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Abstract
Observational studies often seek to estimate the causal relevance of an exposure to an outcome of interest.
However, many possible biases can arise when estimating such relationships, in particular bias because of
confounding. To control for confounding properly, careful considerationof the natureof the assumed relationships
between theexposure, theoutcome,andothercharacteristics is required.Causaldiagramsprovideasimplegraphic
meansofdisplaying such relationships, describing the assumptionsmade, andallowing for the identificationof a set
of characteristics that shouldbe taken intoaccount (i.e., adjusted for) in anyanalysis. Furthermore, causal diagrams
can be used to identify other possible sources of bias (such as selection bias), which if understood from the outset,
can inform the planning of appropriate analyses. In this article, we review the basic theory of causal diagrams and
describe some of the methods available to identify which characteristics need to be taken into account when
estimating the total effect of an exposure on an outcome. In doing so, we review the concept of collider bias and
show how it is inappropriate to adjust for characteristics thatmay be influenced, directly or indirectly, by both the
exposure and the outcomeof interest. Amotivating example is taken from the Study ofHeart and Renal Protection,
in which the relevance of smoking to progression to ESRD is considered.
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Introduction
In longitudinal analyses of observational studies (in-
cluding observational analyses done using trial data), a
range of possible biases can arise when assessing the
relevance of a particular characteristic (exposure) to a
particular disease (outcome). Uppermost among these
is bias due to confounding, which may be thought of
as a spurious statistical association between the
exposure and the disease that arises (wholly or partly)
because of some other exposure that is associated
with a change in both the exposure of interest and the
probability of disease. Statistical methods to control for
confounding include adjustment (e.g., in a regression
model) and stratification (e.g., performing analyses
separately in subsets of individuals with similar char-
acteristics). Although it may be thought that increasing
levels of adjustment for characteristics not believed to be
involved in the causal pathway could only result in an
improved estimate of the true etiologic relevance of the
exposure to the disease (i.e., a reduction in bias due to
confounding), in fact, the opposite may be true.
Depending on the nature of the relationship between
the exposure of interest and the potential confounders,
inappropriate adjustment for some of them can lead to
the introduction of a bias that did not previously exist
(1).

An understanding of causal diagrams aids the iden-
tification of possible sources of bias in epidemiologic
analyses (including confounding, reverse causality, and

selection bias) and, therefore, facilitates the identifica-
tion of an appropriate set of characteristics that would
need to be taken into account during any statistical
analysis. The purpose of this paper is to provide such
an understanding, so that the methods can be consid-
ered and applied more widely by those who wish to
perform such analyses.

A Hypothetical Example
Consider the following hypothetical example. A con-

ference is attended by 500 delegates. All delegates
arrive the day before the plenary session, and one half
have flown long haul to travel to the conference. Now
suppose that everyone who flies long haul will suffer,
to some degree, from jet lag the next day. A drinks
reception is held on the evening before the morning
plenary session, at which a choice of alcoholic and
nonalcoholic drinks is available. Suppose the effect of
drinking alcohol on jet lag is of interest, and the
overall 232 contingency table of the relationship is as
shown in Table 1, A (from which an odds ratio of 1.00
(95% confidence interval [95% CI], 0.70 to 1.43) is
estimated, which makes sense, because jet lag is a
result of flying long haul rather than alcohol con-
sumption at the conference reception). However, now
suppose that this analysis had been done separately
among those who had attended the plenary session
and those who did not attend. On the face of it, this
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seems reasonable, because both drinking alcohol and being
jet lagged may be associated with missing the plenary
session. After stratifying by whether the delegate attended
the plenary session, the contingency tables could plausibly
look like those in Table 1, B. The estimated Mantel–Haenszel
odds ratio (which takes into account the stratification) is now
0.63 (95% CI, 0.42 to 0.93), which suggests, quite wrongly,
that drinking alcoholic rather than nonalcoholic drinks at the
conference reception has a strongly protective effect on the
risk of jet lag.
The problem is caused by inappropriate stratification by

whether the delegate missed the plenary session. In this
case, stratification for missing the plenary session intro-
duces bias into the assessment of the relationship between
drinking alcohol and jet lag, because missing the plenary
session could be influenced by both alcohol consumption
and jet lag (i.e., is a collider; see below). To understand how
this happens and how it can be avoided, one needs to
appreciate the basic theory of causal diagrams.

An Introduction to Causal Diagrams
A detailed description of the theory of causal diagrams in

epidemiologic studies can be found elsewhere (2,3); only a
basic introduction is provided here. We start with some
terminology.
A causal diagram is a graphical tool that enables the

visualization of the relationships between the exposure of
interest, the outcome being studied, and all other charac-
teristics (variables) that are associated in some way with at
least two other variables in the diagram. It encodes the
assumptions underlying the epidemiologic analysis and
should include all relevant variables (even if they have not
been measured). Causal diagrams, therefore, comprise a
set of variables (nodes: often represented by letters) with
arrows drawn between them to show the directions of the
assumed causal relationships. No other assumptions, how-
ever, about the nature of these relationships are made (for
example, whether the exposure increases or decreases the
value of the outcome or the magnitude of such an effect).
The lack of an arrow between a pair of variables, therefore,
represents the assumption that there is no direct relation-
ship between them.
In a causal diagram, a cause is a variable that influ-

ences, either directly or indirectly, the value of another var-
iable. Causes are often referred to as ancestors of the other
variable, with direct causes (Figure 1) called parents. By
contrast, effects are variables that are influenced, either
directly or indirectly, by another variable. Effects are often
referred to as descendants, with direct effects (Figure 1)
called children. For example, consider the relationships
between the five variables A–E shown in Figure 1. Looking
at variable E, it has A, B, and D as causes (or ancestors),
but only B is a parent of E. Similarly, the variable A has B, C,
and E as effects (or descendants), but only B is a child of A.
A path is said to exist between two variables in a causal
diagram if they can be joined through a sequence of single-
headed arrows, irrespective of their direction, possibly
passing through other variables on the way. The paths of
most interest in epidemiologic studies are generally the
causal pathways, which are paths starting at the exposure
and ending at the disease that do follow the direction of
the arrows. Directed acyclic graphs (DAGs) are a special
form of causal diagram that does not contain any directed
cycles. That is, in a DAG, it is not possible to connect any
variable through a path of single-headed arrows, when

Table 1. Hypothetical example illustrating the association
between drinking alcohol at the conference reception and
suffering from jet lag the next day before and after stratification
for whether the delegate attended the plenary session

Delegate Classification
Jet Lag

Yes No

A
Drank alcohol at reception
Yes 100 100
No 150 150

B
Delegate missed plenary session
Drank alcohol at reception
Yes 80 60
No 100 30

Delegate attended plenary session
Drank alcohol at reception
Yes 20 40
No 50 120

Odds ratio for A is 100=100
150=1505 1: Mantel–Haenszel odds ratio for

B is ð303 80Þ=2701 ð1203 20Þ=230
ð1003 60Þ=2701 ð503 40Þ=2305 0:63.

Figure 1. | Causal diagram to illustrate causes (ancestors and parents) and effects (descendants and children).

Clin J Am Soc Nephrol 12: 546–552, March, 2017 Causal Diagrams in Observational Studies, Staplin et al. 547



following the direction of the arrows, back to itself. (Time
ordering is important in causal diagrams; any causes must
precede effects, and therefore, no variable can be both the
cause and the effect of any other variable in the graph.)
However, that is not to say that DAGs cannot be used
to represent bidirectional biologic relationships where feed-
back loops exist, providing that the temporality is preserved
(e.g., Figure 2 shows how a bidirectional relationship between
systolic BP and eGFR could be represented in a DAG).
(Note that the analysis of data with time-varying treatments
or exposures may require specialist statistical methods to be
used, such as marginal structural models [4,5].)
When considering a single exposure of interest (E), an

outcome of interest (D), and a single covariate (C) that
is associated in some way with both the exposure and
the outcome, there are three possible sets of relationships
(Figure 3). The first scenario (Figure 3A) is that the covariate
C is a cause of both the exposure and the outcome (i.e., it is a
confounder). The second scenario (Figure 3B) is that the
covariate is on the causal pathway from the exposure to the
outcome. In this case, C is called an effect mediator. The final
situation (Figure 3C) is where the covariate is a common
effect of both the exposure and the outcome. In this case, C is
called a collider.
Paths can be characterized into causal pathways and

noncausal pathways. Because the causal pathways repre-
sent the associations of interest, they should typically remain
open in any statistical analysis. (An open path in a DAG is
merely a path alongwhich an association can be transmitted.)
By contrast, if a path is blocked, then no association can be
transmitted along it. Consequently, it is typically the goal
to perform a statistical analysis that blocks all noncausal
pathways. If not, then the open noncausal pathway that
remains is referred to as a biasing pathway. An association
(or a possible association that is to be tested) between two
variables requires at least one open path between the var-
iables. An open path can become blocked and vice versa by
conditioning on particular variables along that path (con-
ditioning typically means statistical adjustment [e.g.,
through a regression analysis] or stratification [as in the
hypothetical example]). The rules in Table 2 can be used to
establish whether a particular causal or noncausal path in a
given DAG is open or blocked (6,7).
Consider now the confounder Ccon shown in Figure 3A,

the effect mediator Cmed in Figure 3B, and the collider Ccol

shown in Figure 3C. The rules in Table 2 can be used to
determine whether the paths from E to D through C in
these cases are open and hence, whether they are biasing

pathways. In Figure 3A, the path E ← Ccon → D is open
(rule 2) and therefore, a biasing pathway. Conditioning on
Ccon blocks the path (rule 2) and provides an unbiased
estimate of the effect of E on D. In Figure 3B, the path E →
Cmed → D is also open, but because this path is a causal
pathway, it should be kept open, assuming that the goal is
to estimate the total effect of E on D. Conditioning on Cmed in
this situation would block this path (rule 1) and result in
estimation only of the direct effect of E on D (that is, the
part that is not mediated through Cmed). In Figure 3C, the
path E → Ccol ← D is already blocked (rule 3a), and there
are no other noncausal pathways in the DAG. However,
if Ccol was conditioned on, then the path E→ Ccol←Dwould
be opened (rule 3a), creating a new biasing pathway that did
not previously exist.
These rules allow us to establish why the estimate of the

(hypothetical) causal effect of alcohol consumption on jet
lag above was so clearly wrong. In this case, missing the
plenary session is a collider, because it could have been
caused by either alcohol consumption or suffering from jet
lag. Conditioning on it (by creating the two separate 232
contingency tables) opened up a new biasing pathway.

Selecting Appropriate Sets of Covariates for
Observational Analyses
Generally, DAGs drawn to represent the relationship

between the exposure and the outcome in an epidemiologic
study will be much more complex than those shown in
Figure 3, because there will be many inter-relationships
between the various covariates, exposure, and outcome,
making it difficult to identify all of the potentially biasing
pathways. Although a simple six–step algorithm exists,
allowing one to test whether a proposed set of covariates
to control for removes all biasing pathways (8), applying

Figure 2. | Example of how to represent a possible bidirectional relationship in a directed acyclic graph. SBP, systolic BP.

Figure 3. | Causal diagrams showing possible underlying relation-
ships for a covariate that is associated with both the exposure of
interest and the outcome of interest. (A) C is a confounder. (B) C is
an effect mediator. (C) C is a collider. C, covariate; E, the exposure
of interest; D the outcome of interest.
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this can require considerable trial and error. Fortunately,
freely available software exists to implement these rules,
making the selection of an appropriate set of covariates
much easier (for example, http://www.dagitty.net/ [9] and R
package dagR [10]). It is also worth noting that the theory of
DAGs can be combined with traditional selection methods
(11,12) to see whether there are any unnecessary covariates
that could be removed from the set and, therefore, possibly
improve the precision of the estimated effect of exposure on
outcome.

A Real Example: Adjustment for Baseline Albumin-to-
Creatinine Ratio in Analyses of the Relevance of
Smoking to Progression to ESRD
Now that the theory of causal diagrams has been in-

troduced, we shall apply it to a real epidemiologic analysis
to illustrate the type of problem that can result if causal re-
lationships are not properly considered. The example chosen
is an analysis of the relevance of smoking to progression to
ESRD among 6245 patients who were not on dialysis at the
time of randomization into the Study of Heart and Renal
Protection (SHARP), a large randomized trial of lipid mod-
ification in patients with established renal disease (13).
Interest lies in estimating the relevance of smoking to

ESRD, and the question is whether to adjust (i.e., condition)
for each participant’s urinary albumin-to-creatinine ratio
(ACR). Smoking increases ACR (14,15), and higher ACR
concentrations are associated with increased risk of pro-
gression to ESRD (16,17). However, the causal nature of the
association between ACR and ESRD is uncertain. Al-
though it is possible that ACR directly influences (i.e.,
causes) ESRD, it is also possible that the association between
ACR and ESRD is caused by other (unknown) factors that
affect both ACR and the risk of reaching ESRD (in which
case, ACR would merely be a marker of renal progression).

These scenarios are illustrated by the DAGs drawn in Figure
4. (In the latter case, exposure to these unknown factors
would have to increase ACR as well as increase ESRD risk

Table 2. Rules to establish whether a pathway in a causal diagram is open or blocked

Rule No. Type of Path
No. of

Colliders
on Path

Aim of Adjustment How to Establish if Path is Open or
Blocked

1 Causal N/A Leave open (for estimation
of total causal effect)

The path will be open providing
that no variables along it are
conditioned on (otherwise, it will
be blocked)

2 Noncausal 0 Block noncausal pathway Thepathwill beblocked if at least one
variable along it is conditioned on
(otherwise, it will be open)

3a Noncausal 1 Block noncausal pathway The path will be open if the only
variable conditioned on is the
collidera (otherwise, it will be
blocked)

3b Noncausal .1 Block noncausal pathway The path will be open if all of the
collider variablesa (and no
noncollider variables) are
conditioned on (otherwise, it will
be blocked)

N/A, not applicable.
aOr descendant(s) of the collider(s).

Figure 4. | Causal diagrams that represent three possible relation-
ships between smoking, ESRD, and albumin-to-creatinine ratio
(ACR) in the Study ofHeart and Renal Protection. (A) ACR is an effect
mediator on the causal pathway between smoking and ESRD. (B) ACR
is acollideronone thepathsbetween smokingandESRD. (C)ACRis an
effect mediator on one path and a collider on another path between
smoking and ESRD.
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for higher ACR to be associated with increased ESRD risk.)
For simplicity, we ignore in Figure 4 all covariates that could
otherwise confound the relationship between smoking and
ESRD risk and assume that adjustment has already been
made for any covariates needed to close any biasing paths
between smoking and ESRD.
If Figure 4A represented the truth, then ACR would be

an effect mediator, and it would be inappropriate to
condition on ACR, because it would block a causal
pathway between smoking and ESRD. (If it were done,
the effect of this pathway would be removed from the
estimate of the total effect of smoking on ESRD.) If Figure
4B represented the truth, however, then ACR would be a
collider on one of the two paths between smoking and
ESRD, and as such, it would still be inappropriate to adjust
for it (because doing so would create a biasing pathway
between smoking and ESRD). Specifically, if it were known
that someone had an increased level of ACR (the effect of
conditioning), then knowing that they were also a smoker
would reduce the probability that they have been exposed
to the other unknown factors. This is because being a
smoker is the more likely cause of their increased value of
ACR. In other words, given ACR, smokers will be sys-
tematically less likely to have been exposed to the other
unknown factors (which of course, cannot be controlled for
in the statistical analysis), and their risk of progression to
ESRD will, as a consequence, apparently be reduced.
Conditioning on ACR in this situation would, therefore,
bias the relative risk of ESRD associated with smoking
downward and could even result in a relative risk that
(wrongly) suggests that smoking has a protective effect
on the risk of progression. Another scenario would be that

ACR has some direct effect on the risk of ESRD with other
unknown factors influencing both ACR and ESRD (i.e., a
combination of the scenarios in Figure 4, A and B, which is
shown in Figure 4C). In this case, it would still be
inappropriate to adjust for ACR (because ACR is both an
effect mediator and a collider on another pathway between
smoking and ESRD).
In SHARP, the etiologic relevance of baseline smoking

status (current smokers compared with never smokers) to
ESRD was estimated using Cox proportional hazards
regression (18). After adjustment for a range of assumed
confounders (the assumed DAG is in Figure 5A), current
smokers had a similar rate of progression to ESRD as never
smokers (hazard ratio, 1.02; 95% CI, 0.89 to 1.17). (In DAGs,
variables that are conditioned on are usually highlighted
by drawing a square around them, as shown in Figure 5.)
However, if adjustment is also made for ACR (and other
factors associated with smoking and ESRD risk: BP, body
mass index, current drinking, and renal status) rather than
only the characteristics thought to be confounders, an
apparent protective association between current smoking
and ESRD risk is observed (hazard ratio, 0.85; 95% CI, 0.74
to 0.98). The DAG in Figure 5B illustrates what has
happened. Many of the causal pathways (shown in green
in Figure 5A) are now blocked, because all of these
additional factors were assumed to be effect mediators.
In addition, a new biasing pathway (shown in red in Figure
5B) has arisen by conditioning on ACR, because it is a
collider on the path: smoking at entry into SHARP → ACR
← other unknown factors → ESRD. Inclusion of the
additional factors (in particular, albuminuria) creates
what we believe to be an artificial association between

Figure 5. | Causal diagram showing assumedassociations betweenbaseline smoking status, ESRD, andbaseline characteristics in the Study of
Heart and Renal Protection (SHARP). (A) Adjustment for variables considered to be confounders keeps all causal pathways open and blocks all
noncausal pathways. (B) Adjustment for effect mediators and colliders blocks causal pathways and creates a biasing pathway. Boxes around
variables indicate that they have been adjusted for in analyses. Open causal pathways are highlighted by green arrows (e.g., smoking status at
entry into SHARP→ urinary albumin-to-creatinine ratio [ACR]→ ESRD in A), and biasing pathways are indicated by red arrows (e.g., smoking
statusat entry intoSHARP→ACR←otherunknownfactors [U]→ESRDinB). *Age, sex, ethnicity, country, andeducationwouldalsobecausesof
body mass index (BMI), current drinking, BP, renal status, and ACR. $Prior diseases would also be causes of renal status and ACR.

550 Clinical Journal of the American Society of Nephrology



smoking and a reduced risk of ESRD, which is unlikely to
reflect a true protective effect.

Index Event Bias in Studies of Individuals with CKD
Causal diagrams allow sources of bias related to the se-

lection of participants into a study to be identified. One
such bias that is particularly relevant to studies of CKD
populations is index event bias. Although index event bias
is well recognized in the epidemiologic literature (19,20), it
is perhaps not sufficiently acknowledged in epidemiologic
studies of already diseased individuals. It is usually
discussed in the context of recurrent events, because
paradoxical findings are often observed where well estab-
lished risk factors for a disease may seem to not influence
recurrence risk among individuals who have already had a
first event. Because progression to ESRD among those with
CKD is a worsening of a preexisting condition, studies
examining causes of ESRD in CKD populations could suffer
from similar issues.
Consider, for example, the causal diagram in Figure 6.

The effect of an exposure measured on entry into the study
(E) on progression to ESRD (D) is of interest. The variable S
represents the selection criteria for the study (which in this
case, would be having CKD). Only including individuals
who meet this criterion in the study would be the same as
conditioning on S. Because progression to ESRD is a
worsening of preexisting kidney disease, it is not unreason-
able to assume that any risk factors for ESRD will also be
risk factors for CKD and hence, be causally related to the
selection criteria. The variable U in Figure 6 represents all
such risk factors, which may or may not have been
recorded in the study. Prior values of the exposure (P)
will influence both the risk of CKD and the value of the
exposure at time of entry into the study, introducing an
association between E and S. The variable S is a collider on
the path from E to D that goes through U, and therefore,
conditioning on this variable has opened up a biasing
pathway between the exposure and the disease. If both the
exposure and the unmeasured risk factors are associatedwith
an increased risk of kidney disease, then conditioning on S

(which is unavoidable) will create an inverse association
between E and U. The consequence of this would be to bias
the association between the E and D toward the null.
Adjustment for the shared risk factors U would be re-

quired to control for index event bias, although it is always
possible that residual bias may exist, because some of the
risk factors may be unmeasured (or even unknown). How-
ever, formulas do exist to estimate the extent of such residual
biases (21,22) on the basis of assumptions about the distri-
butions and associations of unmeasured factors.
There is an additional source of bias in the causal diagram

in Figure 6 that should also be mentioned. Because P
represents the long–term or usual exposure level, this vari-
able could have an effect on progression to ESRD that is not
completely explained by the measured baseline value (for
example, if this value is measured with error). In this case, the
biasing pathway E ← P → D may be thought of as
representing regression dilution bias, which can easily be
accounted for using other established methods (23,24).

Discussion
Sufficiently large properly randomized trials are gener-

ally the preferred method of testing the causal effect of an
exposure on an outcome of interest. However, epidemio-
logic analyses are still often used to estimate causal effects
(either to generate hypotheses to be tested in future trials or
when trials are not feasible). For observational data, it is
necessary to adjust for variables that could confound the
causal effect. Causal diagrams provide a graphical repre-
sentation of all of the assumptions that have been made
about the associations between the exposure, the outcome,
and any other variables (which should be informed by evi-
dence from the literature as well as expert opinions). On
the basis of those assumptions, simple automated meth-
ods are available, which will identify the appropriate set
of variables to include in a statistical analysis, the aim of
which is to minimize bias due to observed confounders. Of
course, biases may still exist because of unmeasured
confounders of the exposure and the outcome or imprecise
measurements of confounders (i.e., residual confounding).
Although causal diagrams cannot prevent this residual
confounding, they can be used to determine whether the
recorded characteristics are likely to be sufficient to ade-
quately adjust for it. Indeed, it may be more likely that the
validity of the no residual confounding assumption will be
considered if a causal diagram has been constructed.
More generally, causal diagrams allow other potential

sources of bias in a study to be recognized, such as
index event bias as discussed above. There are many other
examples of bias related to the selection of participants
in a study or selection bias. For instance, the healthy
participant effect is already well established in prospec-
tive cohort studies as a potential bias when estimating
disease prevalence reliably. Selection bias and its repre-
sentation using DAGs have been discussed in detail
elsewhere (3). Although this article focuses on the use of
causal diagrams in observational analyses, they can also be
used to detect potential sources of bias in randomized,
controlled trials (for example, when participants are un-
blinded to treatment allocation) (25). One limitation of causal
diagrams is that they require the direction of causality

Figure 6. | Causal diagram to illustrate the issue of index event bias in
observational analyses restricted to participants with CKD. E, ex-
posure at study entry;D, progression to ESRD;C, confounders; P, long-
term (or usual) values of exposure prior to studyentry (unmeasured); S,
selection criteria (i.e., having CKD); U, risk factors for kidney disease
(possibly unmeasured).
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between two variables to be stated, which may be difficult to
establish when multiple biologic measurements are conduc-
ted at the same time.
It is worth noting that the use of causal diagrams is still

appropriate, even when there is uncertainty about some of the
underlying relationships between the characteristics consid-
ered. In such situations, alternative causal diagrams can be
considered as sensitivity analyses.Whether explicitly specified
or not, every epidemiologic analysismakes assumptions about
the underlying causal relationships between the exposure,
outcome, and other characteristics. The use of causal diagrams
merely states these assumptions and in doing so, helps avoid
potential pitfalls through inappropriate adjustments. Causal
diagrams should, therefore, be considered at all stages when
embarking on such analyses andmade available alongside the
results to make it clear which assumptions have been made.
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