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Research

The traditional approaches for in vivo animal
chemical safety testing are costly, time consum-
ing, and have a low throughput (Bucher and
Portier 2004). To improve the efficiency of
assessing potential human health hazards of
environmental chemicals, the National
Toxicology Program (NTP) at the National
Institute of Environmental Health Sciences
(NIEHS) recently initiated the High Through-
put Screening (HTS) project (NTP 2007;
Inglese et al. 2006; Xia et al. 2007). The NTP–
HTS effort aims to develop high-throughput
biological assays that aid in predicting a
chemical’s potential for in vivo toxicity in a
manner that is both informative of mecha-
nisms and pathways and relevant to human
health risk assessment. These assays are
expected to help in prioritizing compounds
for targeted animal testing. Recently, a set of
1,408 chemical agents, many with known
in vivo toxicity profiles, was screened in six
human cell lines for cytotoxicity and other phe-
notypic end points. The HTS results, including
complete dose–response data for all tested com-
pounds, were made publicly available through

PubChem [National Center for Biotechnology
Information (NCBI) 2007]. These data can be
explored in terms of assessing the relevance of
HTS screening to predictive toxicology.

Accurate prediction of the adverse effects of
chemical substances on living systems, identifi-
cation of possible toxic alerts, and compound
prioritization for animal testing are the primary
goals of computational toxicology. Rapid
expansion of experimental data sets that com-
bine data on chemical structure and various
toxicity end points for numerous environmen-
tal agents {e.g., NTP [NTP 2007]; Berkeley
Carcinogenic Potency Database [CPDB 2007];
and Distributed Structure-Searchable Toxicity
database [DSSTox; U.S. Environmental
Protection Agency (U.S. EPA) 2007]} provides
novel opportunities to explore the relationships
between chemical structure and toxicity using
cheminformatics approaches. Application of
advanced cheminformatics tools, such as quan-
titative structure–activity relationship (QSAR)
methods, to the analysis of these data may pro-
vide means for accurate prediction of chemical
toxicity of untested compounds, allowing for

prioritization of compounds for subsequent
animal testing.

QSAR modeling aims to establish rigorous
correlations between the chemical descriptors
of a set of compounds and their experimentally
studied biological activities. Many different
QSAR approaches have been developed over
nearly 50 years of research (Beresford et al.
2004; Dearden 2003; Johnson et al. 2004;
Schultz et al. 2003a). Recent trends in the field
have focused on model validation as the key
part of model development to ensure signifi-
cant external predictive power of QSAR mod-
els. Traditional QSAR models are developed
based on chemical descriptors alone (Klopman
et al. 2004; Richard 2006). In some cases, addi-
tional physicochemical properties, such as water
partition coefficient (logP) (Klopman et al.
2003), water solubility (Stoner et al. 2004), and
melting point (Mayer and Reichenberg 2006)
were used successfully to augment computed
chemical descriptors and improve the predic-
tive power of QSAR models. These studies sug-
gest that using hybrid descriptor sets in QSAR
modeling could prove beneficial. 

The availability of HTS data on large sets
of chemical agents offers an attractive avenue
for exploring its utility in hybrid descriptor-
based QSAR modeling. In this respect, the
NTP–HTS data represent attractive and poten-
tially mechanistically relevant in vitro “biologi-
cal” descriptors for modeling the adverse health
effects in vivo. Our study tested a hypothesis
that improved QSAR predictions can be
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BACKGROUND: To develop efficient approaches for rapid evaluation of chemical toxicity and human
health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration
with the National Center for Chemical Genomics has initiated a project on high-throughput screen-
ing (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for
their effects on cell viability in six different cell lines have recently become available via PubChem. 

OBJECTIVES: We have explored these data in terms of their utility for predicting adverse health
effects of the environmental agents. 

METHODS AND RESULTS: Initially, the classification k nearest neighbor (kNN) quantitative struc-
ture–activity relationship (QSAR) modeling method was applied to the HTS data only, for a
curated data set of 384 compounds. The resulting models had prediction accuracies for training,
test (containing 275 compounds together), and external validation (109 compounds) sets as high as
89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting
rodent carcinogenicity. We identified 383 compounds for which data were available from both the
Berkeley Carcinogenic Potency Database and NTP–HTS studies. We found that compounds clas-
sified by HTS as “actives” in at least one cell line were likely to be rodent carcinogens (sensitivity
77%); however, HTS “inactives” were far less informative (specificity 46%). Using chemical
descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcino-
genicity applied to this data set. Importantly, the prediction accuracy of the model was significantly
improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded
as biological descriptors. 

CONCLUSIONS: Our studies suggest that combining NTP–HTS profiles with conventional chemical
descriptors could considerably improve the predictive power of computational approaches in
toxicology.
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developed using a combination of chemical and
biological descriptors of environmental chemi-
cals. To this end, we have developed QSAR
models based on NTP–HTS data using the k
nearest neighbor (knn) approach. Initially, we
modeled the NTP–HTS results separately to
explore the inherent relationship between
chemical structure and its effect on cell viability.
Next, we evaluated if a correlation exists
between the NTP–HTS assay results and their
in vivo rodent carcinogenic potency, as reported
in the CPDB. Subsequently, the HTS results
were used as biological descriptors that were
combined with chemical descriptors to develop
kNN QSAR models for predicting rodent car-
cinogenicity summary calls of the compounds.
Finally, we attempted to examine the relative
significance of the HTS “descriptors” in the
resulting models and their interplay with chem-
ical descriptors. Our studies demonstrate that
adding NTP–HTS data to chemical descriptors
employed in conventional QSAR modeling
affords improved models that may advance the
use of computational approaches in toxicology.

Our current studies were limited to explor-
ing the value of cell viability assays in predict-
ing rodent carcinogenicity as one example of
in vivo toxicity end point. This limitation was
because in vivo rodent carcinogenicity is the
only end point reported in the CPDB for a sig-
nificant fraction of compounds also tested for
their effect on cell viability. Certainly, as addi-
tional chemicals with known in vivo responses
are tested in cell-based assays, we will continue
to explore similar approaches in correlating the
in vitro and in vivo data.

Methods

Data sources. NTP–HTS data set. The
NTP–HTS assay results were obtained from
PubChem (NCBI 2007), and chemical struc-
tures associated with these results were pro-
vided by the DSSTox (U.S. EPA 2007)
database. The complete data set included
1,408 compounds that were tested in six cell
lines at the National Institutes of Health
(NIH) Chemical Center Genomics (NCGC)
(Inglese et al. 2006; Xia et al. 2007). The cell
lines used for screening of the effect of chemi-
cal agents on cell viability included BJ [human
foreskin fibroblast; PubChem bioassay identi-
fier (AID) no. 421], HEK293 (transformed
human embryonic kidney cell line; AID no.
427), HepG2 (human hepatoma; AID no.
433), Jurkat (clone E6-1, human acute T-cell
leukemia; AID no. 426), MRC-5 (human
lung fibroblast; AID no. 434), and SK-N-SH
(human neuroblastoma; AID no. 435).
Details on the assays and the testing protocols
can be found in PubChem. For the purposes
of this work, the data set was curated as fol-
lows. First, we removed duplicate data entries
for 55 chemical records with identical chemi-
cal structures (i.e., keeping one of the two

identical records) and 14 records for which
molecular structure could not be obtained.
Second, inorganic and organometallic com-
pounds as well as compound mixtures were
excluded since these do not have conventional
chemical descriptors used in QSAR studies.
The curated subset of the original NTP–HTS
data set used in this work included 1,289
unique organic compounds [Supplemental
Material, Table 1 (online at http://www.
ehponline.org/members/2008/10573/suppl.
pdf)]. The “activity” classification for each
compound, for each HTS assay, was assigned
by NCGC as reported in PubChem. HTS
studies included the 55 duplicate compounds.
The analysis of assay results for these duplicate
compounds demonstrated that the HTS data
were highly reproducible (Xia et al. 2007).

The CPDB database. We obtained the
rodent carcinogenicity data from the CPDB
(CPDB 2007; Gold et al. 1991). The CPDB
provides a systematic and unifying source of
the outcomes from in vivo animal chemical
carcinogenicity studies. The most recent release
of the CPDB includes experimental data on
testing of 1,481 diverse chemicals in one or
both sexes of rats and mice, reporting out-
comes on 35 possible target organ/tissue sites.
A chemical structure–annotated version of the
CPDB summary tables consolidating all
species was published on the U.S. EPA
DSSTox website (U.S. EPA 2007) with addi-
tional summary activity categorizations and
was used for the present study. For modeling
purposes, chemical agents in the CPDB were
categorized as follows: active (multisite, multi-
sex, or multispecies carcinogens), marginally
active (single-site carcinogens), inactive (non-
carcinogenic in more than two test cells and no
active results), or no conclusion (insufficient
results). Of the 1,466 compounds classified as
“active” or “inactive” in the CPDB, 314 were
represented in the NTP–HTS data set (178
active and 136 inactive) and used in this study.
A complete list of these agents is provided in
the Supplemental Material, Table 2 (online at
http://www.ehponline.org/members/2008/
10573/suppl.pdf). 

MolConnZ chemical descriptors. The
MolConnZ software (eduSoft LC, Ashland,
VA, USA) affords computation of a wide range
of topologic indices of molecular structure.
These indices include but are not limited to
the following descriptors: simple and valence
path, cluster, path/cluster and chain molecular
connectivity indices, kappa molecular shape
indices, topologic and electrotopologic state
indices, differential connectivity indices, graph
radius and diameter, Wiener and Platt indices,
Shannon and Bonchev–Trinajstiç information
indices, counts of different vertices, counts of
paths, and edges between different kinds of
vertices (Hall et al. 1991; Kier 1986, 1987;
Kier and Hall 1991). Overall, MolConnZ

produces over 400 different descriptors. Those
with zero value or zero variance were removed.
The remaining descriptors were range scaled,
as the absolute scales for MolConnZ descrip-
tors can differ by orders of magnitude.
Accordingly, our use of range scaling avoided
giving descriptors with significantly higher
ranges a disproportional weight on distance
calculations in multidimensional MolConnZ
descriptor space. 

QSAR modeling. Selection of test and
training sets. The curated NTP–HTS data set
(consisting of 1,289 unique organic com-
pounds) was subdivided into multiple training/
test set pairs using the sphere exclusion pro-
gram developed in our laboratory (Golbraikh
et al. 2003). The number of compounds
included in the test set was gradually increased
to obtain the largest possible test set for which
accurate predictions could be obtained from
models developed for the corresponding small-
est possible training set. 

The procedure implemented in the present
study begins with the calculation of the distance
matrix D between points that represent com-
pounds in the descriptor space. Let Dmin and
Dmax be the minimum and maximum elements
of D, respectively. N probe sphere radii, R, are
defined by the following formulas: Rmin = R1 =
Dmin, Rmax = RN = Dmax/4, Ri = R1 +
(i–1)*(RN–R1)/(N–1), where i = 2, ..., N–1.
Each probe sphere radius corresponds to one
division in the training and the test set. A
sphere-exclusion algorithm used in the present
study consisted of the following steps: (i) ran-
domly select a compound; (ii) include it in the
training set; (iii) construct a probe sphere
around this compound; (iv) select compounds
from this sphere and include them alternately
into the test and the training sets; (v) exclude all
compounds from within this sphere from fur-
ther consideration; and (vi) if no more com-
pounds are left, stop. Otherwise let m be the
number of probe spheres constructed and n be
the number of remaining compounds. Let dij
(i=1,...,m; j=1,...,n) be the distances between the
remaining compounds and the probe sphere
centers. Select a compound corresponding to
the lowest dij value and go to step (ii). This
algorithm guarantees that at least in the entire
descriptor space (i) representative points of the
test set are close to representative points of the
training set (test set compounds are within the
applicability domain defined by the training
set); (ii) most of the representative points of the
training set are close to representative points of
the test set; and (iii) the training set represents
the entire modeling set (i.e., there is no subset
in the modeling set that is not represented by a
similar compound in the training set)
(Golbraikh et al. 2003). Consequently, the
sphere exclusion algorithm could maximize the
diversity of the training/test sets in the descrip-
tor space used for modeling. Because of the

Biological descriptors in QSAR modeling of carcinogenicity

Environmental Health Perspectives • VOLUME 116 | NUMBER 4 | April 2008 507



stochastic nature of the algorithm, the composi-
tion of training and test sets is different for dif-
ferent original data set divisions. For example,
we tested the results of more than 40 data set
divisions generated by the sphere exclusion and
found that any two training sets had no more
than 85% identical compounds. 

The statistical significance of models was
characterized with the standard leave-one-out
cross-validated R2 (q2) for the training sets and
the conventional R2 for the test sets. Models
were considered acceptable if both q2 and R2

were larger than the arbitrary cutoff values
(0.65 was used as a cutoff in this study).
Models that did not meet these cutoff criteria
were discarded. Additional details of this
approach are described elsewhere (Golbraikh
et al. 2003; Golbraikh and Tropsha 2002b).

kNN QSAR method. The kNN QSAR
method employs the kNN pattern recognition
principle and a variable selection procedure.
Initially, a subset of nvar (number of selected
variables) descriptors is selected randomly. The
model developed with this set of descriptors is
validated by leave-one-out cross-validation,
where each compound is eliminated from the
training set, and its biological activity is pre-
dicted as the average activity of k most similar
molecules (k = 1 to 5). The weighted molecu-
lar similarity was characterized by the modi-
fied Euclidean distance between compounds
in the nvar subspace of the multidimensional
descriptor space. Generally, the Euclidean dis-
tances in the descriptor space between a com-
pound and each of its k nearest neighbors are
not the same. Thus, the activity of each of the
k neighbors of a compound was given a weight
that was higher for close neighbors and lower
for distant neighbors as follows (Equations 1
and 2):

. [1]

, [2]

where di is the Euclidean distance between
the compound and its k nearest neighbors; wi

is the weight for every individual nearest
neighbor; yi is the actual activity value for
nearest neighbor i; and ŷ is the predicted
activity value. A method of simulated anneal-
ing with the Metropolis-like acceptance crite-
ria is used to optimize the variable selection.

In summary, the kNN QSAR algorithm
generates both an optimum k value and an
optimal nvar subset of descriptors, that afford a
QSAR model with the highest training set
model accuracy as estimated by the q2 value.
Further details of the kNN method implemen-
tation, including the description of the simu-
lated annealing procedure used for stochastic
sampling of the descriptor space, are given in
our previous publications (Ng et al. 2004;
Shen et al. 2003; Zheng and Tropsha 2000). 

Applicability domain of kNN QSAR
models. Formally, a QSAR model can predict
the target property for any compound for
which chemical descriptors can be calculated.
However, because all the models are developed
in kNN QSAR modeling by interpolating
activities of the nearest neighbor compounds
only in the relevant training sets, a special
applicability domain (i.e., similarity threshold)
should be introduced to avoid making predic-
tions for compounds that differ substantially
from the training set molecules. This proce-
dure resembles that for identifying chemical
outliers prior to the onset of modeling. 

To measure similarity, each compound is
represented by a point in the M-dimensional
descriptor space (where M is the total number
of descriptors in the descriptor pharma-
cophore) with the coordinates Xi1, Xi2, ..., XiM,
where Xi’s are the values of individual descrip-
tors. The molecular similarity between any two
molecules is characterized by the Euclidean dis-
tance between their representative points. The
Euclidean distance di,j between two points i
and j (which correspond to compounds i and
j) in M-dimensional space can be calculated as
follows (Equation 3):

. [3]

Compounds with the smallest distance
between one another are considered to have

the highest similarity. The similarities of com-
pounds in our training set are compiled to
produce an applicability domain threshold,
DT, calculated as follows (Equation 4):

DT = y– + Zσ [4]

Here, y– is the mean Euclidean distance to the
nearest neighbor of each compound within
the modeling set, σ is the standard deviation
of these Euclidean distances, and Z is an arbi-
trary parameter to control the significance
level. On the basis of previous studies (Shen
et al. 2002), we set the default value of this
parameter to 0.5, which formally places the
boundary for which compounds will be pre-
dicted at one-half of the SD (assuming a
Boltzmann distance distribution between
kNN compounds in the training set). Thus, if
the distance of the external compound from
at least one of its k nearest neighbors in the
training set exceeds this threshold, the predic-
tion is considered unreliable.

Robustness of QSAR models. y-Randomi-
zation (randomization of response) is a widely
used approach to establish the model robust-
ness. It consists of rebuilding the models using
randomized activities of the modeling set and
subsequent assessment of the model statistics. It
is expected that models obtained for the model-
ing set with randomized activities should have
significantly lower predictivity for the external
validation set than the models built using the
modeling set with real activities, or the total
number of acceptable models based on the ran-
domized modeling set satisfying the same cutoff
criterion (q2 and R2 > 0.65) is much less than
that based on the real modeling set. If this con-
dition is not satisfied, real models built for this
modeling set are not reliable and should be dis-
carded. This test was applied to all data divi-
sions considered in this study.

Results

Table 1 provides a summary of the classifica-
tion of the chemical agents used for these stud-
ies with respect to their “biological activity”
(i.e., the effect on cell viability) in each of the
six cell lines used for screening. In the entire
NTP–HTS data set of unique 1,289 com-
pounds, 140 were defined as “active” and 90 as
“inconclusive” based on one or more active or
inconclusive calls recorded in PubChem across
the six cell lines, respectively. The majority of
compounds—1,059—were recorded in
PubChem as “inactive” in all experiments.
Overall, the NTP–HTS data set contains
314 compounds that can be mapped to the
CPDB database and classified as carcinogenic
according to DSSTox “multisite, multisex, or
multispecies” summary designations (Table 2). 

QSAR modeling of NTP–HTS data using
chemical descriptors. QSAR modeling of
the NTP–HTS data was desired to establish
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Table 1. Summary of the biological activity of chemical agents screened in NTP–HTS assays.

Classification BJ HEK293 HepG2 Jurkat MRC-5 SK-N-SH All tests

Actives 42 63 41 121 37 74 140
Inconclusives 44 79 47 89 44 54 90
Inactives 1,203 1,147 1,201 1,079 1,208 1,161 1,059

Table 2. Rodent carcinogenicity classification (CPDB database) for 314 NTP–HTS compounds.

Rats Mice
Classification Male Female Male Female

Active 121 111 123 134
Inactive 150 154 153 140

Total 271 265 276 274



predictive models of HTS assays that can be
used to impute such data for future compound
libraries that may be tested. In addition, our use
of the y-randomization test as part of modeling
procedures could be viewed as an independent
statistical test of the “nonrandomness” of the
HTS data. The curated NTP–HTS data set has
a biased distribution of active and inactive com-
pounds (16% actives and inconclusives vs. 84%
inactives). This is characteristic of most of the
available biological data sets (such as those
deposited in PubChem), which are dominated
by inactive compounds. To address this bias,
we used a (dis)similarity search to exclude a
considerable fraction of inactive compounds
from the data set to balance the active/inactive
ratio for modeling purposes. To this end, we
calculated the Molecular ACCess System
(MACCS) structural keys (Renner and
Schneider 2006) for all 1,289 compounds in
the data set, using the MOE software
(Chemical Computing Group, Montreal,
Canada). All the active compounds were used
as a probe subset, and the Tanimoto coeffi-
cients (Schultz et al. 2003b; Willett and
Winterman 1986) between each inactive com-
pound and the probe subset were calculated
based on their MACCS keys. The inactive
compound was selected into the modeling set
only if it had a relatively high Tanimoto simi-
larity (> 0.7) with one or more active/inconclu-
sive compounds. Using this approach, 244 of
the original 1,079 inactive compounds were
selected because of their relatively high similar-
ity to the active compounds. Thus, the final
data set for the classification QSAR modeling
included a total of 384 compounds (140 actives
and 244 inactives). The rationale for this
approach to selecting (a subset of) inactive com-
pounds for the classification modeling is that it
is more challenging to establish robust models
when the two classes of active and inactive
compounds include relatively similar molecules.
It is quite obvious that if the two classes of
compounds (i.e., active or inactive) are chemi-
cally dissimilar as judged by a simple similarity
metric such as Tanimoto coefficients, then no
additional statistical modeling using sophisti-
cated data mining techniques is necessary. We
did not include any compounds with incon-
clusive results in our modeling studies.

Because it is critical to demonstrate that
QSAR models have high prediction accuracy
for external validation data sets (Golbraikh and
Tropsha 2002a; Zhang et al. 2006), 109 com-
pounds (37 actives and 72 inactives) were ran-
domly selected for external model validation.
The remaining 275 compounds (103 actives
and 172 inactives) were used for modeling, and
multiple training and test sets were generated.
The variable selection kNN QSAR models were
developed for each training set, and the predic-
tive power of each model was assessed against
the corresponding test set. The acceptability

cutoff values of the leave-one-out cross-valida-
tion accuracy and the prediction accuracy for
the test set were set to 0.65 (Kovatcheva et al.
2004). Because the data set was unbalanced,
we used the average of sensitivity and speci-
ficity to represent the overall predictive power
of a model in this study. Therefore, the overall
predictive accuracy of each model was defined
as the average of the correctly predicted active
ratio (sensitivity) and the correctly predicted
inactive ratio (specificity) (de Lima et al.
2006). The total number of models that satis-
fied the accuracy threshold criteria was 599,
and the statistical characteristics of 15 most sig-
nificant kNN models are shown in Table 3. 

Our previous studies have demonstrated
that the highest external prediction accuracy of
QSAR models is achieved using the consensus
approach, that is, by averaging the predictions
from individual models (Tropsha et al. 2003).
The consensus prediction results for 109 com-
pounds in the external validation set are
provided in Table 4. The sensitivity and speci-
ficity of the consensus prediction were 56.8%
and 90.2%, respectively. Thus, the overall pre-
dictive power was 73.5%, that is, similar to
that for the training/test sets (Table 3).

To ensure high external validation accuracy
of the training set models, we also considered
their applicability domains. This restriction
decreases the number of compounds consid-
ered for the prediction but increases the relia-
bility so that higher accuracy is typically
expected. Indeed, after removing compounds
outside the applicability domain of our train-
ing set models, the coverage of the external set
was reduced to 88%. However, the accuracy of
prediction for actives and inactives improved
to 65.4% and 92.9%, respectively (i.e., total
accuracy increased to ~ 80%).

It is interesting to see whether the kNN
HTS models could make reliable predictions of
the remaining 835 inactive compounds, which

were excluded because they were relatively dis-
similar to the compounds used in the model-
ing procedure. The consensus prediction gave
64.1% predictive accuracy for all 835 com-
pounds. After excluding 138 compounds out
of applicability domain, the coverage was
reduced to 83.5%, but the predictive accuracy
increased to 80.1%

The y-randomization test was performed as
well. For the modeling set with real HTS
results, there were 599 models that satisfied the
criterion of q2/R2 > 0.65 (Table 3), whereas for
the data set with randomized HTS results, only
5 models that had q2/R2 > 0.65 were generated.
These results indicate that our models are sta-
tistically robust.

The utility of the NTP–HTS data for
QSAR modeling of rodent carcinogenicity. A
total of 314 NTP–HTS compounds are repre-
sented in the CPDB. A summary of HTS
activity and rodent carcinogenicity of these
agents is shown in Table 5. Seventy-seven
percent of the compounds classified by
NTP–HTS as “active” are also categorized as
rodent carcinogens. On the contrary, only
46% of NTP–HTS “inactive” agents are classi-
fied by the CPDB as noncarcinogenic in
rodents. At the same time, the large fraction of
compounds found inactive in HTS assays
effectively renders the current assays insuffi-
cient in terms of predicting the in vivo toxicity.

To further examine whether in vitro
NTP–HTS data could improve the pre-
diction accuracy for in vivo rodent carcino-
genicity testing, we applied the hybrid
descriptor-based QSAR modeling that uti-
lized both biological (NTP-HTS output) and
chemical [MolConnZ (eduSoft LC)] descrip-
tors. First, all 314 compounds were randomly
divided into two sets. The modeling set com-
prised 264 compounds, whereas 50 randomly
selected compounds were designated as the
external validation set. After calculating
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Table 3. Statistical information of the 15 most statistically significant kNN QSAR models based on the
275-compound modeling set.

Model ID N-training Pred.-training N-test Pred.-test NNN

1 141 0.90 119 0.73 1
2 140 0.91 121 0.71 1
3 141 0.92 120 0.69 1
4 140 0.88 123 0.73 1
5 141 0.88 120 0.73 1
6 190 0.90 85 0.71 1
7 228 0.86 47 0.74 1
8 140 0.92 121 0.67 1
9 140 0.89 116 0.70 4
10 149 0.88 122 0.70 1
11 140 0.87 124 0.72 1
12 190 0.85 85 0.73 1
13 140 0.88 125 0.70 1
14 149 0.87 118 0.71 1
15 141 0.92 123 0.66 1
Average 154 0.89 111 0.71 1

Abbreviations: N-training, number of compounds in the training set; Pred.-training, the overall predictivity of the training
set; N-test, number of compounds in the test set; Pred.-test, the overall predictivity of the test set; NNN, number of the
nearest neighbors used for prediction.



chemical descriptors using the MolConnZ
software, we combined the NTP–HTS data
(a total of seven binary biological descriptors
including the active/inactive call for each cell
line separately and one for the entire experi-
ment, i.e., a compound was considered active
if it was active in at least one cell line) with
the MolConnZ chemical descriptors to create
a hybrid chemico-biological descriptor set.
Although we appreciate that the six cell lines
originate from different organs, it is notewor-
thy that great similarity was observed in cyto-
toxicity profiles across the entire panel of cell
lines (R. Tice, personal communication).
Furthermore, the number of active com-
pounds for each individual cell line is rela-
tively small, thus we combined the data. After
using the sphere exclusion method to generate
training/test set pairs from the same modeling
set of compounds, two types of kNN QSAR
models were developed. One was built using
only the MolConnZ chemical descriptor set
(340 variables), and the other was built using
the combined chemico-biological descriptor
set (347 variables).

kNN QSAR models were selected based
on the q2/R2 cutoff of 0.65/0.65 in this model-
ing development process. One hundred three
kNN models developed using chemical
descriptors alone that passed these criteria,
whereas this number nearly doubled to 198
when a combined chemico-biological descrip-
tor set was used. Although data from each of
the six cell lines or their combination were
given equal weight in defining the global
NTP–HTS activity of each compound, the
prognostic value of each cell line varied with
regard to its usefulness for predicting the
rodent carcinogenicity of a chemical. Figure 1
shows the frequency of use of each biological
descriptor in the 198 successful kNN QSAR
models. The predictive power of the QSAR
models was verified using the external valida-
tion set of 50 compounds not used in training
set modeling (Table 6). QSAR modeling
using MolConnZ descriptors only [referred to

as kNN-MolConnZ (kNN-MZ) models]
achieved 69.2% sensitivity and 55.5% speci-
ficity (Table 7). In contrast, 78.6% sensitivity
and 66.7% specificity were achieved when the
combined chemico-biological descriptor set
(referred to as kNN-MZHTS models) was
used for modeling. The overall prediction
accuracy rate increased significantly from
62.3% to 72.7% and the coverage of the
external set increased from 88% to 92%, that
is, more external compounds were found
within (numerically) the same applicability
domain when using the hybrid descriptor set.

The y-randomization test was also per-
formed for the carcinogenicity modeling using
MZ descriptors only and using the MZ and
HTS descriptors. Using randomized carcino-
genicity results, no models could be found to
satisfy the criterion of q2/R2 > 0.65, indicating
that our models were statistically robust.

Discussion

This study evaluated the potential of HTS cell
assays as novel biological predictors of adverse
health effects caused by chemicals in vivo in ani-
mal studies. To this end, we have evaluated the
HTS data for hundreds of chemical agents
tested in six cell lines and focused on com-
pounds that were also studied for their carcino-
genicity in chronic two-year cancer bioassays by
the NTP. Although HTS results provided com-
plete dose–response data, we used only binary
activity summary data (i.e., actives or inactives)
because of the binary nature of the CPDB data
(i.e., carcinogenic or not carcinogenic). Our ini-
tial analysis has established a strong correlation
between the chemical structures of the com-
pounds and their effects in cell-based assays.
However, we have demonstrated, not surpris-
ingly, that the results of testing compounds in
cell viability assays do not serve as unequivocal
predictors of their carcinogenicity in vivo.
Specifically, the data indicated a fairly strong
predictivity of cell growth inhibition toward
animal carcinogenicity (i.e., a positive cell
viability assay response has a strong probability

of predicting carcinogenicity in vivo) but low, if
any, predictivity of the in vivo carcinogenicity
on the compound effects in cell viability assays
(i.e., there are many carcinogens that do not
elicit responses in the cell viability assays). Thus,
to maximize the utility of in vitro assays results
for predicting the in vivo data, we considered
building QSAR models of the in vivo chemical
carcinogenicity using HTS results as additional
biological descriptors of underlying chemical
structures.

There are several major potential applica-
tions of biological descriptors in QSAR model-
ing that may advance the science and practice
of computational toxicology. In our computa-
tional experiments, the binary contributions of
all six HTS cell line test results were treated
equally a priori. The variable selection kNN
QSAR approach yielded 198 externally predic-
tive models. Because of the nature of the
method, these models differ in the choice of
descriptors resulting from the variable selection
procedure for the final model. Thus, the mod-
els could be analyzed for the frequency of
occurrence of different descriptors that could
reveal chemical determinants of a compound’s
carcinogenicity, as well as possible utility of the
individual HTS assays. Figure 1 shows the fre-
quency of occurrence of seven HTS descriptors
in the 198 kNN QSAR models described
above. The analysis of this distribution, espe-
cially in the context of chemical structure of
tested compounds, may provide clues concern-
ing the usefulness of different cell lines for
screening purposes.

For example, the HTS–Jurkat and HTS–
HepG2 biological descriptors were found in the
majority of the successful models. Jurkat and
HepG2 are human tumor cell lines derived
from a T-cell leukemia and hepatocellular carci-
noma, respectively. Jurkat cells grow in suspen-
sion with a relatively fast doubling time of about
22 hr. In contrast, HepG2 cells grow as attached
cultures with a doubling time of about 37 hr.
Both cell lines retain some metabolic capacity
toward xenobiotics and are used frequently for
in vitro testing (Mersch-Sundermann et al.
2004; Nagai et al. 2002). Compared with
HTS–Jurkat and HTS–HepG2 cells, the
HTS–HEK293 descriptor (a human embryonic
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Table 4. Consensus prediction for 109 compounds in the external validation set.

Consensus prediction After applicability domain applied
Model characteristics Exp. actives Exp. inactives Exp. actives Exp. inactives

Pred. actives (n) 21 7 17 5
Pred. inactives (n) 16 65 9 65
Sensitivity (%) 56.8 65.4
Specificity (%) 90.2 92.9
Overall predictive power (%)a 73.5 79.2

Abbreviations: Exp., experimental; Pred., predicted. 
aThe overall predictive power is the average value of sensitivity (predictive rate of actives) and specificity (predictive rate
of inactives).

Table 5. The relationship between HTS activity and rodent carcinogenicity of 314 compounds.

Content of CPDB HTS actives HTS inconclusives HTS inactives

CPDB actives (n) 30 12 136
CPDB inactives (n) 9 13 114
Correlation (%) 77 — 46
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Figure 1. Seven HTS descriptors with their fre-
quency of use in the 198 kNN QSAR model.



kidney cell line) was found in much smaller
numbers of successful models, and all but
two compounds active in this cell line were
also found to be active in other cell lines.
Therefore, assay results for the tested com-
pounds in HEK293 cells may be redundant
with respect to rodent carcinogenicity model-
ing conducted here. 

Interestingly, the predictions for 8 of the 50
compounds in the external test set were differ-
ent using the kNN-MZ versus kNN-MZHTS
models. The apparent reason for this disparity
(in the context of kNN QSAR approach used
in this study) is due to the change of nearest
neighbors in the training set of these 8 com-
pounds using the MolConnZ (eduSoft LC)
descriptors only versus using the hybrid chemi-
cal–HTS descriptors. For example, the com-
pound 2,4-dichlorophenol (CAS no. 120-83-2)
has 1,2-benzenediol (CAS no. 120-80-9),
1,4-benzenediol (CAS no. 123-31-9), and
4-chlorobenzene-1,2-diamine (CAS no.
95-83-0) as its nearest neighbors in the training
set as defined by kNN-MZ modeling
(Table 6). After including HTS descriptors, its
nearest neighbors in the training set change to
2-chloro-p-phenylenediamine (CAS no.
61702-44-1), 1-amino-4-methoxybenzene
(CAS no. 20265-97-8), and p-nitroaniline
(CAS no. 100-01-6) instead. Thus, the addi-
tion of HTS descriptors affects the similarity
relationships between compounds based purely
on their chemical descriptors. As shown in this
study, the addition of HTS descriptors, on
average, improves the prediction accuracy of
in vivo carcinogenicity. 

We further analyzed the interplay between
the significance of the bioassay and that of spe-
cific chemical descriptors in the context of
in vivo carcinogenicity by comparing the
occurrence of top chemical descriptors in
QSAR models with and without HTS descrip-
tors. Table 8 shows chemical descriptors that
occur most frequently in successful (i.e., exter-
nally predictive) QSAR models using chemical
descriptors only. This table also reports the
change in occurrence of these descriptors after
HTS descriptors are included. Because the
number of successful kNN QSAR models
increased significantly from 103 to 198 after
HTS descriptors were used, we also include in
Table 8 the ratio of occurrence to the total
number of models, which may better indicate
the significance of the descriptors. 

The descriptors for each final kNN QSAR
model are chosen as a result of the stochastic
variable selection procedure that maximizes the
correlation between descriptors and carcino-
genicity. We reasoned that the analysis of
occurrence of various chemical descriptors
before and after inclusion of HTS descriptors
in modeling may be interpreted in terms of
their relative information content with respect
to the in vivo toxicity. Thus, those chemical

descriptors that have a similar ratio of occur-
rence in models with or without HTS descrip-
tors (exemplified by descriptors 1, 2, and 7)
contribute to successful models independently

of the biological descriptors. For compounds
whose predicted activity is primarily determined
by the presence of these particular chemical
descriptors and unaffected by the addition of
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Table 6. Consensus prediction of 50 compounds in the external validation set using the kNN QSAR models
based on two different descriptor sets. 

CAS no. Name CPDB actives MZ MZHTS

79005 1,1,2-Trichloroethane + + +
106934 1,2-Dibromoethane + + +
90120 1-Methylnaphthalene – – –
86577 1-Nitronaphthalene – + +
634935 2,4,6-Trichloroaniline + + +
120832 2,4-Dichlorophenol – + –
99558 5-Nitro-o-toluidine + + +
67630 Isopropanol – + –
96695 4,4-Thiobis(6-tert-butyl-m-cresol) – + +
619170 4-Nitroanthranilic acid – – –
298817 8-Methoxypsoralen + + +
75058 Acetonitrile – + +
50782 Acetylsalicylic acid – – –
50760 Actinomycin D + I +
86500 Azinphosmethyl – – –
92875 Benzidine + + +
57578 Propiolactone + + +
80057 Bisphenol A – + –
75274 Bromodichloromethane + + +
115286 Chlorendic acid + I I
91645 Coumarin + + +
4342034 Dacarbazine + – –
103231 Di(2-ethylhexyl)adipate + + +
333415 Diazinon – – –
62737 Dichlorvos + + +
828002 Dimethoxane + – –
98011 Furfural + + +
87683 Hexachloro-1,3-butadiene + – +
67721 Hexachloroethane + + +
122667 Hydrazobenzene + – –
58935 Hydrochlorothiazide – I I
121755 Malathion – – –
298000 Methyl parathion – – –
150685 Monuron + – –
1212299 N,N’-Dicyclohexylthiourea – I I
759739 N-Ethyl-n-nitrosourea + + +
98953 Nitrobenzene + + +
67209 Nitrofurantoin + I +
59870 Nitrofurazone + I I
55185 N-Nitrosodiethylamine + + +
636215 o-Toluidine hydrochloride + – –
106478 p-Chloroaniline – – –
122601 Phenyl glycidyl ether + + +
103855 Phenylthiourea – – +
1918021 Picloram – – –
57681 Sulfamethazine + – –
79196 Thiosemicarbazide – + +
108054 Vinyl acetate + + +
1330207 Xylenes (mixed) – + +
17924924 Zearalenone + – +

Abbreviations: +, carcinogenic; –, noncarcinogenic; I, inconclusive because out of the applicability domain; MZ, models
based on MolConnZ descriptors only; MZHTS, models based on the combination of MolConnZ and HTS descriptors.

Table 7. Summary of the statistical parameters of the prediction results of 50 external compounds.

Chemical descriptors only Combined descriptors
Model characteristics Exp. actives Exp. inactives Exp. actives Exp. inactives

Pred. actives 18 8 22 6
Pred. inactives 8 10 6 12
Sensitivity (%) 69.2 78.6
Specificity (%) 55.5 66.7
Overall predictivity (%) 62.3 72.7
Coverage (%) 88 92

Abbreviations: Exp., experimental; Pred., predicted. 



HTS descriptors, this implies that the HTS
adds no new information to the prediction of
in vivo carcinogenicity. Conversely, if the fre-
quency of a chemical descriptor decreases sig-
nificantly after the HTS descriptors are
included, it is less important than, and likely
redundant with, the biological descriptors. In
these cases, the biological descriptor is clearly
adding new, biologically significant information
that is not as effectively captured by the chemi-
cal descriptor. 

Interestingly, descriptors 1 and 2
(N-nitroso compounds) were selected as the
most important chemical descriptors in our
models, and their importance is relatively unaf-
fected by inclusion of HTS descriptors. The
large majority of N-nitroso compounds have
been found to produce genotoxic effects and to
cause tumor development in laboratory ani-
mals, as they are metabolized to reactive elec-
trophilic species causing damage to various
cellular constituents such as DNA, constituting
a key event in the carcinogenic mechanism
(Brambilla and Martelli 2007). Because such
metabolic transformations do not generally
occur in cellular systems, the significance of all
but one of the HTS assays (i.e., HepG2) in
predicting events relevant to the carcinogenic-
ity for these compounds is likely to be mini-
mal. To the contrary, the NTP–HTS data
show that cells are highly sensitive to the effects
of amine-type compounds (descriptors 6 and
10) and biological descriptors are better predic-
tors of the carcinogenic potential of these
agents than structure alone. Among all 30 car-
cinogens that are also active in HTS tests, 15
are amines. A similar observation can be made
for organic compounds containing phosphorus
(descriptor 8). Most of the remaining chemical
descriptors, which approximately delineate
neighborhoods of chemical space, have similar
distribution among the models with or with-
out the HTS descriptors. Hence, HTS descrip-
tors offer no additional value as predictors of
carcinogenicity for these chemical subsets. As
more HTS data are generated, the above analy-
sis suggests a strategy that can be used to eluci-
date possible mechanistic relevance of HTS
assays to carcinogenicity prediction within
areas of chemical space approximately defined
by chemical descriptors. 

Conclusions
We have examined the utility of in vitro
NTP–HTS data for predicting in vivo adverse
health effects (i.e., carcinogenicity) of environ-
mental agents. Our analysis suggests that
NTP–HTS results have limited predictive
power by themselves for rodent carcinogenicity.
This result is not surprising, given the relatively
low frequency of positives across the HTS
assays (16%) and that cell viability (i.e., cell
death) may not be directly related to the car-
cinogenic potential of a compound. However,
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Table 8. Summary of the top 10 atom and bond type MozConnZ chemical descriptors used in successful
kNN QSAR models before and after using HTS descriptors.

Abbreviations: Descr_Name, name of descriptor; Freq_MZ, frequency of occurrence in successful kNN models only
using only MolConnZ descriptors; Ratio_MZ, ratio of occurrence in successful QSAR models using only MolConnZ
descriptors; Freq_MZHTS, frequency of occurrence in successful kNN models using MolConnZ and HTS descriptors;
Ratio_MZHTS, ratio of occurrence in successful QSAR models using MolConnZ and HTS descriptors.

No. Descr_Name Illustration Freq_MZ Ratio_MZ Freq_MZHTS Ratio_MZHTS

1 Snitroso Sum of E-states of nitroso group 38 36.9% 73 36.9%

2 nnitroso Number of nitroso group 34 33.0% 69 34.8%

3 nHBint3 Number of hydrogen bond acceptor 27 26.2% 31 15.7%
 and donor pairs separated by
 3 skeletal bonds

4 naasN Number of aromatic nitrogen 25 24.3% 42 21.2%
 with substitute

5 SHBint3 Sum of E-state of strength for 24 23.3% 41 20.7%
 potential hydrogen bonds if
 separated by 3 skeletal bonds

6 nHssNH Number of amine groups 24 23.3% 23 11.6%

7 SdsN Sum of E-states for nitrogens 24 23.3% 48 24.2%
 with one single bond and one
 double bond

8 SdsssP Sum of E-states for phosphors 19 18.4% 21 10.6%
 with three single bonds and
 one double bond

9 SsBr Sum of E-states for bromines 19 18.4% 45 22.7%

10 SHssNH Sum of H E-states for hydrogens 18 17.5% 25 12.6%
 in amine groups.
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our data suggest that using the NTP–HTS
results as biological fingerprint descriptors of
generalized xenobiotic-induced pathophysiol-
ogical processes helps improve the overall
QSAR-based prediction accuracy of rodent car-
cinogenicity compared with those based on
chemical descriptors alone. While the mecha-
nistic relevance of the HTS assays in predicting
rodent carcinogenicity is unclear at present, the
empirical evidence of the significance of the
biological descriptors for the computational
modeling purposes is compelling and should
motivate continued investigation. Furthermore,
as additional sets of compounds with known
in vivo toxicity responses are investigated in
cell-based viability assays, we shall continue to
develop models similar to those reported in this
article for additional toxicity end points. The
present analysis suggests that as more mechanis-
tically relevant HTS data are generated and a
greater number of compounds are screened,
computational toxicology tools could be used
to select most relevant HTS assays (cell lines
and/or measurements) and prioritize chemical
agents for screening. With sufficient improve-
ments in resulting model predictive perfor-
mance, in vitro HTS bioassays, coupled with
traditional chemical structure-based descriptors,
may be ultimately helpful in prioritizing or even
partially replacing in vivo toxicity testing. 
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CORRECTION

The following corrections have been made
from the original manuscript published
online. In the Abstract under “Methods and
Results,” the phrase “curated data set of
557 compounds” has been changed to
“curated data set of 384 compounds.” The
sentence “The resulting models had predic-
tion accuracies for training, test (containing
400 compounds together), and external vali-
dation (157 compounds) sets as high as
79%, 79%, and 84%, respectively” has been
changed to “The resulting models had pre-
diction accuracies for training, test (contain-
ing 275 compounds together), and external
validation (109 compounds) sets as high as
89%, 71%, and 74%, respectively.”


