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During the integration of the Einstein—Maxwell equations, integration constants appear
and their interpretation is often very difficult. There is therefore, a requirement for a calculus
of delta functions which will automatically relate integration constants to sources. In this
paper a calculus of this kind is developed and applied to the spherically symmetric problem.
In this way we get a method of distinction between pure mathematical and physical singu-
larities.

1. Calculus of delta functions

In this paper a calculus of delta functions suitable for certain physical
problems is presented. The work here extends the use of delta functions to be
found in a paper by RoseN and SmamIrR [1] and a book by INFELD and
PrEBANSKY [2].

A general delta tensor of the rank k in space-time is defined by

0 for x/ &/,

oo for xf = &,

(5"" . .nk(xj’ 5]) — 6"" . .n,,(&j’ xj) —_ { (1)

(k is an integer between 1 and 4). The strength of the singularity is of such a
kind that

i V;s—k PYIT 7R 13))] df},1 Lol =1 (2)

is valid if the singularity is situated in the (4 — k)-dimensional subspace over
which the integral is taken. df;,, ., is the surface-element pseudo-tensor of
rank k. A consequence of (1) and (2) is the equation

i [ F()om (), &) df,...n (o)) = F (&). 3)
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(The factor i in the last two equations is a consequence of definition of dfy, .. . ,,k)
Two cases are particularly interesting: namely if the delta tensor is of the rank
0 (k= 0) we get

| F(al) o(a, &) d® filal) = F(£) (4)
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and if the delta tensor is of the rank 1 (k = 1), we get

i [ FG) 8, ) dfa) = F (&), )

In the first case the delta tensor is called Dirac’s delta function. In the second
case it is called a surface delta function. Our further investigations refer to
Dirac’s delta function.

First we study the 1-dimensional case. Heaviside’s step function is
defined by

— % for x <0
O(x) = 0 for x=0 (6)
% for x >0
8o that the relations
— —i— for x <0
a) O(x)' = i(x), b) O(x) + O(—x) =0, ¢) O(x) O(—x) = 0 for x =10 (7)
d) O = — 0(x) O(—x) —tfor x>0
hold. Dirac’s delta function satisfies the differential equation
x0’(x) + O(x) = 0. (8)

The 3-dimensional delta function is given by

B(7) = b(x) 8(y) 0(s) (r=V=+ y°+ ). 9)

This quantity allows the definition of the 3-dimensional radial delta function

o(r) = 4 ar? 6(F), (10)
for which the equations
for r=0 oi
8(ry =17 , b) (d(r)dr=1 11
a) 5(r) {Ofm>0 ) § o0 1)
are valid. The relation B
o(r) =20(ry (12)

exists between the delta function and the radial step function

0 forr=0,
ér: 13)
™ —;——forr>0. (
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USE OF DELTA FUNCTIONS 327
By differentiation one verifies the important equation

2 nr

4 (ﬂil — (7). (14)

where A is the Laplace operator in spherical polar coordinates. In distribution
theory literature, this is replaced by the notation

A(l

4 nr

— — 8(F).

The 2-dimensional radial delta function is defined by

o) =2m06(x)0(y) (0= V& +y2)- (15)

For this the relations

a) 5(c) :{

. b)) ( do)de =1 16
0 for 0 >0 )11 (@) (16)

co for 0=

are valid. By calculation one verifies that

82 n &\ ( O(o)Ino
( Ox2 dy? J ( 27

= —0(x) 8(y). (17)

IL. Investigation of Reissner—Weyl— Schwarzschild field

The square of the line element is used in the form

(ds)? = e*Ndr)? + r2[sin2 O(dg)? + (dO)] — & (dxt)?,

(18)
(*' =r, a2 =@, 23 = 0) .
We write the field equations in the form
. . 1 . . . .
a) Ri=nu {T’i - ?g{-Tﬁl , (Einstein equation)
b (E*V—fh.=e V-4, (19)
c) (K V_THM)J = (E, V“344),3 =0, (E, V“gu),l = (E, V—g44),2 » (Maxwell
(E, V"‘g‘u),z = (E, V“gau),s ’ (¢=— lgij! s = — Jguv]) equation)

taking into account that we have to treat a static problem. (Greek indices run
from 1 to 3, latin indices from 1 to 4.) E* = g E, is the 3-dimensional electric
field strength, and g is the 3-dimensional charge density.
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The Einstein equations can be written in the following way:

” ’

9 ’ ’
@) Lo BT e rT}——;TZ’),

2 4 r 4
b) v;,u r+l—e“:xr2e“(T§——;»Tm),
(20)
v’ - /‘/ 1
c) r+1—e* =ur?e* [T§— — TN
2 2
”n /2 . ’ ’ :
) QT T N A A e“(Tﬁ———l—Tm
2 4 r
From the second and third it follows that
T3 =13, (21
while the first and the fourth yield
PR e (T —TY). (22)
r
Using the abbreviation
y=e ¥ (23)
we get from (20) after some calculation
. " y'2 2y’ 172 vy 29y
To=—Llr4 4+ 2 — |- -, 29
x 2 r » | re 2 r
1 ¢ 1
mi= [~ 0. (25)
P r r
11 v
= a-n-"1, (26)
x Lr r o
Y . v'2 ' | y [ 1 v’
T3=—-"—|"+ + - — +—. 27
* 2%[ 2 rl 2x[r+2] 7)

The energy tensor is now split into an electromagnetic part E] and a remainder
part 0!:

Tj = Ej+ 0, (28)
where

(Ef =| — . @)=
1
0 ‘7 E, E’

|
E E —%g;EAEZI 0
(29)
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An electrical point singularity with the charge e must be described by

e
() = 8 () (30)
because the equation
Jjgd“‘) r— oy =Fd®x— ej 3(r)dr—e (31)
0

must be valid.
The integration of the Maxwell equations yields

0 w2
E2=E3=O,E1=e—(r)e— (32)
2 nr?
so that _
2 2
E-E-—-Lgp-200
8n2rt
1 2 (rye (33)
Ei=FE=_——EE e H(r)
8 n?rt
follows.

For integration of (25) we choose for a point singularity with the mass M
the rest mass density

Mé(r)
=7 34
p=r (34)
Using (33) we find

*Mc2é(r)  xe?f(r)

ry =1— 35
(rr) ppe Ppe (35)
and further by integration
%*Mc20 (r) #e20 (r)? xe? -
=] -7 L — | 0(r) 0 (r)dr. 36
v 2 ar 8 n? 2 + 8n2rf (o () (36)
0
Outside the singularity this is the well known result
xMc? xe?
=1 — . 37
4 4 nr + 32 n2r2 (37)

Up to this point the stress distribution in the singularity is not fixed. Further
assumptions about »(r) would be necessary. The formula v 4 u = 0, which
holds outside the singularity, leads to non-physical stress inside the singularity.
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[TPUMEHEHME §-0YHKLWM B TEOPUU OBILUEN OTHOCUTEJIBHOCTH
IJisi ONMIPEAEJIEHNA MOCTOHHHDBIX MHTETrPUPOBAHKSA

E. IUIMYLIEP

Peswme

IlpyH UHTErPUPOBAHHH ypaBHenuil DiiHwreiliHa— MakcBesnna nosBAAIOTCA NMOCTOSiHHbIE
HHTErpUPOBaHHs, HUHTEPNpPETAIMA KOTOPHIX HacTo MpeacTaBisieTcsl O4eHb TPyaHoi. Orciona
BO3HUKAET MOTPeGHOCTL NIPHMEHEHWs1 B BbIYHCIeHUSIX O-QyHKLUMHA, KOTOPbIE ABTOMAaTHUECKH
YKa3bIBAIOT Ha NPOVCKOKAEHHE ITUX NOCTOSIHELIX. B Aanunoil paboTe passuBaeTCst METOR TAKOro
xXapaxrepa, Jaercsl €ro MpUMeHeHHe B ciydae npoobiemsl, obnanawoiued cheprueckodl cnmmer-
pueli. TaKHM 1yTeM HaMH JAeTCsl METO IS PA3IHUMS MEXAY YHCTO martemaTH4eckoil v ¢nsn-
YeCKOU CUHIYJISIPHOCTSMU.

Acta Physica Academiae Scientiarum Hungaricae 24, 1968



