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ABSTRACT

We summarise a set of analyses and studies we have conducted to assess the effects of

the use of a Computer Aided Detection (CAD) tool in breast screening. We have used

an interdisciplinary approach which combines: a) statistical analyses inspired by

reliability modelling in engineering, b) experimental studies of mammography

experts’ decisions using the tool, interpreted in the light of human factors psychology;

and c) ethnographic observations of the use of the tool both in trial conditions and in

everyday screening practice. Our investigations have shown patterns of human

behaviour and effects of computer-based advice that would not have been revealed by

a standard clinical trial approach. For example, we found that the negligible measured

effect of CAD could be explained by a range of effects on experts’ decisions,

beneficial in some cases and detrimental in others. There is some evidence of the

latter effects being due to the experts using the computer tool differently from the

developers’ intentions. We integrate insights from the different pieces of evidence and

highlight their implications for the design, evaluation and deployment of this sort of

computer tool.
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1. Introduction

In this paper we summarise the results of a variety of studies and analyses we have

conducted to investigate the use of a Computer Aided Detection (CAD) tool in

mammography. This work was done as part of DIRC (http://www.dirc.org.uk), a

collaborative, multidisciplinary project dealing with the dependability of computer

based systems: systems encompassing computer software and hardware together with

their human users and the social context of computer use. The use of computer aids in

breast screening is a good example of this sort of ‘human-computer system’.

As is common in the radiological literature, we will use the abbreviation ‘CAD' to

mean the computer tool, whenever the context does not create ambiguities with its

literal meaning ‘detection activity aided by a computer’.

CAD is used to alert (prompt) a human expert (typically a radiologist) to areas of

a mammogram (an X-ray image of the breast) where computerised image analysis

suggests that abnormalities may be found. Typically the CAD tool processes a

digitised version of a mammogram and marks it with ‘prompts’ to highlight

mammographic features that the reader should examine. The design goal for CAD is

to aid human experts (hereafter referred to as ‘readers’) to notice features in a

mammogram that might indicate cancer but that they may otherwise miss.

Our interest in the human-CAD system originated from a clinical trial funded by

the UK Health Technology Assessment (HTA) programme [1]. The goal was to

assess the impact of a particular CAD tool, R2 ImageChecker M100 (from R2

Technology, Inc., Los Altos, California) [2], in breast screening. The trial was

designed to test whether CAD increases readers' sensitivity (the proportion of cancers

recalled out of all cancers) without adversely affecting their specificity (the proportion
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of normal cases not recalled out of all normal cases). In Section 2 of this paper we

outline aspects of the HTA trial (reported in detail in [1]) that are relevant to our

research.

Our approach is multidisciplinary and combines insights from various disciplines:

reliability engineering, computing, psychology, human factors and sociology. We

were granted access to the HTA trial data and conducted supplementary analyses to

investigate in more detail the effects of CAD on readers’ decisions. Our analyses were

influenced by reliability modelling in engineering [3-4] and focused on how, inter

alia, the effects of CAD vary between cases or depend on whether the tool prompts

mammograms correctly or not. Section 3 summarises some results of these analyses,

which have been partly reported in [5]. We also conducted two follow-up studies,

outlined in Section 4, to investigate how readers react to incorrect CAD output [6].

The HTA trial and the follow-up studies were complemented by ethnographic studies

of CAD use (see Section 5), which have been partly reported in [7].

The discussion in Section 6 attempts to integrate the different findings and

highlights their potential implications for the design, evaluation and use of CAD. This

demands that we consider how we may extrapolate from data obtained in trial

conditions to the real world use of CAD in breast screening; we reflect on the

potential benefits and as yet unresolved questions of using a multidisciplinary

approach to address this important issue.

2. The HTA Trial

The goal of the HTA trial was to assess the impact of a CAD tool (R2 ImageChecker

M1000 [2]) in breast screening. This CAD tool had been shown to have a high
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sensitivity, that is, it prompts a high proportion of breast cancers. Castellino and

colleagues report an overall sensitivity of up to 90% [8]. However, high sensitivity

comes at the expense of low specificity, that is, it generates many false prompts, with

an average of 2.06 prompts per case in one study.

The trial was run with 50 readers, experienced in breast screening, and used 180

cases (a mixture of 60 cancers and 120 normal cases) distributed in 3 sets of 60. All

participating readers saw all the cases in two different experimental conditions: a)

‘unprompted condition’: without CAD; b) ‘prompted condition’: with CAD. The

order of conditions was randomised across the participants. In both conditions, the

participants saw two versions of each case: 1) the mammograms positioned on a

standard viewing roller; and 2) a digitised version of the mammograms printed on

paper. In the prompted condition, the printouts contained the prompts generated by

CAD. Participants were also asked to make their decisions as whether a case should

be recalled for further tests as if they were viewing the mammograms as single

readers in the screening programme. More details of the procedures can be found in

[1].

Analysis of the results showed no statistically significant impact of CAD (no

improvement and no reduction) on the readers’ sensitivity and specificity [1].

3. Supplementary analyses of the data from the HTA trial

The analyses we describe here were inspired by studies of the dependability of

software systems with diverse redundancy [3]. These studies have shown that

variation and co-variation of difficulty of input cases for different system components

affect the dependability of the overall system substantially. They also indicate that
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focusing on the average probabilities of the failures of the components, or assuming

statistical independence among their failures, can be misleading. We explored the

possibility that conclusions from those studies could also apply to the system formed

by CAD and the human reader. We focused our analyses on the role of the correctness

of CAD output and evaluating its interaction with case difficulty, which we define as a

probability of a reader, randomly selected from the given set, reaching a wrong

decision about a given case.

Throughout this paper, we will be talking about ‘errors’ of human (reader) or

machine (CAD). We clarify here how we define these errors and present the

terminology we will be using:

? ‘error by a human’ (or ‘incorrect decision’) means that she/he recalls a normal

case or fails to recall a cancer. ‘Correct decision’ means that she/he fails to recall a

normal case or recalls a cancer.

? we talk of ‘error by CAD’, or ‘incorrect output’:

o for a cancer, if CAD ‘misses’ the cancer (i.e. it gives a ‘false negative’),

which it can do in two ways: a) by failing to place any prompt on the

mammogram (‘unmarked’ cancer), or b) by placing prompts in areas other

than the actual location of the cancer (‘incorrectly marked’ cancer: all

prompts are ‘false’). We say that CAD provides ‘correct output’ for a

cancer (i.e. it processes it correctly; true positive) if it prompts the area on

the mammogram where the cancer is located (‘correctly marked’ cancer),

even if CAD may also have prompted other areas of the mammogram.

o for a normal case, if CAD places any prompt on the mammogram

(‘incorrectly marked’ normal case; false positive). We say that CAD
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provides ‘correct output’ for a normal case if it places no prompts

(‘unmarked’ normal; a ‘true negative’).

3.1 Potential of CAD for improving readers’ sensitivity

It is interesting to estimate how much CAD could potentially improve readers'

sensitivity for the test set in the trial.

In the HTA trial, readers in the unprompted condition (without CAD), made 2994

decisions about cancers (50 readers * 60 cancers - 6 missed data points). 741 of these

decisions were incorrect. Thus, the estimated probability of human error for cancers,

in the unprompted condition, is 741/2994=0.247 with 95% confidence interval (0.232,

0.263). Of these 741 errors, 314 occurred on cases correctly prompted by CAD.

If we assume (optimistically) that readers in the prompted condition will make the

best possible use of the CAD, i.e.:

1. will recognise and recall all the cancers correctly prompted by CAD;

2. will still recall all cancers that they recalled in the unprompted conditions,

even with incorrect output from CAD,

then the expected number of errors for cancers in the prompted condition is 741 –

 314 = 427 (out of all 2994 decisions), i.e. the probability of failure in the prompted

condition is estimated to be 427/2994 = 0.143 with 95% confidence interval (0.130,

0.156). Considering only the mean estimates, the estimated potential for improving

readers’ sensitivity equals 314/2994 = 0.105 (10.5%). Using a similar approach in

another study, Warren Burhenne and colleagues [9] reported “...CAD prompting

could have potentially helped reduce...” the initial rate of FN errors (0.21) by 77%,
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i.e., they estimated the potential for improving readers’ sensitivity as 0.21 ? 77% =

16.2% (0.162).

The analysis of the HTA trial data [1] shows that the estimated potential 10.5%

improvement in sensitivity does not seem to be realistic, at least for this experimental

setting, and that the assumptions for the above calculation were not verified. In the

prompted condition, readers missed correctly prompted cancers; they also made errors

they did not make in the unprompted condition, as shown in Table 1 for different

categories of cancers.

3.2 Correctness of CAD output affects readers’ decisions

In this section, we are looking at situations where readers' decisions about the same

case were different in the prompted and unprompted conditions, using an approach

similar to [10].

We ignore those outcomes in which the two decisions were either both correct or

both wrong and  consider only the following outcomes:

? the decision by a reader for a case was incorrect in the unprompted condition

and correct in the prompted condition (‘prompted decision better’);

? the reader's decision was correct in the prompted condition and incorrect in the

unprompted condition (‘prompted decision worse’).

If there were statistical independence between the outcomes ‘prompted decision

better/worse’ and ‘CAD output correct/incorrect’, then we could conclude that the

correctness of CAD output does not affect readers’ decisions.  We tested for

independence using Fisher's exact test [11] for the contingency tables given in Table

2. Independence would mean that the probability of the prompted decision being
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better rather than worse would be the same for cases correctly processed by CAD as

for cases incorrectly processed by CAD.

One can see in Table 2 that for cases (either cancers or normal) that were

incorrectly processed by CAD, readers’ decisions in the prompted condition were

more often worse (than their decisions in the unprompted condition) rather than

better. On the other hand, for correctly processed cases, readers’ decisions in the

prompted condition were more often better than worse. For example, the odds that the

prompted decision for a cancer is worse equal 89/73 ?  1.22 for incorrectly processed

cancers and 113/147 ?  0.73 for correctly processed cancers. The odds ratio equals

1.22/0.73 ?  1.58. The test indicates that this ratio is significantly different from 1 with

the p-value = 0.0274.

The results indicate that correct CAD output is likely to help in reaching a correct

decision and that incorrect CAD output makes it more difficult.

3.3 Error rates of readers and CAD for different populations of cases in different

conditions

To investigate the effect of correctness of CAD output, we estimated the probabilities

of human error in both the prompted and the unprompted conditions, for cases

categorised according to case type (normal or cancer) and the output of CAD (correct

or incorrect).

These estimates are shown in Table 3. Both for cancers and for normal cases, all

the estimated probabilities of error do not differ significantly between the prompted

and unprompted conditions, except for those normal cases that CAD did not prompt.
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For this category of cases, the readers' rate of false recalls in the prompted condition

was smaller than in the unprompted condition by 0.06.

As seen in Table 3, even in the unprompted condition, readers were more likely to

make incorrect decisions for cases which CAD also processed incorrectly: reader and

CAD errors are strongly correlated. In other words, for cases that are more difficult

for humans to interpret, CAD is less likely to give useful output.

We tested the correlation between errors made by readers and CAD for significance

with the exact Fisher's test [11] applied to the contingency tables for correct and

wrong decisions by readers, on cancers and on normal cases in both conditions (see

Table 4). The test indicated significant correlation for all 4 contingency tables (p-

value < 0.05).

3.4 Correctness of CAD output and case difficulty

We define difficulty of a case as the fraction of readers who produced an incorrect

decision about that case. We denote difficulty in the prompted condition as dp and

difficulty in the unprompted condition as d.

We call non-obvious a case on which at least one reader made an incorrect

decision, either in the prompted or unprompted condition.

ANOVA indicated that the value: d - dp is significantly different for groups of

cases processed by CAD correctly and incorrectly:

? all cancers: F(1,58)=4.1899, p-value= 0.0452;

? non-obvious cancers: F(1,44)= 4.0676, p-value=0.0498;

? normal cases:  F(1,118)=9.3384, p-value=0.00278;

? non-obvious normal cases:  F(1,114)= 9.0746, p-value=0.00319;
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In [5] we applied logistic regression to highlight general patterns in the effect of

CAD. It appears that CAD tends to make cancers which are relatively easy (i.e. with

d<0.6) less difficult (i.e., dp<d) and cases which are relatively difficult (i.e. with

d>0.6) even more difficult (i.e., dp>d).

The plot in Figure 1 illustrates this effect. The horizontal axis represents the

unprompted difficulty d. The vertical axis shows the differences (dp – d). So, a point

below the horizontal line indicates a cancer for which CAD appears to reduce the rate

of reader errors for cancers. Points marked ‘w’ and ‘c’ indicate the observed values of

d and (dp – d) for non-obvious cancers, divided into those with correct CAD output

(symbols ‘c’) and with wrong CAD output (symbols ‘w’). The curves show the

regression estimate for the mean value of (dp – d) for cases with different difficulty

d. The dashed curve corresponds to incorrectly prompted cancers, the dotted-dashed

curve to the correctly prompted cancers and the solid curve to all cancers together.

For more details of our regression analyses, see [5].

4. Follow-up studies

We conducted two studies as a follow up to the HTA trial, investigating in more detail

the effects of incorrect computer output on human decision making [6].

The test sets in the HTA trial did not contain enough examples of cancers

incorrectly processed by CAD (in particular, ‘unmarked’ cancers; see definitions in

Section 3) to allow us to draw statistically significant estimates of their effects on the

readers' decisions. We ran a follow-up experiment (Study 1) with a new test set (60
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cases) containing a larger proportion of cancers missed by CAD (20 out of the 30

cancers in the set). Nine of the false negatives in our test set were ‘unmarked cancers’.

We kept all other characteristics of the test set as similar as possible to the sets used in

the HTA trial as we wanted the readers to perceive this study as a natural extension to

the original trial and to behave in a comparable way.

The participants in Study 1 were twenty readers who had participated in the

original trial. We used essentially the same procedures as used in the HTA trial,

except that readers in Study 1 saw all the cases only once: always with the benefit of

CAD (‘prompted condition’).

At that stage, we were not interested in comparing readers’ performance with and

without CAD; our goal was to estimate the probability of reader error when the output

from CAD was incorrect. However, the results turned out to be highly unexpected: the

average reader sensitivity was surprisingly low (52%) and this decrease was

particularly strong for the ‘unmarked’ cancers. This led us to suspect that CAD errors

may have had a significant negative impact on readers’ decisions. On the other hand,

we could not exclude the alternative explanation that the cases in our study had

characteristics that made them particularly difficult (perhaps mammographically

undetectable) for both human readers and the CAD tool.

As a ‘control’ for Study 1, we ran Study 2, where readers saw the same test set

without CAD (‘unprompted condition’). We used nineteen readers from three

different UK screening centres , none of whom had participated in Study 1 but who

were equivalent to the group used in Study 1 in terms of years of experience and

professional background. We used the same procedures as in Study 1 except that

readers did not see the CAD output.
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Additionally, we conducted a new test with six of the more experienced

participants in Study 2 to get a better understanding of the ‘difficulty’ of the cancers

in our test set. These participants were presented again with the 30 mammograms

containing cancer and were asked to rank them according to various criteria of case

‘difficulty’. The responses of this subset of readers, as well as the performance of all

participants in Study 2, strongly indicated that six of the cases in our test set were

probably ‘occult’ cancers, undetectable via mammography and so we eliminated these

cases from our analyses (see more details in[6]).

Readers’ average sensitivity for the remaining 24 cancers was 61% for those who

saw the cases with CAD (Study 1) and 73% for those who saw them without CAD

(Study 2). The difference in average sensitivity between the two sets of readers was

statistically significant. In contrast, the average specificity in Study 2 was lower than

in Study 1 (86% vs. 90%) but the difference was not statistically significant.

Table 5 shows the proportions of incorrect human decisions in Study 1 and Study

2 for the 54 analysed cases, categorised according to case type (normal or cancer) and

output of CAD (‘unmarked’, ‘correctly marked’, ‘incorrectly marked’). ANOVA

showed statistically significant differences between Study 1 and Study 2 for: the

‘unmarked cancers’ (p<0.001), the ‘incorrectly marked’ cancers (p<0.05) and the

‘unmarked’ normal cases (p<0.05).

These findings strongly suggest that, at least for some categories of cases,

incorrect CAD output had a significant detrimental effect on human decisions in our

studies.

5. Ethnographic studies of CAD use
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The aim of the ethnographic studies was to examine how readers used the CAD tool

and the ways in which they came to understand and explain its prompts and general

behaviour. Readers’ behaviour was observed both in trial conditions [7] and in vivo in

everyday breast screening practice. Observations took place over a total period of

about one month, and were videoed and reviewed so as to examine in fine grained

detail the work of reading.

Using a ‘think aloud’ protocol in which participants vocalised their thought

processes to the observer as they read cases, we attempted to explore the sense readers

made of prompts in the context of the mammograms on which they occurred.

Subsequently, we discussed with readers cases they identified as problematic

(especially cases on which they had spent a substantial amount of time) to clarify how

they dealt with these ‘difficult’ cases.

A significant finding was the importance readers attached to ascertaining what a

prompt ‘meant’: how it could be explained in the context of the mammogram. In

some cases the accounts were of the order “I don’t know why it’s prompted that”, in

others readers saw the features prompted as, for example, composite shadows and

gave an account of why they thought the CAD tool had prompted the feature together

with what they saw it as actually being (e.g., benign, because it could be ‘picked

apart’).

Although readers were advised to use CAD as an attention cue, and to use their

own judgement to decide whether a prompted feature required recall, we observed

that they sometimes used prompts to inform their decisions. For example, one reader

commented: “This is a case where without the prompt I’d probably let it go … but

seeing the prompt I’ll probably recall … it doesn’t look like a mass but she’s got quite
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difficult dense breasts … I’d probably recall.” In other instances, we observed readers

using the absence of a prompt in as evidence for ‘no recall’.

The explanation for this may be that the uses to which prompts are put are

contingent on the specific problems posed by individual cases. For example, reading

dense, feature rich breasts poses demands very different from those of lucent or

uncomplicated breasts, and the reader’s comment above demonstrates how she

marshals the ‘evidence’ of the prompt in making a decision under these specific

circumstances.

Over time, readers acquired a ‘biography’ for the CAD tool: they came to believe

they knew what features it would and would not prompt and they read with this

putative biography as a factor in their work. For example, readers would often remark

that they had anticipated that the system would prompt for a particular feature within

the breast, sometimes then dismissing the prompt as they already had judged the

feature to be benign. This does not mean that they would ignore the prompt, or that

they would not pay serious attention to it, but that they thought the prompt could be

expected given their emerging understanding of what the CAD tool could and did do.

Post trial discussions with readers indicated some of the strengths they attributed

to the CAD tool:

? an ability to draw their attention to subtle signs they might have missed

otherwise; in some instances, readers reported that a prompt had led them to

recall a case that they would have ‘let go’ had the prompt not been there;

? its perceived consistency; prompts were seen as useful by compensating in

some consistent way for individual human weaknesses.

On the other hand, readers noticed the following weaknesses of the tool:
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? the many false prompts: the tool was seen to prompt the wrong

mammographic features; in many instances, readers explicitly dismissed

prompts that they interpreted as artefacts, noise or obvious benign

appearances;

? the distracting effect of too many prompts;

? the fact that the tool missed obvious features that readers thought should have

been prompted.

6. Discussion

6.1 Impact of CAD on readers’ sensitivity

CAD in mammography has the potential to improve readers’ ability to detect cancers.

As we saw in Section 3.1, if readers were always to react appropriately to the prompts

placed correctly by CAD, their sensitivity in the HTA trial could have increased by up

to ~10%. However, the trial showed no statistically significant effects of CAD on

readers’ average sensitivity. This result is actually consistent with most experimental

measurements of the impact of R2 ImageChecker and other similar CAD tools on

mammogram reading (e.g. [12-16]). To improve the effectiveness of computer aids, it

is desirable to explain why CAD apparently had no effect in these studies.

A simple conjecture would be that readers tend to ignore CAD outputs, possibly

because the high number of false prompts creates excessive load. However, our

statistical analyses and ethnographic studies do suggest systematic effects of the use

of CAD, which are positive or negative depending on aspects of the cases and on

CAD output. Readers’ reports suggested that the presence of CAD prompts had at
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times alerted them to relevant mammographic features that they would have missed

otherwise as well as affecting their recall decision for features that they had already

noticed. These reports are corroborated by our supplementary analyses of the HTA

trial data, which indicate that for a subset of cases CAD did have beneficial effects on

readers’ decisions (see Table 2 & Fig 1). At the same time, readers often dismissed

explicitly many of the prompts as they considered them false. Analysis of the data

indicates that some of these were, in fact, correct prompts: readers sometimes had

difficulties distinguishing between correct and incorrect prompts.

Our statistical analyses also show that CAD output could have detrimental effects

on readers’ sensitivity for a subset of cases (‘difficult’ cancers), especially when the

output of CAD was incorrect.

We argue that CAD, rather than having too little effect on readers’ decisions to

produce a measurable impact, had both beneficial and detrimental effects on readers’

performance, but in the trial these effects compensated for each other, resulting in no

significant impact on average sensitivity.

6.2 Effects of the absence of prompts

By choosing in our follow-up studies a test set with a large proportion of cancers

missed by CAD, we managed to isolate (somewhat serendipitously) the potential

detrimental effects of CAD on reader sensitivity. Participants who read our test set

with the benefit of CAD (Study 1) showed a significantly lower sensitivity than those

who saw the same cases without CAD (Study 2).

This effect was particularly marked for those cancers which CAD did not prompt

and led us to conjecture that the absence of prompts may have a much bigger impact
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on readers’ decisions than anticipated. Our analyses of the data from both the HTA

trial and our follow-up studies strongly suggest that readers may have used the

absence of prompts on a mammogram as a sort of reassurance for their ‘no recall’

decisions for normal cases. It appears that, based on their experience with the tool,

readers tended to (correctly) assume that the absence of prompting was a strong

indication that a case was normal. The participants (both in the HTA trial and in

follow-up Study 1) were very unlikely to recall cases for which CAD had issued no

prompts. Again, these findings are broadly corroborated by our ethnographic

observations.

One could argue that this is a rational approach. Readers perceived many of the

prompts as distracting. As most mammograms contained prompts, the absence of

prompts was more informative than their presence (especially if detailed analysis of

every prompt was too demanding and thus practically infeasible). This can be

beneficial when dealing with equivocal normal cases (see Table 2). However, as the

results from our follow-up studies indicate, this can have damaging effects on readers'

decisions for difficult-to-detect cancers that CAD does not prompt.

To our knowledge, such detrimental effects have not been reported before in the

radiological/CAD literature. Earlier human factors studies of the effects of computer

failures on human behaviour have shown that the failure of a computer aid to detect

and warn of a target event could make users less likely to make the right decision for

the event [17-18]. However, the participants in such studies are typically students

working in artificial laboratory settings, while our participants were experts working

in relatively realistic settings relevant to their area of expertise.

One plausible mechanism to explain these effects is that the absence of prompts

made readers revise their decisions for ambiguous abnormalities they had already
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detected. In other words, they may have used the absence of prompts as a reassurance

for a ’no recall’ decision when dealing with features they found difficult to interpret.

It is possible that readers were using whatever evidence was available to resolve

uncertainty. The implication is that CAD was being used not only as a detection aid

but also as a classification or diagnostic aid, which is not what the tool is designed for.

This is consistent with our observations (section 5) and also with earlier studies of

CAD tools [19]. But we cannot exclude alternative mechanisms. For example, the

absence of prompts may have caused readers to pay less attention to a case and, as a

result, they may have failed to detect signs they would not have missed otherwise (as

proposed by studies of ‘automation bias’ or ‘over-reliance’ on computer advice [17]).

Although this is a plausible scenario, we have not found evidence to support its

occurrence in the HTA trial or our follow-up studies.

6.3 Difficulties of extrapolating results to real world practice

Most of the findings reported in this paper are based on studies and analyses of

readers’ behaviour in trial conditions. Although there was an attempt to make the

experimental settings reasonably realistic, many artificialities and simplifications

were unavoidable. One must be careful, therefore, when extrapolating from the

behaviours observed to effects in the field. We highlight here some important

differences between the trial(s) and everyday practice:

a) A common criticism is that clinical trials are conducted with test sets containing

unrealistically high proportions of pathological cases (so as to achieve sufficient

statistical power with manageable numbers of cases). Evidence that radiologists

do behave differently when faced with case samples containing different
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prevalence of disease has been reported [20-21]. These effects have not received

sufficient attention to date and are worth exploring further.

b) In everyday breast screening, readers have access to many other sources of

information in addition to CAD (e.g. earlier mammograms, medical records, etc.);

these sources of information may make readers interpret CAD output in different

ways from how they did in the trials.

c) In the NHS Breast Screening Programme, reading is essentially a collaborative

activity [22]: double reading is common practice and the final decision on a case

is often the result of group discussion. In contrast, trial participants acted as

though they were reading alone, which may have influenced how they interpreted

the prompts and made their decisions.

d) In the trial, we saw how readers attempted to make sense of the tool’s behaviour.

In everyday practice, readers would have a better opportunity to gain a

progressive understanding of how the tool works and to adjust their interpretation

of its behaviour accordingly.

Despite these difficulties, many of the considerations derived from the clinical

trial are relevant and useful. The statistical analyses, in conjunction with observations

of humans in this and similar tasks, indicate plausible mechanisms that would cause

the effects we observed, but do not allow us to decide which of these mechanisms will

be active to a perceptible extent in a given activity. However, finding evidence of

them in practice, even in partially artificial environments, is prima facie evidence of

their being likely to occur. Designers of tasks and the computer tools to support them

should consider how these behaviours may arise, and how to adapt tools and

procedures to reduce those that are considered negative; assessors should consider

them as factors that may change between the clinical trial and clinical use.
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6.4 Methodological implications for the evaluation of computer aids

The use of standard clinical trial regime for evaluating new healthcare technologies

has been subject to much criticism in recent years [23-26]. One problem that has been

highlighted is that trial designs inevitably ignore the contextual nature of the work

being supported, raising doubts about extrapolating trial results to real settings of use.

Our decision to employ a multidisciplinary approach to CAD evaluation was partly

intended as an exploration of how criticisms of clinical trials might be addressed.

Our experience of using ethnographic methods to complement statistical anlysis

has shown some promise. Ethnography aims at understanding the ‘situatedness’ of

work practices: i.e., how activities take place in their real-world context. The value of

ethnographic methods has already become quite widely recognised as a way of

informing requirements so that IT systems are designed appropriately for their actual

circumstances of use [27]. In our evaluation of CAD, we also found that ethnographic

methods can be valuable in addressing the 'ecological validity' of clinical trials by

helping the interpretation of trial results to take into account differences between the

context of the trial and a more realistic context of use.

First, it is only through ethnographic studies that we have been able to gain an

understanding in detail of the character of everyday screening work and the context in

which a CAD tool would be used. This has helped us identify possible mismatches

between the tool as designed and readers’ requirements [7]. As an example, we

observed readers’ perceived need to explain the behaviour of the CAD tool in order to

use it properly and how they struggled to do this with the tool as designed. Second,

ethnographic studies helped to reveal aspects of how readers actually used the CAD
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tool in the trial. We found evidence of readers not adhering to the trial protocol of

using the tool as an attention cue and, instead, using it at times as a decision aid.

Ethnography and statistical analysis thus corroborated each other’s conclusions.

Third, ethnographic findings also influenced the choice of probabilistic models [4] by

avoiding unrealistic assumptions that would invalidate results.

From a statistical viewpoint, a first consideration is simply that averages may hide

substantial variations between sub-populations. Our statistical analyses, motivated by

the ‘diversity modelling’ approach (reported in [3-4]) and its emphasis on how

performance varies across classes of cases, have proven very useful here.

We found both beneficial and detrimental systematic effects of the use of CAD

that just happen to cancel out in the trial (though the detrimental effects appear

acutely in our follow-up studies). If these effects were to be present in practical

clinical use, with different mixes of cases and readers from those in the trial, the net

overall effect might be positive, negative or null, in addition to some possible transfer

of risk between categories of patients. It might still be possible to estimate the net

effect in future clinical use from the results in the trial [4], if further studies showed

that the {case, reader} pairs can be classified by variables that can be estimated in

both situations before introducing CAD and that are sufficiently predictive.

6.5 Implications for CAD design and deployment

We consider here the implications of  four of our main sets of findings:

a) Limited diversity between human and machine errors. In the HTA trial, CAD

errors were heavily correlated with the ‘difficulty’ of cases (see Sect. 3.3, Table

3). To increase the ‘potential’ advantage we estimated in Sect. 3.1, CAD should
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prompt correctly those cases where unaided readers would tend to fail: its error

pattern should be as ‘diverse’ as possible from the readers’ (cf the mathematical

models in [3-4]). Some improvement in CAD effectiveness could be sought by

increasing this diversity, even without improving the average sensitivity or

specificity of CAD. The tool could be tuned to be more sensitive for classes of

cases on which readers tend to be less effective, as these cases are natural

candidates for CAD to make a difference. Perhaps CAD thus tuned to be ‘more

diverse’ from its users may improve the latter’s performance more than CAD

simply tuned to be very good (in terms of sensitivity, specificity or any weighted

combination of the two). We believe that this possibility is worth exploring

although how much gain (if any) it would produce depends on the details of the

specific CAD algorithms and the degrees of freedom in tuning them. It might

even be desirable to adapt CAD tuning differently for each individual reader,

automatically or manually.

b) Evidence of systematic positive and negative effects of CAD. Specific human

behaviours that are considered undesirable may be targeted with methods for

either avoiding them or correcting their negative effects (‘fault tolerance’). We

could think of many solutions, whose acceptability in the specific working

environment would need to be checked before they are adopted. For example, the

cognitive load on readers could be reduced by not repeating prompts on features

that readers have already noticed and marked. Similarly, the self-calibration of

readers, and their reliance on the CAD outputs at times as a decision aid instead

of an attention cue, could be corrected by including in their normal workload

fictitious cases with incorrect CAD outputs, rarely but yet frequently enough to

refresh their memory of types of possible errors by CAD. Changes could also be
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made to the CAD tool so that it makes readers’ violations of prescribed protocols

of use impractical or harder to justify.

c) Readers’ evident concern to explain the presence or absence of prompts. One

approach would be to explore how the CAD tool could provide explanations of its

behaviour on demand. The challenge would be to produce the sorts of accounts

that would be useful to a reader, which calls for an understanding of the sorts of

explanations where confusion may arise. The question also exists whether such

exacting specifications could be implemented reliably enough not to make the

explanation facility a source of further problems.

d) Readers seemed to be over-influenced by the absence of prompts. When using

CAD, readers are required to pay attention to prompts and not to their absence

but, in reality, they seemed to be doing the opposite. Design changes might be

implemented to combat this problem (e.g. by introducing mechanisms that make

readers aware of the risks of this behaviour). However, one could argue that the

requirement that readers not be influenced at all by the absence of prompts is

possibly psychologically impossible to satisfy as well as normatively incorrect, if

the absence of prompts has indeed informative value; in this case, there could be

merit in seeking to provide readers with a heuristic procedure to follow that would

give absence of prompts approximately the right weight in decisions, rather than

attempting to have them ignore it altogether.

7. Concluding remarks

The overall aim of our work is to examine more closely the effects of decision aids on

human judgement and the factors that affect the dependable performance of human-
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computer systems. We have used CAD as a case study for exploring some of the

subtler interactions between human decisions and computer-generated evidence. Our

multidisciplinary approach combining quantitative and qualitative methods has helped

to detail and understand some of the possible factors underlying the apparent lack of

effects of CAD in some trials, and to identify areas for further development.

Statistical analyses identified some possibly detrimental effects of CAD on reader

performance. These findings were corroborated by the ethnographic studies that

provided important insights into the manner in which readers came to use the tool as a

part of their work, and by follow-up experiments. In this way, the various methods

used helped to orient each other and improve confidence in our findings.

Our multidisciplinary approach has helped to address some of the recognised

limitations of the clinical trial as an evaluation methodology for IT-based healthcare

interventions. The use of ethnographic observation, in particular, has helped to put the

clinical trial results into a real world context of use and thereby gain a better

understanding of their implications for the everyday work of reading mammograms.

We would note also that the introduction of a new technology such as CAD may

change work practices and thus, in an iterative process, make new demands on the

technology. Evaluation methodologies that do not take into account the influence of

adaptation and learning may fail to deliver meaningful results for users and designers

alike and to contribute to improving the technology. Again, our multidisciplinary

approach has enabled us to gain some perspectives on how readers learn and adapt to

the behaviour of the CAD tool and suggested some promising lines of enquiry for

how the tool and the procedures for using it may themselves be adapted.

In conclusion, our studies have provided some insight about the effects of CAD

on readers’ performance, as well as some methodological indications. Both results
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may be of interest for a larger class of tasks and computer aids than that of CAD for

mammography.
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TABLES & FIGURE

Table 1. Two categories of human error for cancers, in the prompted
condition
Sub-populations of cancers Errors on cases correctly

processed by CAD
Errors that readers did
not make in the
unprompted condition

detected by all readers in the
unprompted condition 4 4

detected by more than 50% of
readers in the unprompted
condition

144 52

all cases 279 97

Table 2 Contingency tables for correctness of CAD output and change of
reader's decision between two conditions*

Reader's decisions for
Cancers**

Reader's decisions for
Normal cases***

prompted
decision
worse

prompted
decision
better

prompted
decision
worse

prompted
decision
better

89 73 495 443incorrect CAD output

correct CAD output 113 147 42 103

Fisher's Exact Test for Count Data p-value=0.0274
estimated odds ratio=1.58

p-value=9.86 10 -8

estimated odds ratio=2.74

* Complete count data about  readers' decisions are shown in Table 4.
** Total number of complete pairs of decisions for cancers =2988 (12 data points missing)
***  Total number of complete pairs of decisions for normal cases =5986 (14 data points missing)



32

Table 3 Probabilities of readers' errors* for different sub-populations of
cases**
Sub-populations of
cases

Cancers Normal cases

Prompted
condition

Unprompted
condition

Prompted
condition

Unprompted
condition

Correct CAD output 0.124
(0.111, 0.139)**

0.140
(0.126, 0.155)

0.097***
(0.080,0.117)

0.155***
(0.134,0.179)

Incorrect CAD output 0.594
(0.558, 0.630)

0.571
(0.534, 0.607)

0.200
(0.189,0.211)

0.189
(0.179,0.201)

All cases 0.242
(0.227, 0.258)

0.247
(0.232, 0.263)

0.182
(0.172,0.192)

0.183
(0.174,0.193)

* Note that sensitivity and specificity can be computed as follows: sensitivity  = 1 - "probability of
error for cancers";  specificity = 1 - "probability of error for normal cases"
** Complete count data for estimating these probabilities are shown in Table 4
***95% confidence interval
**** Statistically significant difference

Table 4 Contingency tables for correctness of readers' decisions and
CAD's output for different categories of cases in different conditions*

Cancers Normal cases
Correct

CAD output
Incorrect

CAD output
Correct

CAD output
Incorrect

CAD output

1932 321 948 3956
With CAD
Correct reader decisions
Incorrect reader decisions 314 427 102 987

Exact Fisher's Test estimated odds ratio=8.176
p-value < 2.2 10-16

estimated odds ratio = 2.319
p-value < 2.2 10-16

1966 304 887 4007
Without CAD
Correct reader decisions
Incorrect reader decisions 279 445 163 936

Exact Fisher's Test estimated odds ratio = 10.300
p-value < 2.2 10-16

estimated odds ratio = 1.271
p-value = 0.009542

* Estimated probabilities of readers' errors with 95% confidence intervals are shown in Table 3.

Table 5. Proportions of incorrect human decisions in follow-up Studies 1
and 2

Correctly marked by CAD Incorrectly marked by CAD Unmarked by CAD
Study 1

(with CAD)
Study 2

(without CAD)
Study 1

(with CAD)
Study 2

(without CAD)
Study 1

(with CAD)
Study 2

(without CAD)

Cancer 0.19 0.10 0.45 0.33 0.67 0.46

Normal n/a n/a 0.08 0.13 0.06 0.12

Note: The proportions have been calculated out of the total number of ‘recall/no recall’ decisions
generated by the participants (20 in Study 1 and 19 in Study 2) in each case category. Bold type
indicates that there was a statistically significant difference between the proportions in Study 1 and
those in Study 2 for the same sub-population of cases (ANOVA).
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Figure 1. Effect of correctness of CAD output on case difficulty (rate of FN errors):
dp: prompted difficulty; d: unprompted difficulty; w: cancer that was wrongly
processed by CAD; c: cancer that was correctly processed by CAD; dashed curve:
logistic regression curve for wrongly processed cancers; dashed-dotted curve: logistic
regression curve for correctly processed cancers; solid curve: logistic regression curve
for all cancers.


