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Abstract

Introduction: Big-data-driven drug development resources and methodologies have been 

evolving with ever-expanding data from large-scale biological experiments, clinical trials, and 

medical records from participants in data collection initiatives. The enrichment of biological- and 

clinical-context-specific large-scale data has enabled computational inference more relevant to 

real-world biomedical research, particularly identification of therapeutic targets and drugs for 

specific diseases and clinical scenarios.

Areas covered: Here we overview recent progresses made in the fields: new big-data-driven 

approach to therapeutic target discovery, candidate drug prioritization, inference of clinical 

toxicity, and machine-learning methods in drug discovery.

Expert opinion: In the near future, much larger volumes and complex datasets for precision 

medicine will be generated, e.g., individual and longitudinal multi-omic, and direct-to-consumer 

datasets. Closer collaborations between experts with different backgrounds would also be required 

to better translate analytic results into prognosis and treatment in the clinical practice. Meanwhile, 

cloud computing with protected patient privacy would become more routine analytic practice to 

fill the gaps within data integration along with the advent of big-data. To conclude, integration of 

multitudes of data generated for each individual along with techniques tailored for big-data 

analytics may eventually enable us to achieve precision medicine.
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1. Introduction

Drug development is a time consuming and complex journey, with a high uncertainty that a 

drug will actually succeed [1], while the emergence of a big data approach has 

revolutionized our strategies to tackle long-standing challenges in drug development. The 

proposal of various high-throughput technologies and collection of multiple-omics data are 

accelerating the translation of basic research discoveries into clinical practice. The past 

decade has witnessed the translation of several research results from genomics data to FDA-

approval in clinics, and meanwhile, many recently developed data-driven approaches have 

also shown promising potential for clinical practice. An early and well-know example is 

aspirin, which is originally used for analgesia treatment, while by integrating the 

information from the electronic health records (EHRs) of patients, post marketing 

surveillance data, and pharmacological analysis, researchers also found the potential of 

aspirin to treat colorectal cancer, and the US Preventive Services Task Force released the 

draft recommendation on aspirin to prevent colorectal cancer in September 2015 [2]. Similar 

examples also include raloxifene approved by FDA for invasive breast cancer in 2007, and 

dapoxetine approved by UK in 2012 for the treatment of premature ejaculation [3]. Big data-

driven drug discovery has been an increasingly popular strategy in pharmaceutical 

companies. Currently, many therapeutics companies have integrated gene-expression 

analysis, cellular screening systems together with computational healthcare informatics 

software to identify chemical structures with attributes of interest for oncology drug 

discovery [4]. Moreover, the high performance combination screening system with cell-

based phenotypic assays has been used by pharmaceutical companies to make the 

combinations of existing compounds to attack multiple dysfunctional pathways in various 

diseases, e.g., inflammation, respiratory, metabolic and infectious diseases [4]. The 

aforementioned facts demonstrated that big data has played a significant role in the present 

drug discovery development. In 2016, we published the paper reviewing the use of big data 

in drug discovery [5]. As an update, here we will keep discussing the important perspectives 

in data-driven drug discovery and complement relevant resources useful for broad 

biomedical research community.

2. New big-data-driven approach to therapeutic target discovery

Big data include diverse arrays of unprecedentedly large datasets [6–16]. Meanwhile, data 

analysis infrastructure and algorithms tailored to analyze such data have developed rapidly, 

which significantly facilitate to address big data challenges for paradigm shift towards 

precision medicine (Table 1). As follows, we will review the therapeutic effect discovery 

from the perspectives of genomics, proteomics, genome-wide association study (GWAS), 

pathway, electronic health record (EHR) and phenome-wide association study (pheWAS).
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2.1 Genomics and proteomics

Biomarker, as drivers of drug development, have the potential to allow the prediction of 

health outcomes from perspectives of physical functions and symptoms [17]. The biomarker-

based cancer drug development has demonstrated much higher success rate by elevating the 

rate from a mere 3.4% to the overall oncology drug approval rate 8.3% for 2015 [18]. 

Genomics has been the forerunner of biomarkers, mainly because of the fact that gene 

expression profiling is technically easy to obtain. Furthermore, compared to single genomic 

biomarker, the combinations of genomic biomarkers demonstrated superior prognostic 

performance [19]. An illustrating example is a combination of 70-gene prognostic signature 

in sporadic breast tumors, which could allow up to 83% accuracy of poor prognosis [20,21]. 

In addition to genomics, proteomics also presents the potential to serve as biomarkers. 

However, due to the challenge remaining in rigorous validation and complex decoding 

process, proteomics is less likely to be applied for advanced cancer diagnostics to reach 

required clinical accuracy [22,23]. Consequently, very few multi-parametric tests, until now 

received 510(k) FDA clearance [24].

2.2 GWAS

An accumulating evidence has demonstrated that genetic targets often suggest effective drug 

targets [25], where a large amount of supporting examples result from GWA Studies. As a 

hypothesis-free approach, GWAS can investigate millions of Single nucleotide 

polymorphisms (SNPs) across the genome at the same time, therefore providing a systematic 

exploration of the impact of individual genetic variants on a given trait. The GWAS has 

identified a large number of SNP, trait, common and complex disease relationships [26], 

which can be used to prioritize genetic findings and further identify therapeutic targets [27–

29]. In 2014, a large GWAS conducted by Okada et al. recruiting more than 100,000 

rheumatoid arthritis cases and controls, identified 101 SNPs associated with rheumatoid 

arthritis [30]. Those resulting GWAS SNPs identified targets for 18 out of 27 approved 

rheumatoid arthritis drugs at that time, and also suggested several novel therapeutics. Similar 

examples of the power of GWAS were to find drug targets for type 2 diabetes [31] and low 

density lipoprotein cholesterol levels [32]. An outstanding advantage of GWAS is that it 

could utilize the hidden power of small effect sizes, particularly, the even nonfunctional 

association between SNPs and disease, to identify the drug targets with treatable effect on 

the disease or trait [33].

2.3 Pathway

Beyond GWAS-based single candidate genes, the pathway approach enables finding genes 

involved in biological pathways or general signaling networks, therefore delivering a list of 

proteins for drug target discovery [34]. Each pathway includes various interactions among 

molecules and particular functions are triggered via signaling transmission from molecule to 

molecule, such as cell division, and therefore, defects in any step of a pathway may cause 

malfunction of the pathway and furthermore result in disease. The pathway approach is 

helpful to uncover the underlying relationship between diseases. In the past decades, many 

researchers failed to identify the possible connections between the apparently different 

diseases, for instance, osteoporosis and cancer, but the maps of molecular interactions 
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suggested they could share similarities at a molecular level [35]. As a matter of fact, only a 

few pathways act crucial roles in disease development, and this principle can be employed to 

make the connection between diseases, which motivates researchers to pay more attention to 

those pathways, and explore ways to retain or resume their function to treat a wide range of 

conditions. With the help of pathway methods, more effective treatments for diseases, such 

as multiple sclerosis and chronic myelogenous leukemia, have already been delivered. 

Having a full understanding of pathways and their roles inside the human cells would help 

break the back of some most difficult-to-treat diseases. Goh et al. originally proposed the 

strategy to identify the disease–disease relationship based on their shared pathways [36], and 

furthermore, linked the common disease with the rare disease based on a shared gene [37]. 

Overall, the pathway/network-based methodologies are of great value in facilitating target 

identification and subsequent treatment development for diseases [38].

2.4 EHRs

Accumulating evidence has demonstrated the utility of EHR data to identify potential 

therapeutic drug effects and drug–drug interactions. EHRs may be particularly useful when 

investigating therapeutic effects, owing to their continuous and longitudinal assessment of 

clinically relevant outcomes and medication exposures. EHR data has an additional 

advantage in representing the “real-world” conditions of patient medication use and 

treatment trends, which is a great resource to uncover the clinical consequences of drug 

genome interactions. LePendu et al. reproduced known drug adverse events by applying 

natural language to a large EHR dataset, and further revealed a safety signal of rofecoxib on 

patients with myocardial infarction, even before this association was identified in a clinical 

trial [39]. The similar approach also suggested the safety signal of the claudication drug 

cilostazol on patients with congestive heart failure, in spite of a listed contraindication [40]. 

An analysis based on 31 EHR-defined drug phenotypes suggested that the use of EHRs 

could lead to a reduction by 72% in medical expenses, and even decrease the development 

period. Meanwhile, it also largely elevated the data reuse [41], supported by the evidence 

that data from more than 90% individuals were used repeatedly [33].

2.5 PheWAS

Integration of EHRs of various disease types from different racial groups to the genomic 

information delivers a new perspective of precision medicine [42]. Under this circumstance, 

the phenome-wide association study (PheWAS), which incorporates the information of 

GWAS and EHRs from large cohort studies, has emerged as another novel and effective 

paradigm [43]. The PheWAS broadened the scale of genotype–phenotype relationship and 

enabled researchers to find new uses of old drugs. It is exemplified by the study which 

integrated the PheWAS and DrugBank [44] to screen possible drug repurposing candidates 

for both rare and common diseases treatment [45]. A total of 52, 966 drug–disease pairs 

were discovered in that study, where about one third of these pairs were validated by existing 

drug disease relationship, ongoing clinical trials and publications, while the remaining could 

be candidates for future drug repurposing studies [38].

Qian et al. Page 4

Expert Rev Precis Med Drug Dev. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Candidate drug prioritization

In terms of the de novo drug discovery, various big data resources, such as the chemical 

structure of small molecules, have been extensively utilized for computational drug 

discovery. Quantitative structure-activity relationship (QSAR) comprises a series of 

methods, aiming at modeling the relationship between molecules based on their molecular 

characteristics, under the assumption that chemicals that fit the same QSAR model may 

function under the same mechanism [46,47]. Chemical structure-based prioritization of 

single small molecules and structure family-based pooling of compounds are two 

traditionally used strategies to computationally infer refined compounds with reduced 

complexity and cost of drug screening (Table 2). Furthermore, integration of the structure of 

target protein and biochemical properties of each amino acid residue would enable the better 

prediction of interaction between small molecules and the targets that they act on.

On the other hand, identification of new therapeutic effects from old drugs leads to the drug 

repurposing, which has become an alternative to the traditional de novo drug discovery 

approaches, by compensating for their lack of technical efficiency that results in a high 

failure rate of new approved small-molecular entities [48,49]. Since the basic characteristics 

of the existing drug are already known such as preclinical, pharmacokinetic, 

pharmacodynamic and toxicity profiles, the drug repurposing from these drugs can largely 

shorten the processes of compound development. Accordingly, the compound could step 

directly into Phase II and III clinical studies, thereby bringing about a lower development 

cost [49], a high return on investment and an improved development time [50]. As a 

successful example of drug repositioning, crizotinib, was originally used to treat anaplastic 

large-cell lymphoma. It has also been developed the new indication for Non-Small Cell 

Lung Cancer (NSCLC) [51], which outperforms the standard chemotherapy by improving 

progression-free survival and increasing response rates of NSCLC patients [52]. The drug 

repurposing, as a promising alternative approach, has been widely utilized for the 

development of treatments for diseases [38].

Matching signatures by comparing the unique signature of a drug against that of another 

drug, disease or clinical phenotype, is one of the most widely used drug repurposing 

approaches to see whether there are similarities suggesting shared biological activity 

[53,54]. A drug’s signature could be obtained from various types of data, that include 

transcriptomic, proteomic or metabolomic data; chemical structures; or adverse event 

profiles. Matching transcriptomic signatures is widely used in drug-disease similarity 

inference [55]. This computational approach is a signature reversion-based strategy by 

assuming that if a drug can reverse the expression pattern of a hallmark gene sets for a 

disease of interest, then the drug might provide an effective treatment by reverting the 

disease phenotype. Although simple, such principles have been successfully applied for 

treating metabolic diseases [56] and demonstrated great potential to improve novel drug 

repurposing in a large scale of therapeutic areas [57–59]. The public published 

transcriptomic data is the main resource for matching transcriptomic signatures. In 2006, the 

Broad Institute established The Connectivity Map (CMap), which generated transcriptomic 

profiles by dosing of more than 1,300 compounds in a number of cell lines [60]. The CMap 

dataset of cellular signatures catalogs transcriptional responses of human cells to chemical 
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and genetic perturbation, which can be treated as a surrogate phenotypic screen for a large 

number of compounds and has been successfully exploited to make drug repurposing 

predictions for a number of disease conditions. The new version of CMap, as part of the NIH 

LINCS Consortium, is now publicly available at https://clue.io, covering more than a 1,000-

fold scale-up of the CMap pilot dataset [61]. This is made possible by a new, low-cost, high-

throughput reduced representation expression profiling method called L1000 (978 landmark 

genes), which can computationally infer the expression levels of 81% of non-measured 

transcripts. In total, the new CMap has produced 1.3 million L1000 profiles from 27,927 

perturbagens (small molecule compounds, shRNAs, cDNAs, and biologics), for a total of 

476,251 signatures (consolidating replicates), followed by the computation and annotation 

tools tailored for their analysis. This enormous resource can also be used along with other 

public transcriptomic databases (Table 1) and dedicated computational tools [62] to identify 

novel drug–disease connections and potential drug repositioning opportunities [63,64].

4. Inference of clinical toxicity

It was highlighted by a study that approximately nine of ten drugs, which entered Phase I 

clinical trials, will eventually failed to be approved by FDA [65]. One of the major reasons is 

the safety concern, which results in the drug development suspension within 31% of 

programs [65]. Therefore, there is an urgent requirement of in silico approaches to 

accurately model and efficiently detect the drug toxicity, thereby serving as a higher 

throughput but less expensive alternative to the conventional drug development processes. 

The in silico method is the essential tool in the early stage of drug discovery to screen low-

toxicity compounds, effectively complementing the in vitro and in vivo toxicity test, and 

largely improving the overall safety assessment. It also facilitates to minimize the 

requirement of animal test, therefore, largely reducing the cost and time of toxicity testing.

QSAR model, in addition to drug discovery, can be also used for toxicity prediction through 

regressions [66,67], using specific toxicity endpoints (e.g., median lethal dose values, tissue-

specific toxicity events). For each chemical, the independent variables of regression could be 

chemical and molecular properties; the dependent variable could be a toxicity endpoint. 

Through regression, the QSAR model fits a relationship between chemical structures and 

toxicity that can predict the activities of new chemicals [46,47]. Various QSAR models have 

been developed, including OECD QSAR toolbox and TopKat (Table 3).

The common challenge for drug toxicity studies was a lack of sufficient and reliable data to 

learn models. At present, a number of well-defined data from various angles are available 

online, which greatly facilitate the in silico approaches in toxicity prediction [68]. An 

example of data resource is TOXNET, which incorporated a collection of drug toxicity 

databases, e.g., HSDB and TOXMAP [69]. ACToR is also a large chemical database that 

centralizes access to toxicity data [70]. Two important databases incorporated in ACToR are 

DSSTox [71], which provides a high quality public chemistry resource for improved toxicity 

prediction and ToxRefDB, which provides chemical toxicity data in a publically accessible 

format for fast automated screening and assessing chemical exposure, hazard and risk [72]. 

Other toxicity databases include SuperToxic [73], T3DB [74], and admetSAR [75]. In 

addition, some bioactivity databases are also public available, for instance, PubChem [76], 
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ChEMBL [77], and BindingDB [78]. These databases on bioactivity are also important to 

toxicity prediction [68]. However, a large amount of data has been buried in the archives of 

the pharmaceutical industry in formats that are hard to utilize [79]. The eTOX project 

involved collaborations among thirteen pharmaceutical companies, eleven academic 

institutions, and six enterprises [80], aiming at building a comprehensive toxicity database 

and providing reliable modeling of drug safety endpoints [79]. These initiatives undertaken 

would help enable to address current concerns.

Due to the fact that patients might have different genetic backgrounds, the therapeutic 

window of certain drugs would be also distinct, accordingly raising a more important 

concern about the personalized drug safety [79]. It could be exemplified by 6-

mercaptopurine, which is a drug for acute lymphocytic leukemia and chronic myeloid 

leukemia. It may take on different side effects in patients with different genetic variants on 

TPMT, NUDT15, and ITPA [81–83]. Motivated by this fact, genetic tests are necessary to 

screen patients with specific allele variants beforehand. Theoretically, biomarkers could be 

learned to predict the drug toxicity for each individual patient, when given enough training 

datasets. One proof-of-concept example is from the DREAM challenge, in which by 

integrating genetic profiles of cell lines with the compound chemical information, the in 
silico methods could predict cytotoxicity phenotype [84], largely supporting the feasibility 

of prediction of individualized drug toxicity [85]. GWAS as a hypothesis-free method has 

successfully identified novel genes that are responsible for drug response or drug induced 

toxicity [86]. For example, through GWA study, a genetic variant on the TCL1A gene was 

found to induce musculoskeletal adverse events, revealing the involvement of cytokine 

receptor genes in the inflammatory response [87]. A similar study found the significant 

association between the genetic variants on the CACNB4 gene and the drug-induced 

alopecia in breast cancer, suggesting the mechanism of the pathogenesis of alopecia 

involving ion channels [88].

At last, various evidence also suggested the need to look more closely at drug toxicity [89]. 

Natalizumab was highly effective in treating multiple sclerosis; however, it was associated 

with the development of progressive multifocal leukoencephalopathy resulting from 

reactivation of JC virus, therefore leading to its withdrawal [90,91]. In 2006, natalizumab 

was available again under conditional prescription by investigating seropositivity for JC 

virus antibodies for patients [90,91]. Such conditional approval of drug prevents its 

withdrawal, and also reduces the risk of drug toxicity. The similar cases also include re-

launches of gefitinib conditional on Epidermal Growth Factor Recepetor activating 

mutations [92], and perhexiline conditional on poor or intermediate metabolizers of 

CYP2D6 [93]. These facts all indicated the importance of conditionally re-evaluating drug 

toxicity and incorporating biomarkers into drug development. This is also consistent with the 

basic idea of precision medicine.

5. Machine-learning/deep-learning methods in drug discovery

QSAR is a very commonly used technique in the pharmaceutical industry for predicting on-

target and off-target activities. QSAR datasets often involve a large number of compounds 

(>100,000) and descriptors (>1,000), and therefore, prioritizing drug compounds from 
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QSAR is often computationally intensive and requires the adjustment of many sensitive 

parameters to achieve good prediction [94]. To address these challenges, various machine 

learning methods have been applied to QSAR, such as linear discriminant analysis [95], k 

nearest neighbors [96], decision tree [97], support vector machine [98] and random forest 

[99]. In particular, random forest has been very popular since it was introduced as a QSAR 

method [99]. Random forests, owing to its high performance, ease of use, and robustness to 

adjustable parameters, have been treated as “gold standard”, so that other QSAR methods 

often compared to Random forest to justify their own accuracies [100]. Random forests are 

an ensemble learning method, which correct for decision trees’ habit of over-fitting to their 

training set by building multiple decision trees and merging them together to get a more 

accurate and stable prediction. Random forests have been widely used for bioactivity 

classification [101], toxicity modeling [102], and drug target identification [103], and so on.

Although promising, the above methods are still considered to be shallow in terms of 

learning capability as compared to deep learning [104]. The concept of deep learning was 

built on the basis of artificial neural networks, where the feedforward neural networks 

combined with many hidden layers is considered to be the deep neural network [105]. Many 

hidden layers are incorporated so that more abstract patterns can be recognized from input 

data, where the lower layer can learn basic patterns and upper layers learn higher-level 

patterns. The well-developed deep learning algorithms include the convolutional neural 

network (CNN), deep belief networks (DBN), recurrent neural network (RNN), and deep 

auto-encoder networks (DAENs). The deep learning, although complex, is still composed of 

many simple and nonlinear processing units, which can extract the features from lower 

levels, and convert them into new forms of features at a higher, more abstract and more 

representative level [106]. The aforementioned traditional algorithms have difficulty in 

dealing with data in the raw form; therefore, it is crucial for them to extract features 

manually to represent the data, however, this is often intractable, and requires expertise in 

the specific area of input data. Deep learning algorithms, as opposed to the traditional 

algorithms, have the capability of automatically extracting useful features directly from the 

raw data, which are used as new representations facilitating the better performance for 

further classification [104]. Therefore, such new theory has caught the attention of many 

researchers and pharmaceutical companies. However, the limitation by deep learning models 

is that, in spite of high prediction performance, deep learning methods still have difficulties 

in revealing and interpreting the associated biological mechanisms directly from the data by 

working as ‘black boxes’ [107].

Drug repurposing is an effective strategy to find new indications from existing drugs. The 

methods for QSAR are potentially useful for drug repurposing, but some methods tailored 

for drug repurposing are also proposed. Network-based cluster approaches are a widely used 

method for drug repurposing. Motivated by the fact that biologic entities of both disease and 

drug, in the same module of biological networks share similar properties, the network-based 

clustering approaches as well as network-based propagation approaches have been proposed, 

aiming at discovering modules (subnetworks, groups or cliques), which can reveal various 

novel relationships such as drug-disease, drug-drug or drug-target relationships [108]. The 

most widely used network-based cluster methods include DBSCAN [109], CLIQUE [110], 

STING [111], and OPTICS [112]. In addition to the network-based approaches, the semantic 
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and text-mining approaches screen hundreds of thousands of published literatures, enabling 

the extraction of various biological concepts. Semantic knowledge graphs are constructed to 

connect biological entities utilizing literature knowledge and biological databases, and 

furthermore, knowledge graphs can be used to infer novel connections based on network 

mining methods [113,114]. Semantics-based approaches take full advantage of semantics 

information included in massive amounts of literatures, thereby, further improving the 

prediction accuracy of biological entity relationships [108]. Chen et al. [113] integrates 

multiple datasets, including drugs, targets, and disease pathways, reconstructing a huge 

semantic network among over 290,000 nodes, followed by a statistical model to predict 

drug-target relationships. For instance, barbiturate, a drug used for treating migraines, was 

predicted for use in curing insomnia, which is also supported by literatures [108].

As available big datasets and public archives have made major strides in the past decade. 

Study shows that every 18 months, the size of public raw sequencing data is doubled. The 

International Cancer Genome Consortium (ICGC) [115], collecting samples from more than 

20,000 donors, aligned sequencing reads for over 1 PB of storage. Moreover, such large 

ongoing studies as Precision Medicine Initiative [116] and Million Veterans Project [117] 

will keep raising the total amount even more rapidly. Utilizing these data for drug discovery 

depends on the large-scale computational resources. Cloud computing, which is well-known 

for its elasticity, reproducibility and confidentiality features, can ideally serve the large-scale 

reanalysis of both public and privacy data, and is widely used for research and large-scale 

collaborations [118], by providing a platform where users rent computers and storage from 

large data centers. Currently, multiple cloud service platforms are commercially available 

(Table 4). It is a timely solution to address the huge required computational resources posed 

by the big data driven genomics research [118].

6. Expert opinion

Drug development is costly and slow, with medications failing due to lack of efficacy or 

presence of toxicity. The methodologies tailored for big data integrate information from 

various perspectives, facilitate screening drug candidates, and enable drug toxicity 

prediction, thereby largely accelerating the drug development and improving medication 

efficacy. The precision medicine aims at prevention and treatment strategies with individual 

heterogeneity taken into account. Its dependence on big data will increase along with the 

personalized medicine gradually coming to the fore. In the near future, much larger volumes 

and complex datasets for precision medicine will be generated. Large cohorts will be 

recruited across countries, e.g., the pledge of sharing one million genomes across thirteen 

European countries [119] and Human Longevity Institute [120], with individual multi-

omics, EHRs and environmental factors recorded longitudinally, largely facilitating the study 

of both genetic heterogeneities within populations and gene-environment interactions. 

Meanwhile, it also raises promising potential for interrogating even more difficult diseases, 

such as rare diseases. As a huge potential market, there are more than 6000 rare diseases that 

has been reported, while 95% of them remain to be studied [121]. Furthermore, with larger 

data generated, more and even closer collaborations between experts with different 

background, including computational scientists, cell and molecular biologists, and clinical 

doctors will be required to better facilitate the translation from analytic results to prognosis 
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and treatment in the clinical practice. With cloud computing becoming more routine analytic 

practice, more sophisticated methodologies, will be advanced to fill the gaps within data 

integration and standardization across different individuals, samples, and modalities along 

with the advent of big-data. Although promising, the cloud computing also raises higher 

security concern of patient privacy. The potential solution could be enhancing data 

governing via private cloud, which saves the critical data in-house, but increases the expense 

for data analytics. The balance should be considered carefully between the budget of cloud 

choices and patient privacy protection when adopting big data analytics [122]. Moreover, 

with the direct-to-consumer (DTC) genomic sequencing being more affordable, genomic 

analysis would become part of the routine clinical care, and consequently, more individual 

sequencing data would be generated for patients. The genetic risks for a wide range of 

medical conditions and common diseases (e.g., heart disease, diabetes) could be learned. 

This largely facilitate the personalized treatment along with proven options for screening 

and risk reduction via health behaviors. However, care is also needed, since there are still 

concerns over the DTC data, for instance, discordance of results between companies, 

variable quality of pre-test and post-test information, and the lack of medical supervision 

among DTC companies [89]. On the other hand, the generation of large personal data also 

poses the new challenges for data sharing. Policy statement would include more flexibility in 

order to maximize information sharing and increase of data utility. The tools, such as 

genomic data commons [123], which can accept donations of genomic information from 

willing patients, would become much more important to enable such efforts. Furthermore, 

the dedicated characteristics in precision medicine make even harder the preclinical testing 

of drug and translational medical practice. To fill the gaps, the organs-on-a-chip [124] and 

personalized stem cell therapies [125] will deliver important contribution to development in 

precision medicine. Since Artificial intelligence systems of future will become better over 

time, it would consider many variables and assign different factors in order of their 

importance, and it would come up with multiple possible candidate diagnoses within a short 

period of time, with associated probabilities that might improve accuracy and efficiency, and 

this might change the current trend that physician time with patients is limited. In the future, 

physicians might spend more time with patients [126].
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Article highlights

• The accumulating drug knowledge bases, multi-omics data, and clinical data, 

comprise the cross-domain big data, facilitating the systematical drug 

discovery.

• The increasing informatics infrastructure now enables big data analysis to 

explore new drug therapeutics from multiple perspectives, such as genomics, 

proteomics, GWAS, pathway, EHR and pheWAS.

• Numerous well-defined and high-quality clinical phenotypic information 

available greatly facilitate the construction of in silico drug safety modeling in 

the early stage of drug discovery to screen low-toxicity compounds, to some 

extent, bypassing less-reliable rodent models.

• Rapidly developing machine learning techniques have drastically accelerated 

the big data-based drug discovery approach, further promoting the 

performance for both de novo drug discovery and drug repurposing.

• Incorporation of direct-to-consumer genetic testing and information 

technology industries has drastically strengthened the big data-based 

approach, further enhancing individualized precision medicine.
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Table 4.

Resources for commercial cloud services.

Service Platform URL

Software as a service (SaaS) Amazon Web Services www.aws.amazon.com

Google Cloud Platform cloud.google.com

Microsoft Azure azure.microsoft.com

IBM Cloud www.ibm.com/cloud/

Alibaba Cloud www.alibabacloud.com

Infrastructure as a service DNAnexus www.dnanexus.com

Illumina BaseSpace Sequence Hub basespace.illumina.com

Seven Bridges www.sevenbridges.com/platform

Globus Genomics globusgenomics.org
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