USE OF DELTA FUNCTIONS IN GENERAL RELATIVITY FOR DETERMINATION OF THE INTEGRATION CONSTANTS

By

E. SCHMUTZER

INSTITUTE FOR THEORETICAL PHYSICS OF THE UNIVERSITY OF JENA, JENA, DDR

(Presented by A. Kónya. - Received 4. IV. 1967)

During the integration of the Einstein—Maxwell equations, integration constants appear and their interpretation is often very difficult. There is therefore, a requirement for a calculus of delta functions which will automatically relate integration constants to sources. In this paper a calculus of this kind is developed and applied to the spherically symmetric problem. In this way we get a method of distinction between pure mathematical and physical singularities.

I. Calculus of delta functions

In this paper a calculus of delta functions suitable for certain physical problems is presented. The work here extends the use of delta functions to be found in a paper by Rosen and Shamir [1] and a book by Infeld and Plebansky [2].

A general delta tensor of the rank k in space-time is defined by

$$\delta^{n_1 \cdots n_k}(x^j, \xi^j) = \delta^{n_1 \cdots n_k}(\xi^j, x^j) = \begin{cases} 0 & \text{for } x^j \neq \xi^j, \\ \infty & \text{for } x^j = \xi^j, \end{cases}$$
 (1)

(k is an integer between 1 and 4). The strength of the singularity is of such a kind that

$$i \int_{V_{i-k}} \delta^{n_1 \dots n_k}(x^j, \xi^j) df_{n_1 \dots n_k}(x^j) = 1$$
(2)

is valid if the singularity is situated in the (4-k)-dimensional subspace over which the integral is taken. $df_{n_1...n_k}$ is the surface-element pseudo-tensor of rank k. A consequence of (1) and (2) is the equation

$$i \int_{V_{4-k}} F(x^j) \, \delta^{n_1 \cdots n_k}(x^j, \xi^j) \, df_{n_1 \cdots n_k}(x^j) = F(\xi^j). \tag{3}$$

(The factor i in the last two equations is a consequence of definition of $df_{n_1...n_k}$). Two cases are particularly interesting: namely if the delta tensor is of the rank 0 (k=0) we get

$$\int_{V_{i}} F(x^{j}) \, \delta(x^{j}, \xi^{j}) \, d^{(4)} f(x^{j}) = F(\xi^{j}) \tag{4}$$

326 E. SCHMUTZER

and if the delta tensor is of the rank 1 (k = 1), we get

$$i \int_{V_{i}} F(x^{j}) \, \delta^{k}(x^{j}, \xi^{j}) \, df_{k}(x^{j}) = F(\xi^{j}). \tag{5}$$

In the first case the delta tensor is called Dirac's delta function. In the second case it is called a surface delta function. Our further investigations refer to Dirac's delta function.

First we study the 1-dimensional case. Heaviside's step function is defined by

$$\Theta(x) = \begin{cases} -\frac{1}{2} & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ -\frac{1}{2} & \text{for } x > 0 \end{cases}$$
 (6)

so that the relations

a)
$$\Theta(x)' = \delta(x)$$
, b) $\Theta(x) + \Theta(-x) = 0$, c) $\Theta(x) \Theta(-x) = \begin{cases} -\frac{1}{4} \text{ for } x < 0 \\ 0 \text{ for } x = 0 \end{cases}$ (7)
d) $\Theta(x)^2 = -\Theta(x) \Theta(-x)$

hold. Dirac's delta function satisfies the differential equation

$$x\delta'(x) + \delta(x) = 0. (8)$$

The 3-dimensional delta function is given by

$$\delta(\vec{r}) = \delta(x) \, \delta(y) \, \delta(z) \quad (r = \sqrt{x^2 + y^2 + z^2}) \,. \tag{9}$$

This quantity allows the definition of the 3-dimensional radial delta function

$$\delta(\mathbf{r}) = 4 \pi \mathbf{r}^2 \, \delta(\mathbf{r}) \,, \tag{10}$$

for which the equations

a)
$$\delta(r) = \begin{cases} \infty & \text{for } r = 0 \\ 0 & \text{for } r > 0 \end{cases}, \quad b) \int_{0}^{\infty} \delta(r) dr = 1$$
 (11)

are valid. The relation

$$\delta(\mathbf{r}) = 2 \, \bar{\Theta}(\mathbf{r})' \tag{12}$$

exists between the delta function and the radial step function

$$\bar{\Theta}(r) = \begin{cases} 0 & \text{for } r = 0, \\ \frac{1}{2} & \text{for } r > 0. \end{cases}$$
 (13)

By differentiation one verifies the important equation

$$\Delta\left(\frac{\bar{\Theta}(r)}{2\pi r}\right) = -\delta(\vec{r})\,,\tag{14}$$

where Δ is the Laplace operator in spherical polar coordinates. In distribution theory literature, this is replaced by the notation

$$\Delta\left(\frac{1}{4\pi r}\right) = -\delta(\vec{r}).$$

The 2-dimensional radial delta function is defined by

$$\delta(\sigma) = 2 \pi \sigma \, \delta(x) \, \delta(y) \qquad \left(\sigma = \sqrt{x^2 + y^2}\right). \tag{15}$$

For this the relations

a)
$$\delta(\sigma) = \begin{cases} \infty & \text{for } \sigma = 0 \\ 0 & \text{for } \sigma > 0 \end{cases}, \quad b) \int_{0}^{\infty} \delta(\sigma) d\sigma = 1$$
 (16)

are valid. By calculation one verifies that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(-\frac{\bar{\Theta}(\sigma) \ln \sigma}{2 \pi}\right) = -\delta(x) \,\delta(y). \tag{17}$$

II. Investigation of Reissner-Weyl-Schwarzschild field

The square of the line element is used in the form

$$(ds)^{2} = e^{\mu(r)}(dr)^{2} + r^{2} \left[\sin^{2} \Theta(d\varphi)^{2} + (d\Theta)^{2} \right] - e^{\mu(r)}(dx^{4})^{2},$$

$$(x^{1} = r, x^{2} = \varphi, x^{3} = \Theta) .$$

$$(18)$$

We write the field equations in the form

a)
$$R_i^j = \varkappa \left(T_i^i - \frac{1}{2} g_i^j T_m^m \right)$$
, (Einstein equation)

b)
$$(E^{\mu}\sqrt[7]{-\frac{3}{9}})_{1\mu} = \varrho \sqrt[7]{-\frac{3}{9}},$$
 (19)

c)
$$(E_3\sqrt[4]{-g_{44}})_{,1} = (E_1\sqrt[4]{-g_{44}})_{,3} = 0$$
, $(E_2\sqrt[4]{-g_{44}})_{,1} = (E_1\sqrt[4]{-g_{44}})_{,2}$, (Maxwell $(E_3\sqrt[4]{-g_{44}})_{,2} = (E_2\sqrt[4]{-g_{44}})_{,3}$, $(\frac{4}{9} = -|g_{ij}|, \frac{3}{9} = -|g_{\mu\nu}|)$ equation)

taking into account that we have to treat a static problem. (Greek indices run from 1 to 3, latin indices from 1 to 4.) $E^{\mu} = g^{\mu\nu} E_{\nu}$ is the 3-dimensional electric field strength, and ϱ is the 3-dimensional charge density.

328 E. SCHMUTZER

The Einstein equations can be written in the following way:

a)
$$\frac{v''}{2} + \frac{v'^2}{4} - \frac{\mu'}{r} - \frac{v'\mu'}{4} = \varkappa e^{\mu} \left(T_1^1 - \frac{1}{2} T_m^m \right),$$

b) $\frac{v' - \mu'}{2} r + 1 - e^{\mu} = \varkappa r^2 e^{\mu} \left(T_2^2 - \frac{1}{2} T_m^m \right),$

c) $\frac{v' - \mu'}{2} r + 1 - e^{\mu} = \varkappa r^2 e^{\mu} \left(T_3^3 - \frac{1}{2} T_m^m \right)$

d) $\frac{v''}{2} + \frac{v'^2}{4} + \frac{v'}{r} - \frac{v'\mu'}{4} = \varkappa e^{\mu} \left(T_4^4 - \frac{1}{2} T_m^m \right).$

(20)

From the second and third it follows that

$$T_2^2 = T_3^3$$
, (21)

while the first and the fourth yield

$$\frac{\nu' + \mu'}{r} = \varkappa e^{\mu} \left(T_4^4 - T_1^1 \right). \tag{22}$$

Using the abbreviation

$$\gamma = e^{-\mu} \tag{23}$$

we get from (20) after some calculation

$$T_{m}^{m} = -\frac{\gamma}{\varkappa} \left[v'' + \frac{v'^{2}}{2} + \frac{2v'}{r} \right] + \frac{1}{\varkappa} \left[\frac{2}{r^{2}} (1 - \gamma) - \frac{v' \gamma'}{2} - \frac{2 \gamma'}{r} \right], \tag{24}$$

$$T_4^4 = \frac{1}{\varkappa} \left[-\frac{\gamma'}{r} + \frac{1}{r^2} (1 - \gamma) \right],$$
 (25)

$$T_1^1 = \frac{1}{\varkappa} \left[\frac{1}{r^2} (1 - \gamma) - \frac{\nu' \gamma}{r} \right],$$
 (26)

$$T_{2}^{2} = -\frac{\gamma}{2\varkappa} \left[\nu'' + \frac{\nu'^{2}}{2} + \frac{\nu'}{r} \right] - \frac{\gamma'}{2\varkappa} \left[\frac{1}{r} + \frac{\nu'}{2} \right]. \tag{27}$$

The energy tensor is now split into an electromagnetic part E_i^j and a remainder part Θ_i^j :

$$T_i^j = E_i^j + \Theta_i^j, \tag{28}$$

where

$$(E_i^l) = \left(\begin{array}{c|c} E_{\mu} E^{\nu} - \frac{1}{2} g_{\mu}^{\nu} E_{\lambda} E^{\lambda} & 0 \\ \hline 0 & \left| \frac{1}{2} E_{\lambda} E^{\lambda} \right| \end{array}\right), \qquad (\Theta_i^l) = \left(\begin{array}{ccc} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \mu c^2 \end{array}\right). \quad (29)$$

An electrical point singularity with the charge e must be described by

$$\varrho(r) = \frac{e}{4 \pi r^2 e^{\mu/2}} \delta(r) \tag{30}$$

because the equation

$$\int \varrho d^{(3)} f = \int \varrho \sqrt{-\frac{3}{g}} d^{(3)} x = e \int_{0}^{\infty} \delta(r) dr = e$$
(31)

must be valid.

The integration of the Maxwell equations yields

$$E_2 = E_3 = 0, E_1 = \frac{e^{\bar{\theta}(r)} e^{\mu/2}}{2 \pi r^2}$$
 (32)

so that

$$E_{1}^{1} = E_{4}^{4} = \frac{1}{2} E_{1} E^{1} = \frac{e^{2} \bar{\theta}(r)^{2}}{8 \pi^{2} r^{4}},$$

$$E_{2}^{2} = E_{3}^{3} = -\frac{1}{2} E_{1} E^{1} = -\frac{e^{2} \bar{\theta}(r)^{2}}{8 \pi^{2} r^{4}}$$
(33)

follows.

For integration of (25) we choose for a point singularity with the mass M the rest mass density

$$\mu = \frac{M\delta\left(r\right)}{4\pi r^2} \,. \tag{34}$$

Using (33) we find

$$(\gamma r)' = 1 - \frac{\varkappa Mc^2 \delta(r)}{4 \pi} - \frac{\varkappa e^2 \bar{\theta}(r)^2}{8 \pi^2 r^2}$$
(35)

and further by integration

$$\gamma = 1 - \frac{\varkappa M c^2 \bar{\theta}(r)}{2 \pi r} + \frac{\varkappa e^2 \bar{\theta}(r)^2}{8 \pi^2 r^2} + \frac{\varkappa e^2}{8 \pi^2 r} \int_0^r \bar{\theta}(r) \, \delta'(r) \, dr \,. \tag{36}$$

Outside the singularity this is the well known result

$$\gamma = 1 - \frac{\kappa M c^2}{4 \pi r} + \frac{\kappa e^2}{32 \pi^2 r^2} \,. \tag{37}$$

Up to this point the stress distribution in the singularity is not fixed. Further assumptions about v(r) would be necessary. The formula $v + \mu = 0$, which holds outside the singularity, leads to non-physical stress inside the singularity.

REFERENCES

- 1. N. ROSEN and H. SHAMIR, Rev. Mod. Phys., 29, 429, 1957.
- 2. L. INFELD and J. PLEBANSKI, Motion and Relativity, Warsaw, 1960.

ПРИМЕНЕНИЕ δ-ФУНКЦИЙ В ТЕОРИИ ОБЩЕЙ ОТНОСИТЕЛЬНОСТИ ДЛЯ ОПРЕДЕЛЕНИЯ ПОСТОЯННЫХ ИНТЕГРИРОВАНИЯ

Е. ШМУЦЕР

Резюме

При интегрировании уравнений Эйнштейна—Максвелла появляются постоянные интегрирования, интерпретация которых часто представляется очень трудной. Отсюда возникает потребность применения в вычислениях δ -функций, которые автоматически указывают на происхождение этих постоянных. В данной работе развивается метод такого характера, дается его применение в случае проблемы, обладающей сферической симметрией. Таким путем нами дается метод для различия между чисто математической и физической сингулярностями.