.03) 0.20 (0.02) 0.38 (0.03) 0.12 (0.01)

100λ 0.30 (0.14) 0.16 (0.02) 27.08 (9.80) 0.14 (0.02)

θ2 7.81 (3.53) 4.47 (0.68) 514.02 (174.25) 3.94 (0.70)

U 1.05 (0.10) 0.63 (0.06) 0.83 (0.08) 0.23 (0.03)

V 3.41 (0.37) 1.25 (0.17) 3.27 (0.38) 0.78 (0.08)

W 2.06 (0.28) 1.06 (0.13) 3.47 (0.61) 0.58 (0.08)

(b) Coverage of 90% intervals 

I 17 (4) 64 (5) 23 (4) 96 (2)

100λ 32 (5) 65 (5) 30 (5) 87 (3)

θ2 31 (5) 69 (5) 25 (4) 85 (4)

U 61 (5) 86 (3) 70 (5) 100 (0)

V 55 (5) 98 (1) 69 (5) 100 (0)

W 41 (5) 79 (4) 48 (5) 95 (2)

Table 2.  Simulation study results for models with residuals that are independent (“Ind”) and dependent 
(“Dep”), and with equal-variance (“EV”) and unequal variance (“UEV”). Results are reported as the mean 
(standard error) over the S simulated data sets; all values are multiplied by 100, and results are reported for 100λ 
rather than λ.
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through the analysis to posterior distributions for parameters and predictive distributions for observables. A pos-
terior distribution o�ers a richer set of information regarding the uncertainty in model parameters than the s.u. 
obtained from LSQ minimization. For example, a posterior distribution can be used to demonstrate that a model 
parameter has a multimodal or asymmetric distribution of values. �is is evident in the posterior distribution of 
U (Fig. 5), λ (Fig. 5), crystal size (Fig. 5), V (Supplementary Fig. 3) and 2θ o�set (Supplementary Fig. 5) where the 
posterior distributions are asymmetric.

Distributions of certain parameters can be determined from other re�nement approaches. For example, the 
Whole Powder Pattern Modeling (WPPM) method has been used to model distributions of crystallite size using 
assumed distributional forms such as normal and lognormal36. However, the present approach enables the deter-
mination of general posterior densities without requiring these assumptions a priori.

To determine the quality of �t, crystallographers typically plot the modeled intensity against the observed 
intensities. Because Bayesian inference does not converge to a single-valued estimate for model parameters, any 
single di�raction pro�le generated from a MCMC sample should be thought of as one observation from an 
ensemble. One may construct a representative pattern from the ensemble by 1) choosing a single pattern or 2) 
averaging the calculated patterns from many MCMC samples. We use the second method and present in Fig. 2 a 
single pattern that is the average of the patterns produced using the parameters from the �nal 1000 MCMC sam-
ples. We employ method 2 because it incorporates correlations, asymmetries, and uncertainties in the parameter 
distributions when computing predicted patterns. �ough this representation overly simpli�es the result of the 
Bayesian approach, it does demonstrate that the modeled patterns match well to the measured data.

Figure 2 shows the �t of the modeled pattern to the measured data for the Rietveld and Bayesian approaches. 
�e insets in Fig. 2 highlight various re�ections to illustrate that the Bayesian and Rietveld methods achieve a 
similar quality of �t. From Fig. 2 it is di�cult to determine any subtle di�erence in the the �tting quality of the 
Bayesian and Rietveld analysis. �e measured data and Rietveld and Bayesian results are overlaid, and a residual 
curve is also shown to highlight di�erences in the Rietveld and Bayesian results in Fig. 6. �e di�erence curve 
demonstrates that Bayesian inference method better reproduces the observed di�raction pro�les. �is is evi-
denced by a positive and negative di�erence curve in regions where the Rietveld method under and over estimates 
the observed intensity. �e 911/953 pro�le highlights that the Rietveld method underestimates the peak position, 
while Bayesian inference estimates a peak positions that more closely reproduces the observed peak position.

In addition to these graphical comparisons, Table 3 provides several numerical summaries of the Rietveld and 
Bayesian analyses. Each goodness-of-�t measure in Table 3 uses the discrepancy between the observed intensities 
Yi and the calculated intensities Y i. �e goodness-of-�t measures di�er by whether they use absolute or squared 
errors, and whether observations are weighted by the observed intensities. Results of the residual analysis pre-
sented in Table 3 demonstrate that the Bayesian inference method achieves a �nal result that more closely repro-
duces the measured di�raction data than the Rietveld method, as for each of the measurements of discrepancy, 
the results obtained by Bayesian inference are smaller. �e improved performance provided by Bayesian inference 

Figure 5. Comparison of posterior probability distribution and Rietveld estimates. Posterior probability 
distributions from Bayesian inference and corresponding point estimates (vertical lines) from Rietveld LSQ 
method with s.u.
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is likely due to the manner in which parameters are optimized in Rietveld re�nement. As described by Young8, 
Rietveld re�nement employs a one-by-one turn-on sequence to facilitate optimization and avoid unstable least 
squares behavior, which can cause optimization to fail. In this sequence, uncorrelated parameters are optimized 
�rst, followed by those that are considered to be correlated or potentially less stable. Young notes that this strategy 
improves the robustness of the optimization procedure. �e disadvantage is that coordinate descent in this man-
ner is prone to termination in local minima, even when multiple initial values are employed. In contrast, the 
inherently stochastic nature of the MCMC approach mitigates being trapped in a false minimum because the 
parameter space (bounded by the priors) is randomly sampled and no turn-on sequence is employed. The 
Bayesian approach is thus less sensitive to the potential instabilities in parameters that can be observed in the 
Rietveld method. We note that the MCMC approach does not preclude chains from being trapped in local min-
ima. However, the chance of becoming trapped in a local minimum can be reduced through the use of multiple 
initial starting values, careful consideration of algorithm diagnostics, and appropriate parameter transformation. 
We have employed all of these methods in the development of our algorithm, and details are discussed in the 
methods and supplementary materials.

Figure 6. Direct comparison of graphical pattern �t from Bayesian and Rietveld analysis. Measured 
di�raction data are overlaid with Bayesian and Rietveld analysis results for the 111, 220, 422, and 911/953 
re�ections to highlight subtle di�erences in the �t quality. �e di�erence (Bayesian - Rietveld) demonstrates 
that the Bayesian results better models the observed di�raction data (x).

Residual Method Bayes/ Rietveld

∑
− 
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Yi Yi

Yi

( )2
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∑ −
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i Yi Yi

i Yi
0.90

∑
− ( )i

Yi Yi
Yi

2

0.89

∑
− 

i
Yi Yi

Yi
0.85

∑ − Y Yi i i 0.89

∑ − Y Y( )i i i
2 0.92

∑
− 
( )i

Yi Yi
Yi

2
0.64

∑
− 
i

Yi Yi

Yi

0.80

Table 3.  Summary of residual analysis using results from both the Rietveld and Bayesian approaches.
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�e development and tuning of MCMC algorithms to perform Bayesian inference can be a complex process, 
especially when incorporating computations from other codes. In the example utilizing our approach, the compu-
tational expense of accurately modeling a di�raction pattern with 50,000 data points, 30 re�ections, and complex 
peak shapes (required to account for axial divergence) is a substantial bottleneck for the MCMC analysis. At each 
MCMC iteration a model di�raction pattern must be calculated using GSAS-II for each of the ten model param-
eters. One thousand iterations required, on average, 900 s on an Intel CoreTM i5-3750. [�e identi�cation of any 
commercial product or trade name does not imply endorsement or recommendation by the National Institute of 
Standards and Technology.] To be conservative, we ran the MCMC algorithm for 100,000 iterations. Diagnostic 
plots, like those in Supplementary Figs 6, 7 and 8, show the convergence of the algorithm.

One particular advantage of Bayesian inference is its ability to incorporate prior knowledge. With the excep-
tion of rigid body constraints, there is no framework for incorporating prior knowledge about the sample of 
interest (e.g., crystallite size obtained by electron microscopy analysis) into a Rietveld analysis. A prior distribu-
tion, which makes a probabilistic speci�cation of prior knowledge, is required in the Bayesian approach. While 
this can be de�ned by physical expectations at the outset of an analysis, it is also possible to employ iterative or 
hierarchical calculations in the Bayesian approach. For example, posterior distributions obtained from a Bayesian 
inference of LaB6 NIST SRM 660a can serve as priors for subsequent analyses. I.e., one might �rst complete a 
Bayesian analysis on a NIST SRM designed to quantify line broadening to obtain posterior distributions for 
instrumental parameters (e.g., wavelength, axial divergence, and Caglioti peak shape parameters). �ese results 
could be used in analyses of structurally more complex materials (such as relaxor ferroelectrics or high entropy 
alloys) where well-calibrated instrumental parameters are critical for obtaining posterior distributions that pre-
cisely describe the structure of the material of interest, for example, the lattice and atomic parameters (displace-
ments, occupancies, and thermal factors)8. Additionally, the MCMC algorithm has an important advantage over 
a deterministic least-squares minimization: the ability to escape from local minima. �e stochastic aspect of the 
MCMC algorithm enables the method to overcome barriers that would otherwise trap a least-squares method in 
a con�ned region of parameter space. �is advantage makes the use of the present method advantageous despite 
its computationally-intensive nature.

In summary, we present a new Bayesian inference method for refining crystallographic structures. This 
approach is fundamentally di�erent from that of the Rietveld method, which is currently the predominant anal-
ysis method for structure re�nement. �is analysis approach is applied to an example where the structure of a 
standard reference material is re�ned using synchrotron X-ray di�raction data. �e approach can be readily 
adopted to re�ne other structures as well as integrating additional or di�erent data sources (e.g., area detector 
patterns and neutron di�raction patterns). �e Bayesian approach o�ers a richer description of the model and 
model uncertainties than has been available previously.

Methods
Data collection and Rietveld analysis. An X-ray wavelength of 0.413848 Å (30.1 keV) was utilized. 
Di�racted X-rays were measured using an array of twelve detectors with Si (111) analyzer crystals37,38. Measured 
data was merged into a single data set using previously reported methods38.

A 15th order Chebyshev polynomial background was used to account for an irregular background due to amor-
phous scattering from the Kapton® capillary. Parameters re�ned include the zero, pro�le shape (U, V, and W),  
scale, wavelength, isotropic displacement parameter (Uiso), microstrain and crystallite size.

Prior distributions for simulation study. Within the simulation study, the coe�cients for the back-
ground model have prior distribution βj ~iid N(0, τ2). �e other prior distributions used are σ2, τ2 ~ InvGamma 
(0.01, 0.01), log(γ0) ~ N(0, 102) (for the heteroskedastic models), Io ~ Unif(90, 110), λ ~ Unif(1.5, 1.6), θ2  ~ Unif(0, 1),  
U ~ Unif(0.08, 0.12), V ~ Unif(− 0.06, − 0.03), W ~ Unif(0.015, 0.45), and ρ ~ Unif(0, 1) (for the models with cor-
related residuals).

Bayesian inference. �e Bayesian inference method uses Equation 1 to model the observed data. �e back-
ground intensity is approximated using the spline basis expansion,

∑θ θ γ=

=

b B(2 ) (2 ) ,
(6)l

L

l l
1

where Bl are known basis functions and γl are unknown coe�cients that determine the shape of b. In our analysis 
we use b-spline basis functions. B-splines are a �exible piecewise polynomial functions used for curve �tting that 
provide results similar to higher degree polynomials while avoiding potential instabilities39. �e coe�cients γl 
have priors γl ~ Normal(0, τ2). �is prior was selected because we do not have prior information about the back-
ground intensity; it does not imply that our resulting estimates are centered at 0. By treating these coe�cients as 
part of the Bayesian hierarchical model we propagate uncertainty about the background correction through to 
the posterior distributions.

Since the counts are large, we approximate their distribution as Gaussian with variance depending on the mean. 
Speci�cally, the residuals are modeled as Gaussian with mean zero and variance Var(εi) =  σ2[f(2θi | α)/C +  γ0],  
where C is a large constant to scale the variance. �erefore, the overall variance is determined by σ2, but the 
variance increases with the intensity f(2θi | α) ≥  0. �e constant γ0 >  0 is included so that the variance remains 
positive for observations with f(2θi | α) =  0. �is approach is in contrast with the frequent assumption that the 
residual variance is proportional to the observed intensity, Yi, and is a common statistical approach for count 
data. In addition to heteroskedasticity, we account for dependence between the residuals for intensities with 
similar angles using an AR(1) process, so that correlation between residuals h observations is ρh. �e correlation 
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parameter is given an uninformative prior and is estimated as part of the MCMC process. Autocorrelation in 
residuals could arise from background scattering. If the modeled background is lower-order than required to �t 
the di�use scattering, then autocorrelation would be expected. Likewise, an imprecise peak position would lead 
to autocorrelation. �is is because many data points are used to sample a smooth peak and the le� and right hand 
sides of the peaks would both exhibit correlated residuals.

To complete the Bayesian model we specify prior distributions for the remaining parameters. As examples, the 
prior distribution for X-ray wavelength is uniform between 0.41 and 0.42, and the prior distribution for the Uiso 
is uniform between 0.0 and 0.1. �e remaining parameters are summarized in Supplementary Table 1. For this 
analysis, we use L =  15 b-spline basis functions to mirror the Rietveld analysis.

Modeled di�raction patterns used for the Bayesian analysis were calculated using routines extracted from 
GSAS-II. A standalone Python class was developed to interface with GSAS-II routines utilized to calculate a 
di�raction pattern (i.e., peak intensity, position, and pro�le shape). �is Python class enabled calculating a mod-
eled di�raction pattern and modi�cation of parameters that controls the modeled pattern (e.g., lattice parame-
ters, atomic occupancy and position, Uiso factor, peak pro�le parameters, etc.). �e Python code is included in a 
Supplementary note.

MCMC Details. MCMC is an iterative, general-purpose algorithm to draw samples from a complex, mul-
tivariate distribution30: in this case, the posterior distribution of the parameters of the model. �e algorithm 
requires starting values, which we initialize using the point estimates from the Rietveld re�nement in our analy-
ses. To improve convergence, we transform bounded parameters to take values on the real line and linearly trans-
form correlated parameters. We run 100,000 iterations and verify convergence using standard diagnostics. Since 
the procedure is iterative, observations near the beginning of the chain (called burn-in) have not converged and 
are not draws from the appropriate distribution, so they are discarded. Here, the �rst 10,000 runs are discarded 
for burn-in. �e posterior distributions are summarized using the posterior mean, which is calculated as the 
average of the posterior samples, and posterior credible intervals. Since a posterior distribution is a probability 
distribution, it integrates to 1. A p% credible interval is an interval over which the posterior distribution integrates 
to p/100.

Since MCMC is an iterative procedure, there are a variety of diagnostics used to diagnose when sam-
ples are being drawn from the desired distribution and how many samples should be discarded as “burn-in.” 
Supplementary Fig. 6 plots sample pairs for three parameters (and marginal density estimates). If the sample pairs 
indicate high correlation (e.g., the point clouds are elongated instead of round), this may indicate that the MCMC 
should be adjusted to allow for faster convergence. Supplementary Fig. 7 plots successive samples from a single 
parameter. �ese plots are termed trace plots. As convergence is reached, the samples stabilize around a value; the 
early samples are burn-in. �is is also illustrated by Supplementary Fig. 8.

We perform MCMC sampling using an equivalent and convenient parameterization. �e priors for the ele-
ments of α =  (α1,...,αp) are independent and uniform αj ~ Uniform(lj, uj), where the prior intervals (lj, uj) are cho-
sen to give a scienti�cally plausible range of values. MCMC sampling is easier for parameters de�ned on the real 
line, so we perform computing using the parameterization αj =  lj +  (uj −  lj)Φ (zj), where Φ  is the standard normal 
cumulative distribution function and zi have standard normal priors. �is induces a Uniform(lj, uj) prior for αj, 
and so the parameterization is equivalent to the desired model.

For i >  1 the auto-regression model can be written:

θ θ ρ
ω

ω
θ θ ε| = + | + − − +−

−
− − −Y Y b f Y b fz

z

z
z(2 ) (2 )

( )

( )
[ (2 ) (2 )] ,

(7)
i i i i

i

i
i i i i1

1
1 1 1

where z =  (z1,..., zp), εi ~ Normal[0, σ2(1 −  ρ2)ωi(z)] independent over i, and ωi(z) =  f(2θi | z)/C +  γ0. Since the �rst 
observation provides negligible information, we ignore the �rst observation and express the remaining n −  1 
observations in matrix notation,

γ γ σ+ + − − Ω
∼ ~Y B f z W z Y B f z zN( ( ) ( )[ ( )], ( )), (8)2

where Y =  (Y2,..., Yn)T, B is the (n −  1) ×  L matrix of basis coe�cients, θ θ= …f ff z z z( ) [ (2 ), , (2 )]n
T

2 , 
∼

Y, B, f z( ) 

are lagged matrices, e.g., = …
−

∼

Y YY ( , , )n
T

1 1 , W(z) is diagonal with diagonal elements ρ ω ωz z( )/ ( )2 1 , … , 
ρ ω ω

−

z z( )/ ( )n n 1 , and Ω(z) is diagonal with diagonal elements (1 −  ρ2)ω2(z), … , (1 −  ρ2)ωn(z).
We explore the posterior by generating MCMC samples. MCMC sampling begins by specifying initial values 

for all parameters, γ, Z, ρ, τ2 and σ2. For each iteration of the algorithm, the parameters are updated in sequence 
conditioned on all other parameters. �e parameters γ, σ2, τ2 have conjugate full conditional distributions and are 
thus updated using Gibbs sampling. �e full conditional distributions are

∑

∑

γ

σ
ρ ω θ

τ γ

⋅

⋅








−
+

−
+








⋅





+ +







− −

=

=

~

~

~

V M V

n
a

r
b

L
a b

z

Normal( , )

InvGamma
1

2
,

1

2 (1 ) (2 )

InvGamma
2

,
1

2
,

(9)

i

n
i

i

l

L

l

1 1

2
1

2

2

2 1

2
2

1

2
2



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:31625 | DOI: 10.1038/srep31625

w h e r e  σ τ= − Ω − +
− − V IB W z B z B W z B[ ( ) ] [ ( )] [ ( ) ]T

L
2 1 2 ,  σ= − Ω −

−M B W z B z Y f z[ ( ) ] [ ( )] [ ( )
T 2 1

− −
YW z f z( )( ( ))], θ θ ρ θ θ= − − | − − − |

ω

ω − − −
−

r Y b f Y b fz z(2 ) (2 ) [ (2 ) (2 )]i i i i i i i
z

z

( )

( ) 1 1 1
i

i 1

 and the priors are 

σ2 ~ InvGamma(a1, b1) and τ2 ~ InvGamma(a2, b2).
The remaining parameters ρ and z do not have conjugate full conditionals and are thus updated using 

Metropolis sampling. We use random-walk Gaussian candidate distributions for both ρ and z. �e standard devi-
ation for ρ’s candidate distribution is tuned to give acceptance probability near 0.4; candidates outside the prior 
range (0, 1) are discarded. �e parameter vector z is updated as a block. �e proposal covariance matrix is c ∆ , 
where c is a tuning parameter selected to give acceptance probability near 0.4 and the matrix ∆  is taken to be the 
posterior covariance matrix of z from an initial MCMC sample.
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