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Use of crystal structure informatics for defining 

the conformational space needed for predicting 

crystal structures of pharmaceutical molecules.  
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ABSTRACT: Determining the range of conformations that a flexible pharmaceutical.like 

molecule could plausibly adopt in a crystal structure is a key to successful crystal structure 

prediction (CSP) studies. We aim to use conformational information from the crystal 

structures in the Cambridge Structural Database (CSD) to facilitate this task. The 

conformations produced by the CSD Conformer Generator are reduced in number by 

considering the underlying rotamer distributions, an analysis of changes in molecular shape, 

and a minimal number of molecular ��� 
�
�
� calculations. This method is tested for five 

pharmaceutical.like molecules where an extensive CSP study has already been performed. 

The CSD informatics.derived set of crystal structure searches generates almost all the low.

energy crystal structures previously found, including all experimental structures. The 
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workflow effectively combines information on individual torsion angles and then eliminates 

the combinations that are too high in energy to be found in the solid state, reducing the 

resources needed to cover the solid.state conformational space of a molecule. This provides 

insights into how the low energy solid.state and isolated.molecule conformations are related 

to the properties of the individual flexible torsion angles. 

1.� INTRODUCTION 

Establishing the range of conformations that a potential drug molecule can adopt is not 

only relevant to drug design. Most drugs are formulated with the active molecule in the solid 

state,1, 2 and the physical properties of the crystalline forms of an API can be very dependent 

on the crystal structure1.11 with most pharmaceuticals having a range of solid.state structures 

(polymorphs) containing different conformations of the molecule.5, 11, 12  Hence, in drug 

development, the pharmaceutical undergoes a screen for possible solid.forms involving a 

diverse range of crystallization experiments.3, 10, 13.16 Since this cannot bring total reassurance 

that all relevant solid forms of the molecule are known,3, 7, 10, 13  there is considerable interest 

in using computational modeling to predict the polymorphs of organic molecules.1, 3, 10, 13, 17, 

18 Such crystal structure prediction (CSP) studies19  should generate the observed structure 

and usually other structures that are within the likely energy range of possible polymorphism, 

which can be considered as putative polymorphs (PPMs). There are examples of using the 

predicted structure of a PPM to devise an experiment to find it.13, 20, 21 Hence CSP methods 

have been evolving rapidly,22 along with our understanding of why they may over.predict 

polymorphism.23 They have been applied to about a dozen pharmaceutical molecules in 

collaboration with industrial pharmaceutical solid.state scientists,1, 3 and shown to provide 

valuable insights into the crystallization behavior. However, a major barrier to the use of CSP 
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studies as a routine complement to industrial screening is the limitation in the number of 

flexible torsion angles in the molecule that can be tackled, even with considerable computer 

resources. 

The importance of conformational flexibility can be seen from the approximation of the 

lattice energy (Elatt), defined as the energy for separating all the molecules in a static lattice at 

0 K to an infinite distance in their lowest.energy conformation,19  as: 

				����� = ��	�
� + ��	���                                   (1) 

where Uinter is the intermolecular energy due to interactions between molecules and ?Eintra 

is the intramolecular energy penalty for distorting the molecular conformation from its gas.

phase global minimum.19  This approximation of lattice energy, which is used in several CSP 

methods,24 is effective for rigid molecules (?Eintra~0) but  rapidly becomes more expensive as 

the molecule can adopt more conformations, particularly since the need for accurate lattice.

energy differences (most known polymorphs differ in lattice energy by less than 6 kJ/mol)5 

means that electronic.structure ��� 
�
�
� calculations are needed. Since local optimization 

methods can only go to the nearest lattice.energy minima, the flexible torsion angles that can 

significantly change the shape and the packing capabilities of the molecule need to be 

included as search variables in the generation of a comprehensive set of plausible crystal 

structures, along with the cell parameters and molecular positions and orientations.  

Hence, most successful CSP methods based on equation (1) can be broken down into three 

steps:24  

1)� The determination of the range of conformations that the molecule could adopt in the 

solid state.  

2)� The generation of a comprehensive set of plausible crystal structures, each 

corresponding to a separate lattice.energy minimum, usually generated using a 
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relatively cheap approximation for Elatt.. An example of a crystal.structure generation 

engine, which exploits the separation in equation (1), is CrystalPredictor,17, 25, 26 which 

estimates ?Eintra by interpolation over a multi.dimensional grid of molecular ��� 
�
�
� 

energies for those torsion angles that need to be treated as variables in the search.25 

3)� Optimization and ranking of the generated crystal structures using more accurate and 

expensive models for Elatt. 

Extending CSP to the more flexible pharmaceuticals requires speeding up steps (1) and (2). 

Although some CSP methods do not explicitly require step (1), since they perform global 

searches without the need of limiting the conformational space,24, 27.29 those that have been 

successfully applied to larger flexible molecules implicitly include this through derivation of 

a molecule.specific force.field from ��� 
�
�
� calculations.30 Successes in the blind tests of 

crystal structure prediction methods using cheap transferable force fields rather than using 

extensive ���
�
�
� calculations are rare.24  In this paper, we seek to find tools that can assist 

with defining the conformational space for a specific molecule, which are faster than a set of 

���
�
�
� calculations for determining how to combine the behavior of the individual torsion 

angles.  

An informatics approach to studying crystalline conformations can be based on the  

Cambridge Structural Database (CSD),31 which contains more than 850,000 experimentally 

determined crystal structures. Several informatics tools exist for retrieving and analyzing 

CSD conformational information, some of which have been successfully used to provide 

insightful information on pharmaceutical molecules.32 The oldest CSD tool for investigating 

conformational preferences in the organic solid state is Mogul, which creates charts of the 

observed values of the bond.lengths, bond.angles and torsion.angles in the crystal structures 

of molecules containing a fragment of interest in the CSD.33 Recently, the CCDC has 
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developed knowledge.based conformational libraries more suited to high.throughput analyses 

of geometric preferences of flexible molecules. There is a rotamer library for each rotatable 

bond, defined by the chemical environment, whose distribution covers the full 0.360° 

range.34 Furthermore, the data extracted from these libraries can be analyzed by a  kernel 

density estimation (KDE) to generate smooth probability density functions (PDFs), to allow a 

quantitative analysis of molecular conformational preferences; given the circular nature of 

torsion angles, the Von Mises kernel is the most suited for their analysis.35
  The CSD 

Conformer Generator (CG)36 uses the rotamer libraries to generate conformers libraries, 

which were originally designed for use in life.science modeling such as docking ligands into 

active sites or pharmacophoric shape matching. The CG combines the frequencies of the 

torsion angle or flexible ring conformations within the CSD into a probability score, which is 

used to rank  the final set of conformations.36 In this work, we seek to determine whether 

these informatics tools can assist with defining the conformational space for specific flexible 

pharmaceutical.like molecules in CSP. 

Hence, we propose a workflow for simplifying the definition of the conformational 

preferences37 of flexible molecules, with the goal of reducing the computational cost of CSP 

studies without reducing their effectiveness in identifying potential conformational38 

polymorphs. The workflow determines how conformational information can be utilized to 

reduce the number of ��� 
�
�
�� calculations that are required to generate plausible crystal 

structures. This approach is tested for the ability to generate all the low.energy crystal 

structures of five large molecules that were found in previous successful CSP studies where a 

large human and computational effort had been made to try to ensure comprehensive 

coverage of conformational space. The results show this approach can be a step towards a 
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routine use of CSP studies that can provide insights into conformational polymorphism of a 

wider range of pharmaceuticals. 

2.� METHODS 

 

Figure 1. Chemical diagrams of the molecules used to test the applicability of CSD 

information to systems of pharmaceutical interest, showing the torsion angles that are 

identified as flexible by CG and the number of distinct conformations generated by the CG 

for each molecule. The additional angles not identified by CG are in green and define the 

position of polar hydrogen atoms.  

Page 6 of 32

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



7 

 

 

Preliminary work was performed on a set of six small molecules to test the ability of the CG 

to generate all the likely conformations (see SI 1.1). �It was verified that the CG.generated 

conformations included a close approximation to the observed solid.state conformers (SI 

Figure 3 and SI Table 1), and covered at least the range of conformational flexibility used in 

previous CSP studies. For these smaller molecules it could have been possible to do a CSP 

search with each of the CG conformations held rigid. However, this strategy cannot be 

applied for molecules with more flexible torsion angles, since the CG generated far too many 

conformations (Figure 1). The number cannot be reduced by just taking conformations with 

the best probability scores, as initial tests showed that the correlation between the ��� 
�
�
� 

energies and the CG probability score was too poor (SI 1.2): several conformations that 

would be included in a CSP search on energy grounds had poor probability scores, and vice 

versa. This reflects the fact that the lowest energy conformation of a flexible molecule does 

not correspond to the most probable, or lowest energy, value for each torsion angle. 

Furthermore, for the test molecules in Figure 1, the closest match between a CG generated 

conformation and the observed crystalline conformer is generally poorer than for the small 

molecules (see SI 1.3), with visual differences in the orientations of key peripheral bulky 

groups. This suggests that a CSP search with the closest CG conformation being treated as 

rigid may not find the experimental structure because none of the crystal structures generated 

by the search would locally minimize to the observed conformation.  

The individual rotamer distributions fall into two classes, depending on how far observed 

torsion angles differ from the most probable values. Cases exemplified by 5.formyluracil and 

succinic acid (see SI Figures 2a and 2b) have all observations tightly clustered around a few 

values. These torsion angle values will be picked by the CG and can be kept as fixed in the 

search, with the different values defining separate conformational regions (CRs). 
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Alternatively, as exemplified by the fenamic acid (SI Fig 2d), there may be a wide range of 

observed values, suggesting that these torsion angles need to be variables in the CSP search. 

A related issue is that some torsion angles play a greater role in determining the overall shape 

of the molecule than others, as exemplified in Figure 2. This implies that the effect of the 

torsion angle on the shape of the entire molecule should be considered for an efficient CSP.  

          

Figure 2. Comparison between the effects of 30° changes of (a) angle Φ4 in molecule XXVI, 

which has a large effect on the overall shape and (b) angle Φ6 in XXIII, which has an 

unnoticeable effect on the overall shape of the hydrogen.bonded dimer, except in the vicinity 

of the carboxylic acid groups.  

Hence we have developed a workflow to use information from the CSD Conformer 

Generator and the underlying rotamer libraries in CSP studies to define the conformational 

space of a specific molecule, based on the molecules in Figure 1.   

 

2.1. The workflow.  

1)  �����������!
�����"	������	������������#����
!��
���
��!�����
�!��$$�����������!��%��

�$� ���� #�	���	��  After extracting the rotamer distributions from the knowledge.based 

libraries, the histograms of the rotatable torsion angles in Figure 1 were plotted and 

superimposed with their PDFs calculated via Von Mises KDE using Python; SI sections 1 

and 2 present a detailed description of the methodology. The effect of the torsion angle on 
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molecular shape was explored by ultra.fast shape recognition (USR), using the RDKit39 and 

USRCAT40 Python packages. The results of these analyses can be found in SI Figures 8.12 

and Tables 4.9.  Torsions defining the positions of hydrogen atoms that would be very 

important in determining hydrogen.bonding contributions to the lattice energy, or any other 

angle identified by CG as potentially flexible but with insufficient data in the CSD, have 

explicit ��� 
�
�
� potential.energy scans substituted. Hence, angles Φ7 in GSK269984B and 

Φ7 in XXIII were scanned with Gaussian 0941 at the PBE0 6.31(d,p) level of theory (see SI 

Section 2.5). 

&'��!!�!!�������������$���������!
�����"	���The aim is to discriminate between torsion 

angles to be treated as explicitly flexible in the search and torsion angles to be constrained to 

CG values, hence defining separate conformational regions (CRs). The decision tree in Figure 

3 was used for this purpose. 
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Figure 3. Decision tree used to discriminate between constrained torsion angles and 

explicitly flexible torsion angles on the basis of the PDF $(θ' and the changes in shape for 

varying the torsion angle (defined in SI section 2). An example its application is in SI section 

4.   

)'�*����#
�������+�	��!�������"���$�+�	��!�$�����������!
����$���"	���This involves: 

�'�*����#
�����%��!�����
+��+�	��!�$������!
�����"	�!������,
		����$
-���
������!������  

This involved selecting a set of CG.generated conformations with different 

combinations of the constrained torsion angles. These selected conformations defined 

unique conformational regions (CRs), each of which requires a separate sub.search. 

Since the CG has a complex algorithm for picking the value of each torsion angle, 

aimed at maximizing the diversity of the conformations produced, many CG 

conformations do not have the angles that are at the peak of distributions. We wished 

to use this diversity while limiting the number of conformations (and associated 

regions) to be searched. Thus, the decision tree shown in Figure 4 was used to 

determine appropriate separation thresholds, which divide the full 360° range into 

intervals that define the most significant maxima of the distribution. These thresholds 

were then fed into an automated script to select those CG.generated conformations 

that were worth considering as separated CRs. The method is exemplified in SI Table 

10. 
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Figure 4. Decision tree used to choose the separation threshold of each torsion angle that is 

suitable for keeping fixed at CG values from the PDF  $(θ'  and shape.matching 

characteristics. An example of the application of this decision tree is in SI section 4.  
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�'��%��
$
���
����$��������"�!�$�������$	�-
�	�����!
��!��The range of the flexible degrees 

of freedom, and a suitable grid spacing for representing the energy variation, were 

selected using Mogul, as the distributions it produces are more chemistry.specific than 

the rotamer libraries.34 Since the CG removes any gross steric clashes that can occur in 

large molecules, the torsion angle ranges produced by the CG can sometimes further 

reduce those observed in the Mogul distributions (see SI Figures 13.17). Step 4 refines 

the treatment of steric clashes and intramolecular stabilization. 

�'�����%�	��������"������!
�����"	�!��The same principles of analyzing the PDFs were 

applied to the ���
�
�
� torsion energy surfaces.�Since the scans showed that both polar 

hydrogen angles had sharp energy minima, these torsion angles could be constrained to 

the values of the minima, which were added to the selected conformations. All the 

combinations defining selected CRs are tabulated for each molecule in SI Tables 11.16. 

.'� /	
#
����� ���$��#��
���	� ��"
��!� ����� ���� ����"��
��		�� 
#%	��!
�	�. The CG 

conformations representative of a conformational region (CR), with all the angles to be fixed 

during the search constrained at their initial, CG values, were optimized with Gaussian 09 at 

the PBE0 6.31(d,p) level of theory. This optimization of the flexible torsions and all the other 

bond.lengths, bond.angles and torsions not identified as flexible by CG, such as those within 

aromatic rings, was performed to calculate the energy of the nearest local minimum of the 

constrained potential.energy surface. Only CRs whose optimized energies, relative to the 

most stable fully optimized molecular structure, were plausible for crystalline conformers 

were kept after this step. We used a recently found threshold of ΔE�����
��  ≤ 26 kJ/mol.6��

The workflow steps outlined thus far provide the low energy conformational space of the 

molecule, as a set of conformational regions and angles that can adopt a specified range of 
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possible values. Visualization of the conformational regions provides insight into how much 

the different parts of the molecule can interact with each other.  

0'� ���$��#� ���� !������!� �!
�"� ���� ��#�
�
�"� ���$��#��
���	� ��"
��!�� Searches were 

performed with CrystalPredictor 1.825 for each conformational region. This requires a 

sufficiently realistic representation of the conformational energy for the molecule over the 

flexibility ranges for the torsions that are treated as search variables. Hence, grids of ?Eintra 

values were calculated for the ranges and grid spacings determined in step 3b with Gaussian 

09 at the PBE0 6.31(d,p) level of theory. CrystalPredictor interpolates these grids to estimate 

the conformational energy penalty relative to the minimum for each specific CR. The 

dimensionality of grids was reduced by identifying smaller surrogate molecules containing 

groups of torsion angles in the cases where the visualization showed it was reasonable to 

assume that their ?Eintra values were not affected by the rest of the molecule (SI 2.4). This 

assumption that the overall conformational energy can sometimes be estimated by dividing a 

molecule into various surrogate molecules has been used in several successful CSP studies.17, 

24, 42  The chosen surrogate molecules (see SI Figures 18.22) had hydrogen atoms or methyl 

groups replacing certain non.torsional bonds to the rest of the molecule, and were large 

enough to represent the influence of the bonding environment on ?Eintra for the group of 

torsion angles.  

In the CrystalPredictor searches,  the estimated ?Eintra (from the ?Eintra grids), was 

combined with the dominant intermolecular Uinter calculated as a sum of an electrostatic 

component derived from point charges (fitted using the CHELPG algorithm43 from the 

optimized conformations) and a repulsion.dispersion component derived from the empirically 

fitted FIT potential.44 Crystal structures were generated in the 59 most.common space groups 

in the CSD, which are listed in SI Table 18. The extent of the search was weighted according 
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to the lowest energy CR. 300,000 structures were generated in CRs with ΔE�����
��  ≤ 4 kJ/mol, 

150,000 for those with 4 < ΔE�����
��

	≤ 17 kJ/mol and 50,000 for those with 17 < ΔE�����
��

	≤ 26 

kJ/mol. By running the sub.searches in order of increasing	ΔE�����
�� , it was possible to track 

the current global lattice.energy minimum for the overall search by adding ΔE�����
��  to the 

minimum lattice energy calculated by CrystalPredictor for that conformational region. Sub.

searches that after generating at least 10,000 crystal structures had not produced any with a 

lattice energy within 25 kJ/mol from the global minimum could be terminated to save 

computational resources, with a high degree of confidence that the intermolecular lattice 

energy was unlikely to compensate for the ?Eintra penalty and generate thermodynamically 

competitive structures. This contributed to the saving in computational resources.  

 

2.2 Methodology assessment. This workflow for using crystal.structure informatics to 

define the conformational space needed in a CSP search can only be regarded as successful if 

it allows all the “significant” crystal structures that would be analyzed in the interpretation of 

the CSP search to be generated. These are the experimentally observed crystal structure(s) of 

each molecule and the low.energy unobserved putative polymorphs (PPMs), plus, for some 

molecules, a few higher.energy conformationally diverse computer.generated crystal 

structures that were explicitly examined in the original CSP study to exclude possible types 

of conformational polymorphs. 

For each molecule, all of the generated crystal structures with Elatt (as calculated by 

CrystalPredictor) within 40 kJ/mol of the global minimum were checked to see whether the 

significant crystal structures were present among them. This range is typical of that used to 

determine which structures should be further refined with more accurate energy models. The 

generated crystal structures were compared with the fully optimized significant structures 
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found in the previous CSP study using the Crystal Packing Similarity Tool45 in the CSD 

Python API. If the RMSD15 for a 15 molecule cluster between the “significant” and the newly 

generated structure was smaller than 0.8 Å, which is the criterion used to test the success of 

the searches for the latest Blind Test,24 the structure was considered to have been ‘certainly 

found’ (i.e. full optimization would lead to an almost exact match). If the RMSD15 was larger 

than 0.8 Å, the structure was considered to have been ‘probably found’: it is highly likely, 

although not certain, that the generated structure would optimize to the corresponding 

significant one. 

 

3.� RESULTS 
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Figure 5: Summary of the application of the workflow on the molecules in Figure 1. The 

torsion angles in red were treated as flexible in the searches, covering the ranges given in 

degrees. Torsion angles in black were constrained to a set of CG values, with the values used 

in at least one search indicated; many combinations of these values were eliminated as 

energetically unfeasible in step 4.  Torsion angles in green were constrained to the indicated 

values having been determined from an ���
�
�
� conformational.energy scan. The tautomers 

A and C of mebendazole were treated in the same way. Full details are shown in SI Table 17.   
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Figure 5 shows the result of the workflow for each molecule in Figure 1, indicating how 

each torsion angle in the search was treated, and Table 1 shows how the workflow reduced 

the conformational search space of each CSP study relative to that covered by the CG 

conformations. 

 

Table 1: Summary of the CSP studies and their results. 

Molecule and 

original study 

# CG 

conformations 

# Selected 

CRs 

# CRs /Eintra (CR) ≤ 26 

kJ/mol # ~ generated 

structures/ 

·106 

Success in generating structures 
Saving in CPU 

hours, relative to 

original CSP study 0:4 

kJ/mol 

4:17 

kJ/mol 

17: 26 

kJ/mol 
Found 

Probably 

found 

Not 

found 

XXVI24   4947 138 1 8 14 2.2 31 4 1 ~14,000 (.50%) 

GSK269984B46 9529 51 1 7 10 1.9 28 6 4 not recorded 

XX42, 47 17347 21 2 8 3 2 19 2 0 ~6,000 (.30%) 

XXIII24 14269 127 3 6 7 2.1 37 12 4 ~14,000 (.70%) 

Mebendazole 

A48 
91  4 1 1 0 0.45  

28 4 0 ~5,000 (.70%) 
Mebendazole 

C48 
84 4 1 0 1 0.35 
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Figure 6. Plot of the significant CSP generated structures found in previous studies, 

classified as to whether they were found in the CSP workflow using the conformational space 

summarized in Figure 5 and SI Tables 19.23. All CSP crystal structures within a cutoff of 8.

10 kJ/mol of the global minimum are presented in (a) for XXVI, (b) GSK269984B, (c) XX, 

(d) XXIII and (e) mebendazole. Higher energy structures were included for XXVI (a 

structure whose stability was very dependent on energy model), XX and mebendazole (a 

competitive crystal structure with a� �
! amide) and experimental Form A of XXIII. Open 

diamonds depict the experimental structures optimized with the same model for the lattice 

energy. 
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The CrystalPredictor searches using a combination of CSD informatics and ��� 
�
�
� 

calculations to limit the conformational space (Figure 5) generated millions of crystal 

structures (Table 1), though with a considerable saving in the computer resources for steps 

(1) and (2) of the CSP study. The evaluation of whether the search covered all plausible 

conformational and packing polymorphs is shown in Figure 6, by classifying the output of the 

original CSP searches as to whether the new workflow generated similar enough crystal 

structures. The vast majority of PPMs, including all the experimental and global energy 

minimum structures, were generated.  For XX and mebendazole no significant crystal 

structures were missed, and only a few higher.energy PPMs were missed for XXVI, 

GSK269984B and XXIII. This was not due to any inadequacy in our method for defining the 

conformational space, as all the conformations in the missed structures were found in other 

structures generated in the searches. The structures were probably missed because they are 

located in particularly narrow wells on the lattice energy surface, which are rarely found49 by 

the pseudo.random element of the CrystalPredictor searches. The accuracy of the 

conformational model was also evidenced by most of the CrystalPredictor generated 

structures being a good match with the corresponding fully optimized structures. 

The workflow based on CSD informatics takes less than an hour to set up. The  reduction 

in the computational cost (Table 1) came from replacing initial ��� 
�
�
� conformational 

analyses on individual torsion angles with the CSD informatics analysis, requiring fewer 

calculations for the grids of �Eintra values (see SI Tables 24.30), and from being able to 

terminate Crystal Predictor runs early in a systematic manner. However, the savings are 

dependent on the molecule.  
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4.� DISCUSSION 

The results of this work show that the CSD Conformer Generator is an effective method of 

describing the likely conformational space for pharmaceutical.like molecules, but the large 

number of conformations it generates makes a more.detailed analysis of both the individual 

torsional distributions and their effect on the overall shape of the molecule necessary. Some 

��� 
�
�
� conformational energy estimates are also needed to define the plausible 

conformational space of the molecule.  Overall, by setting up a CSP study as a set of searches 

with many fixed torsion angles fixed and some that are allowed to vary over defined ranges, 

the use of the conformational tools derived from the CSD vastly reduces the number of ���


�
�
� energy calculations required. The implementation of this workflow on a set of 

CrystalPredictor searches allowed the successful generation of most of the 

thermodynamically plausible polymorphs for a sample set of pharmaceutical.like molecules, 

with a 30 to 70% reduction in computational cost. Very few significant structures were not 

found (see Table 1), but this was not due to the definition of conformational space. Only a 

few of the generated structures poorly matched their optimized counterparts, having RMSD15 

values exceeding 1.5 Å, so it is probable, but not certain, that they would optimize to the 

same lattice.energy minima. Hence, since most of the significant crystal structures of these 

five molecules, including all the experimental and global energy minimum structures, were 

reproduced very well, the workflow has identified the range of potential conformational 

polymorphs.  

This study has only addressed the question of using CSD informatics to reproduce the 

results of CSP studies based on the same assumptions, such as that sufficiently good ���
�
�
� 

calculations50, 51 on the isolated molecule are effective in determining whether a conformation 
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is of low enough energy to plausibly occur in a crystal structure. As molecules become larger, 

and have more intramolecular hydrogen bonds that could become intermolecular within some 

crystal structures, the conformational energy cut.off values, such as the 26 kJ/mol used here 

to determine whether a conformational region is likely to be observed in a crystal structure, 

might need to be changed. Indeed, there is some evidence that higher energy but more 

extended, flatter conformations that can pack more densely are likely to be observed within 

crystal structures.52 It may also be that the crystal structures in the CSD reflect more than 

relative thermodynamic stability 53, 54 However, the general approach outlined in this study 

will enable many more CSP studies of pharmaceutical.like molecules to be compared with 

the output of experimental polymorph screening.  

The development of this workflow emphasizes that the conformational space of a flexible 

pharmaceutical is smaller than that obtained by just combining the behavior of the individual 

flexible torsion angles, with the CG providing a good starting point for defining this space.  

The use of shape matching criteria to determine which angles have a major effect on the 

overall shape, and the concept of dividing the angles into those which can take a wide range 

of values, or just a few probable ones defining separate conformational regions, are likely to 

be more widely applicable. The insights from this workflow can be tailored for use in other 

modeling applications such as the parameterization of force.fields or ligand docking. Finally, 

we believe that some of the procedures and tools discussed in this paper provide information 

that could be adapted for use in studies of larger, flexible organic molecules such as 

pharmaceuticals. 

 

5.� CONCLUSION 
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A methodology integrating CSD conformational information into CSP methods was found to 

generate the putative crystal structures of flexible pharmaceutical molecules, with the 

advantage of requiring less human expertise in conformational analysis and less 

computational resources. A method is proposed to use CSD torsion.angle distributions, 

molecular shape analysis and a limited number of ��� 
�
�
� calculations to reduce the 

conformations produced by the CSD Conformer Generator into a set of sufficiently low.

energy conformational regions, defining which torsion angles should be used as search 

variables within specified ranges. The workflow effectively combines information on 

individual torsion angles and then eliminates the combinations that are too high in energy to 

be found in the solid state. Using this workflow in conjunction with CrystalPredictor 

generated all the experimentally known and almost all the putative polymorphs of five 

flexible pharmaceuticals produced by previous CSP studies, at a 30.70% lower computational 

cost.  This approach provides some insights into how the molecular structure limits the range 

of low.energy conformational polymorphs, but more understanding of conformational 

polymorphism will come from the ability to contrast more CSP studies with solid.state 

screening results.  
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